2015届高考数学总复习 基础知识名师讲义 第五章 第二节等差数列及其前n项和 理
- 格式:doc
- 大小:551.50 KB
- 文档页数:4
第2讲 等差数列及其前n 项和[最新考纲]1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.知 识 梳 理1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *),d 为常数. 2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 若等差数列{a n }的第m 项为a m ,则其第n 项a n 可以表示为a n =a m +(n -m )d . (2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d .(其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项) 3.等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2. (2)若{a n }为等差数列,当m +n =p +q ,a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd2; 若n 为奇数,则S 奇-S 偶=a 中(中间项).4.等差数列与函数的关系(1)等差数列与一次函数的区别与联系(2)等差数列前n 项和公式可变形为S n =d 2n 2+⎝ ⎭⎪⎫a 1-d 2n ,当d ≠0时,它是关于n的二次函数,它的图象是抛物线y =d 2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x 上横坐标为正整数的均匀分布的一群孤立的点.辨 析 感 悟1.对等差数列概念的理解(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)等差数列的公差是相邻两项的差.(×)(3)(教材习题改编)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×)2.等差数列的通项公式与前n 项和(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (5)等差数列{a n }的单调性是由公差d 决定的.(√)(6)等差数列的前n 项和公式是常数项为0的二次函数.(×) 3.等差数列性质的活用(7)(·广东卷改编)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=20.(√)(8)(·辽宁卷改编)已知关于d >0的等差数列{a n },则数列{a n },{na n },⎩⎨⎧⎭⎬⎫a n n ,{a n+3nd }都是递增数列.(×)[感悟·提升]一点注意 等差数列概念中的“从第2项起”与“同一个常数”的重要性,如(1)、(2).等差数列与函数的区别 一是当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数,如(3);二是公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0;三是等差数列{a n }的单调性是由公差d 决定的,如(8)中若a n =3n -12,则满足已知,但na n =3n 2-12n 并非递增;若a n =n +1,则满足已知,但a n n =1+1n 是递减数列;设a n =a 1+(n -1)d =dn +m ,则a n +3nd =4dn +m 是递增数列.考点一 等差数列的基本量的求解【例1】 在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3.解得d =-2.从而,a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n . 所以S n =n [1+(3-2n )]2=2n -n 2.进而由S k =-35可得2k -k 2=-35. 即k 2-2k -35=0,解得k =7或-5. 又k ∈N *,故k =7为所求.规律方法 (1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)(·浙江五校联考)已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( ).A .85B .135C .95D .23(2)(·新课标全国Ⅰ卷)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m+1=3,则m =( ).A .3B .4C .5D .6 解析 (1)设等差数列{a n }的首项为a 1,公差为d , 则⎩⎨⎧ 2a 1+4d =4,2a 1+6d =10,解得⎩⎨⎧a 1=-4,d =3. ∴S 10=10×(-4)+10×92×3=95. (2)法一 ∵S m -1=-2,S m =0,S m +1=3, ∴a m =S m -S m -1=2,a m +1=S m +1-S m =3,∴公差d =a m +1-a m =1,由S n =na 1+n (n -1)2d =na 1+n (n -1)2, 得⎩⎪⎨⎪⎧ma 1+m (m -1)2=0, ①(m -1)a 1+(m -1)(m -2)2=-2, ②由①得a 1=1-m2,代入②可得m =5.法二 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5.经检验为原方程的解.故选C. 答案 (1)C (2)C考点二 等差数列的判定与证明【例2】 (·梅州调研改编)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.审题路线 (1)利用a n =S n -S n -1(n ≥2)转化为关于S n 与S n -1的式子⇒同除S n ·S n -1⇒利用定义证明⇒得出结论.(2)由(1)求1S n⇒再求S n ⇒再代入条件a n =-2S n S n -1,求a n ⇒验证n =1的情况⇒得出结论.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)解 由(1)可得1S n=2n ,∴S n =12n .当n ≥2时, a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式. 故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明a n -a n -1=d (n ≥2,d 为常数);二是等差中项法,证明2a n +1=a n +a n +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法. 【训练2】 已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n . 设b n =a n -2n3n .证明:数列{b n }为等差数列,并求{a n }的通项公式.证明 ∵b n +1-b n =a n +1-2n +13n +1-a n -2n 3n =3a n +3n +1-2n -2n +13n +1-3a n -3·2n3n +1=1,∴{b n }为等差数列,又b 1=a 1-23=0. ∴b n =n -1,∴a n =(n -1)·3n +2n .【例3】 (1)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ). A .-6 B .-4 C .-2 D .2(2)在等差数列{a n }中,前m 项的和为30,前2m 项的和为100,则前3m 项的和为________. 解析 (1)S 8=4a 3⇒8(a 1+a 8)2=4a 3⇒a 3+a 6=a 3,∴a 6=0,∴d =-2,∴a 9=a 7+2d =-2-4=-6.(2)记数列{a n }的前n 项和为S n ,由等差数列前n 项和的性质知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,则2(S 2m -S m )=S m +(S 3m -S 2m ),又S m =30,S 2m =100,S 2m -S m =100-30=70,所以S 3m -S 2m =2(S 2m -S m )-S m =110,所以S 3m =110+100=210.答案 (1)A (2)210规律方法 巧妙运用等差数列的性质,可化繁为简;若奇数个数成等差数列且和为定值时,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列且和为定值时,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.【训练3】 (1)在等差数列{a n }中.若共有n 项,且前四项之和为21,后四项之和为67,前n 项和S n =286,则n =________.(2)已知等差数列{a n }中,S 3=9,S 6=36,则a 7+a 8+a 9=________. 解析 (1)依题意知a 1+a 2+a 3+a 4=21,a n +a n -1+a n -2+a n -3=67.由等差数列的性质知a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3,∴4(a 1+a n )=88,∴a 1+a n =22.又S n =n (a 1+a n )2,即286=n ×222,∴n =26.(2)∵{a n }为等差数列,∴S 3,S 6-S 3,S 9-S 6成等差数列, ∴2(S 6-S 3)=S 3+(S 9-S 6). ∴a 7+a 8+a 9=S 9-S 6 =2(S 6-S 3)-S 3=2(36-9)-9=45. 答案 (1)26 (2)451.等差数列的判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.2.方程思想和化归思想:在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解.方法优化4——整体代入法(整体相消法)在数列解题中的应用【典例】 (1)(·辽宁卷)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ).A .58B .88C .143D .176(2)(·北京卷)若等比数列{a n }满足:a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.[一般解法] (1)设数列{a n }的公差为d ,则a 4+a 8=16,即a 1+3d +a 1+7d =16,即a 1=8-5d ,所以S 11=11a 1+11×102d =11(8-5d )+55d =88-55d +55d =88.(2)由a 2+a 4=20,a 3+a 5=40,得⎩⎨⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40,即⎩⎨⎧a 1q (1+q 2)=20,a 1q 2(1+q 2)=40,解得q =2,a 1=2,∴S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.[优美解法] (1)由a 1+a 11=a 4+a 8=16,得 S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88.(2)由已知,得a 3+a 5a 2+a 4=q (a 2+a 4)a 2+a 4=q =2,又a 1=2,所以S n =a 1(1-q n )1-q=2n +1-2.[反思感悟] 整体代入法是一种重要的解题方法和技巧,简化了解题过程,节省了时间,这就要求学生要掌握公式,理解其结构特征. 【自主体验】在等差数列{a n }中,已知S n =m ,S m =n (m ≠n ),则S m +n =________. 解析 设{a n }的公差为d ,则由S n =m ,S m =n , 得⎩⎪⎨⎪⎧S n =na 1+n (n -1)2d =m ,S m =ma 1+m (m -1)2d =n .①②②-①得(m -n )a 1+(m -n )(m +n -1)2·d =n -m ,∵m ≠n ,∴a 1+m +n -12d =-1. ∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d=(m +n )⎝ ⎛⎭⎪⎫a 1+m +n -12d =-(m +n ).答案 -(m +n )对应学生用书P287基础巩固题组(建议用时:40分钟)一、选择题1.(·温州二模)记S n 为等差数列{a n }前n 项和,若S 33-S 22=1,则其公差d =( ). A.12B .2C .3D .4 解析 由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝ ⎛⎭⎪⎫a 1+d 2=1,∴d =2.答案 B2.(·潍坊期末考试)在等差数列{a n }中,a 5+a 6+a 7=15,那么a 3+a 4+…+a 9等于( ).A .21B .30C .35D .40解析 由题意得3a 6=15,a 6=5.所以a 3+a 4+…+a 9=7a 6=7×5=35. 答案 C3.(·揭阳二模)在等差数列{a n }中,首项a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ). A .37 B .36 C .20 D .19解析 由a m =a 1+a 2+…+a 9,得(m -1)d =9a 5=36d ⇒m =37. 答案 A4.(·郑州模拟){a n }为等差数列,S n 为其前n 项和,已知a 7=5,S 7=21,则S 10=( ).A .40B .35C .30D .28解析 设公差为d ,则由已知得S 7=7(a 1+a 7)2,即21=7(a 1+5)2,解得a 1=1,所以a 7=a 1+6d ,所以d =23.所以S 10=10a 1+10×92d =10+10×92×23=40.答案 A5.(·淄博二模)已知等差数列{a n }的前n 项和为S n ,满足a 13=S 13=13,则a 1=( ).A .-14B .-13C .-12D .-11解析 在等差数列中,S 13=13(a 1+a 13)2=13,所以a 1+a 13=2,即a 1=2-a 13=2-13=-11. 答案 D 二、填空题6.(·肇庆二模)在等差数列{a n }中,a 15=33,a 25=66,则a 35=________. 解析 a 25-a 15=10d =66-33=33,∴a 35=a 25+10d =66+33=99. 答案 997.(·成都模拟)已知等差数列{a n }的首项a 1=1,前三项之和S 3=9,则{a n }的通项a n =________.解析 由a 1=1,S 3=9,得a 1+a 2+a 3=9,即3a 1+3d =9,解得d =2,∴a n =1+(n -1)×2=2n -1. 答案 2n -18.(·浙江五校联考)若等差数列{a n }的前n 项和为S n (n ∈N *),若a 2∶a 3=5∶2,则S 3∶S 5=________.解析 S 3S 5=3(a 1+a 3)5(a 1+a 5)=3a 25a 3=35×52=32.答案 3∶2 三、解答题9.已知等差数列{a n }的公差d =1,前n 项和为S n . (1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围.解 (1)因为数列{a n }的公差d =1,且1,a 1,a 3成等比数列,所以a 21=1×(a 1+2),即a 21-a 1-2=0,解得a 1=-1或2.(2)因为数列{a n }的公差d =1,且S 5>a 1a 9,所以5a 1+10>a 21+8a 1,即a 21+3a 1-10<0,解得-5<a 1<2.故a 1的取值范围是(-5,2).10.设数列{a n }的前n 项和为S n ,a 1=1,a n =S n n +2(n -1)(n ∈N *).(1)求证:数列{a n }为等差数列,并求a n 与S n .(2)是否存在自然数n ,使得S 1+S 22+S 33+…+S n n -(n -1)2=2 015?若存在,求出n 的值;若不存在,请说明理由.证明 (1)由a n =S n n +2(n -1),得S n =na n -2n (n -1)(n ∈N *).当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),即a n -a n -1=4,故数列{a n }是以1为首项,4为公差的等差数列.于是,a n =4n -3,S n =(a 1+a n )n 2=2n 2-n (n ∈N *). (2)由(1),得S n n =2n -1(n ∈N *),又S 1+S 22+S 33+…+S n n -(n -1)2=1+3+5+7+…+(2n -1)-(n -1)2=n 2-(n -1)2=2n -1.令2n -1=2 015,得n =1 008,即存在满足条件的自然数n =1 008.能力提升题组(建议用时:25分钟)一、选择题1.(·咸阳模拟)已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ).A .12B .14C .16D .18解析 S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14. 答案 B2.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( ).A .5B .6C .7D .8解析 法一 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0,根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大.法二 由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n ,根据二次函数的性质,知当n =7时,S n 最大. 法三 根据a 1=13,S 3=S 11,则这个数列的公差不等于零,且这个数列的和先是单调递增然后又单调递减,根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,得只有当n =3+112=7时,S n 取得最大值.答案 C二、填空题3.(·九江一模)正项数列{a n }满足:a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________.解析 因为2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),所以数列{a 2n }是以a 21=1为首项,以d =a 22-a 21=4-1=3为公差的等差数列,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,n ≥1.所以a 7=3×7-2=19.答案 19三、解答题4.(·西安模拟)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =S n n +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解 (1)设等差数列{a n }的公差为d ,且d >0,由等差数列的性质,得a 2+a 5=a 3+a 4=22,所以a 3,a 4是关于x 的方程x 2-22x +117=0的解,所以a 3=9,a 4=13,易知a 1=1,d =4,故通项为a n =1+(n -1)×4=4n -3.(2)由(1)知S n =n (1+4n -3)2=2n 2-n ,所以b n =S n n +c =2n 2-n n +c. 法一 所以b 1=11+c ,b 2=62+c ,b 3=153+c(c ≠0). 令2b 2=b 1+b 3,解得c =-12.当c =-12时,b n =2n 2-n n -12=2n ,当n ≥2时,b n -b n -1=2.故当c =-12时,数列{b n }为等差数列.法二 由b n =S n n +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c, ∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *),∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.。
第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d ❶(n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d ❷.(2)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (3)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2❸. ,d >0⇔{a n }为递增数列, d =0⇔{a n }为常数列, d <0⇔{a n }为递减数列.当d ≠0时,等差数列{an }的通项公式a n =dn +(a 1-d )是关于d 的一次函数. 当d ≠0时,等差数列{an }的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 是关于n 的二次函数. [熟记常用结论]1.若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . 2.若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . 3.若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.4.若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. 6.若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.7.关于等差数列奇数项和与偶数项和的性质.(1)若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (2)若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.8.两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n =S 2n -1T 2n -1.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( ) 答案:(1)× (2)√ (3)× (4)√ 二、选填题1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4 解析:选B 设公差为d .∵a 1+a 5=2a 3=10,∴a 3=5, 又∵a 4=7,∴d =2.故选B.3.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( ) A .1 B.53 C .-2D .3解析:选C ∵S 3=6=32(a 1+a 3),且a 3=a 1+2d ,a 1=4,∴d =-2,故选C.4.已知等差数列-8,-3,2,7,…,则该数列的第100项为________. 解析:依题意得,该数列的首项为-8,公差为5,所以a 100=-8+99×5=487. 答案:4875.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________.解析:∵a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37, ∴m =37. 答案:37考点一等差数列基本量的运算[基础自学过关][题组练透]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.(2019·西安质检)已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( )A .420B .340C .-420D .-340解析:选D 设数列{a n }的公差为d ,则a 3=a 2+d =d ,a 5=a 2+3d =3d ,由a 3·a 5=12,得d =±2,由a 1>0,a 2=0,可知d <0,所以d =-2,所以a 1=2,故S 20=20×2+20×192×(-2)=-340.4.(2019·西安八校联考)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1解析:选B 设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎪⎨⎪⎧ a 1+d =-6,a 1+5d =6,解得⎩⎪⎨⎪⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B.[名师微点]等差数列基本运算的常见类型及解题策略(1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解或利用等差中项间接求解. [提醒] 在求解数列基本量问题中主要使用的是方程思想,要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.考点二等差数列的判定与证明[师生共研过关][典例精析]若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.[解] (1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1, 因为S n ≠0,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,所以S n =12n .当n ≥2时, a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.[变式发散]1.(变设问)本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解:因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2, 所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1).又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ·⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1),所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.2.(变条件)将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”变为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.解:(1)证明:当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0, 所以S n [S n -(S n -S n -1)]+2(S n -S n -1)=0, 即S n S n -1+2(S n -S n -1)=0, 因为S n ≠0,所以1S n-1S n -1=12.又1S 1=1a 1=12,故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列. (2)由(1)知1S n =n 2,所以S n =2n ,当n ≥2时,a n =S n -S n -1=-2n (n -1).当n =1时,a 1=2不适合上式,故a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. [解题技法]等差数列的判定与证明方法[提醒] 如果要证明一个数列是等差数列,则必须用定义法或等差中项法.判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[过关训练]1.已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n,设b n =a n -2n3n ,求证:数列{b n }为等差数列,并求{a n }的通项公式.证明:因为b n +1-b n =a n +1-2n +13n +1-a n -2n3n =3a n +3n +1-2n -2n +13n +1-3a n -3·2n 3n +1=1, 所以{b n }为等差数列, 又b 1=a 1-23=0,所以b n =n -1, 所以a n =(n -1)·3n +2n .2.已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1. (1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)证明:因为1a n +1-1-1a n -1=a n -a n +1(a n +1-1)(a n -1)=13,所以b n +1-b n =13,所以数列{b n }是等差数列. (2)由(1)及b 1=1a 1-1=12-1=1, 知b n =13n +23,所以a n -1=3n +2,所以a n =n +5n +2.考点三等差数列的性质与应用[师生共研过关][典例精析](1)(2018·咸阳二模)等差数列{a n }的前n 项和为S n ,若a 4,a 10是方程x 2-8x +1=0的两根,则S 13=( )A .58B .54C .56D .52(2)已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( ) A .100 B .120 C .390D .540(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________.[解析] (1)∵a 4,a 10是方程x 2-8x +1=0的两根, ∴a 4+a 10=8,∴a 1+a 13=8, ∴S 13=13×(a 1+a 13)2=13×82=52.(2)设S n 为等差数列{a n }的前n 项和, 则S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+(S 30-S 20),又等差数列{a n }的前10项和为30,前30项和为210, ∴2(S 20-30)=30+(210-S 20),解得S 20=100.(3)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1. 故S 2 0192 019=S 11+2 018d =-2 014+2 018=4, ∴S 2 019=4×2 019=8 076.[答案] (1)D (2)A (3)8 076[解题技法]一般地,运用等差数列性质可以优化解题过程,但要注意性质运用的条件,如m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *);数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列;⎩⎨⎧⎭⎬⎫S n n 也成等差数列.等差数列的性质是解题的重要工具. [过关训练]1.(2019·聊城模拟)设等差数列{a n }的前n 项和为S n ,若S 13=104,a 6=5,则数列{a n }的公差为( )A .2B .3C .4D .5解析:选B 设等差数列{a n }的公差为d . 因为S 13=104,所以13(a 1+a 13)2=104,所以13a 7=104,解得a 7=8.因为a 6=5,所以d =a 7-a 6=8-5=3.2.(2018·宁德二检)已知等差数列{a n }满足a 3+a 5=14,a 2a 6=33,则a 1a 7=( ) A .33 B .16 C .13D .12解析:选C 设等差数列{a n }的公差为d , 因为a 3+a 5=14,所以a 2+a 6=14,又a 2a 6=33,所以⎩⎪⎨⎪⎧ a 2=3,a 6=11或⎩⎪⎨⎪⎧a 2=11,a 6=3.当⎩⎪⎨⎪⎧a 2=3,a 6=11时,d =11-36-2=2,所以a 1a 7=(a 2-d )(a 6+d )=13;当⎩⎪⎨⎪⎧a 2=11,a 6=3时,d =3-116-2=-2,所以a 1a 7=(a 2-d )(a 6+d )=13. 综上,a 1a 7=13,故选C.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a 11b 11=________.解析:由等差数列前n 项和的性质, 得a 11b 11=S 21T 21=2×213×21+1=2132.答案:2132考点四等差数列前n 项和的最值问题[师生共研过关][典例精析]在等差数列{a n }中,已知a 1=13,3a 2=11a 6,则数列{a n }的前n 项和S n 的最大值为________.[解析] 法一 通项法 设等差数列{a n }的公差为d .由3a 2=11a 6,得3×(13+d )=11×(13+5d ),解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.由⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,得⎩⎪⎨⎪⎧-2n +15≥0,-2(n +1)+15≤0,解得132≤n ≤152.因为n ∈N *,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=7×(13-2×7+15)2=49.法二 二次函数法 设等差数列{a n }的公差为d .由3a 2=11a 6,得3×(13+d )=11×(13+5d ),解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.所以S n =n (13+15-2n )2=-n 2+14n =-(n -7)2+49,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=49. [答案] 49[解题技法]求数列前n 项和的最值的方法(1)通项法:①若a 1>0,d <0,则S n 必有最大值,其n 的值可用不等式组⎩⎪⎨⎪⎧a n ≥0,a n +1≤0来确定;②若a 1<0,d >0,则S n 必有最小值,其n 的值可用不等式组⎩⎪⎨⎪⎧a n ≤0,a n +1≥0来确定.(2)二次函数法:等差数列{a n }中,由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,可用求函数最值的方法来求前n 项和的最值,这里应由n ∈N *及二次函数图象的对称性来确定n 的值.(3)不等式组法:借助S n 最大时,有⎩⎪⎨⎪⎧S n ≥S n -1,S n ≥S n +1(n ≥2,n ∈N *),解此不等式组确定n的范围,进而确定n 的值和对应S n 的值(即S n 的最值).[过关训练]1.已知等差数列{a n }的前n 项和是S n ,若S 15>0,S 16<0,则S n 的最大值是( ) A .S 1 B .S 7 C .S 8D .S 15解析:选C 由等差数列的前n 项和公式可得S 15=15a 8>0,S 16=8(a 8+a 9)<0,所以a 8>0,a 9<0,则d =a 9-a 8<0,所以在数列{a n }中,当n <9时,a n >0,当n ≥9时,a n <0, 所以当n =8时,S n 最大,故选C.2.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. 解:(1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16, 所以当n =4时,S n 取得最小值,最小值为-16.[课时跟踪检测]一、题点全面练1.等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d =( ) A.14 B.12 C .2D .-12解析:选A 由a 4+a 8=2a 6=10,得a 6=5,所以4d =a 10-a 6=1,解得d =14.2.(2019·沈阳质量监测)在等差数列{a n }中,若S n 为{a n }的前n 项和,2a 7=a 8+5,则S 11的值是( )A .55B .11C .50D .60解析:选A 设等差数列{a n }的公差为d ,由题意可得2(a 1+6d )=a 1+7d +5,得a 1+5d =5,则S 11=11a 1+11×102d =11(a 1+5d )=11×5=55,故选A. 3.(2018·泉州期末)等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }的前9项和S 9等于( )A .99B .66C .144D .297解析:选A 由等差数列的性质可得a 1+a 7=2a 4,a 3+a 9=2a 6,又∵a 1+a 4+a 7=39,a 3+a 6+a 9=27,∴3a 4=39,3a 6=27,解得a 4=13,a 6=9,∴a 4+a 6=22,∴数列{a n }的前9项和S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×222=99. 4.(2019·广州五校联考)设等差数列{a n }的前n 项和为S n ,若a m =4,S m =0,S m +2=14(m ≥2,且m ∈N *),则a 2 019的值为( )A .2 020B .4 032C .5 041D .3 019 解析:选B 由题意得⎩⎪⎨⎪⎧ a m =a 1+(m -1)d =4,S m =ma 1+m (m -1)2d =0,S m +2-S m =a m +1+a m +2=2a 1+(m +m +1)d =14,解得⎩⎪⎨⎪⎧ a 1=-4,m =5,d =2,∴a n =-4+(n -1)×2=2n -6,∴a 2 019=2×2 019-6=4 032.故选B.5.(2019·长春质检)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )A .6B .7C .8D .9解析:选C 由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d 2>0,所以前8项和为前n 项和的最小值,故选C.6.设等差数列{a n }的前n 项和为S n ,若a 6=2a 3,则S 11S 5=______. 解析:S 11S 5=112(a 1+a 11)52(a 1+a 5)=11a 65a 3=225. 答案:225 7.等差数列{a n }中,已知S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10=________.解析:设公差为d ,∵S 99-S 77=2,∴9-12d -7-12d =2, ∴d =2,∵a 1=-9,∴S 10=10×(-9)+10×92×2=0. 答案:08.(2018·广元统考)若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+n ,则a 1+a 22+…+a n n =________.解析:当n =1时,a 1=2⇒a 1=4, 又a 1+a 2+…+a n =n 2+n ,①所以当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+(n -1)=n 2-n ,② ①-②得a n =2n ,即a n =4n 2,所以a n n =4n 2n =4n , 则⎩⎨⎧⎭⎬⎫a n n 构成以4为首项,4为公差的等差数列. 所以a 1+a 22+…+a n n =(4+4n )n 2=2n 2+2n . 答案:2n 2+2n9.(2018·大连模拟)已知数列{a n }的各项均为正数,其前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.解:(1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,所以a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,所以两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数矛盾,所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }为等差数列.(2)由(1)知a 1=3,数列{a n }的公差d =1,所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2.10.已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.解:(1)由题意知(2a 1+d )(3a 1+3d )=36,将a 1=1代入上式,解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4. 即所求m 的值为5,k 的值为4.二、专项培优练(一)易错专练——不丢怨枉分1.若{a n }是等差数列,首项a 1>0,a 2 018+a 2 019>0,a 2 018·a 2 019<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 018B .2 019C .4 036D .4 037解析:选C 因为a 1>0,a 2 018+a 2 019>0,a 2 018·a 2 019<0,所以d <0,a 2 018>0,a 2 019<0,所以S 4 036=4 036(a 1+a 4 036)2=4 036(a 2 018+a 2 019)2>0,S 4 037=4 037(a 1+a 4 037)2=4 037·a 2 019<0,所以使前n 项和S n >0成立的最大正整数n 是4 036. 2.(2019·武汉模拟)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为( )A .-10B .-12C .-9D .-13解析:选B 设等差数列{a n }的公差为d ,∵a 3+a 7=36,∴a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧ a 4=11,a 6=25或⎩⎪⎨⎪⎧ a 4=25,a 6=11,当⎩⎪⎨⎪⎧ a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,∴a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧ a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,∴a 7a 8=-12为a n a n +1的最小值.综上,a n a n +1的最小值为-12.3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析:由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n-10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.答案:130(二)交汇专练——融会巧迁移4.[与方程交汇]若等差数列{a n }中的a 3,a 2 019是3x 2-12x +4=0的两根,则log 14a 1 011=________.解析:因为a 3和a 2 019是3x 2-12x +4=0的两根,所以a 3+a 2 019=4.又a 3,a 1 011,a 2 019成等差数列,所以2a 1 011=a 3+a 2 019,即a 1 011=2,所以log 14a 1 011=-12. 答案:-125.[与不等式恒成立交汇]设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25.(1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)n k (a n +4)对所有的正整数n 都成立,求实数k 的取值范围.解:(1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25, ∴a 1=-1,d =3.∴{a n }的通项公式a n =3n -4.(2)由题意知S n =-n +3n (n -1)2,2S n +8n +27=3n 2+3n +27,a n +4=3n ,则原不等式等价于(-1)n k <n +1+9n对所有的正整数n 都成立. ∴当n 为奇数时,k >-⎝⎛⎭⎫n +1+9n 恒成立; 当n 为偶数时,k <n +1+9n恒成立. 又∵n +1+9n ≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n在n =3上取最小值7, 当n 为偶数时,n +1+9n 在n =4上取最小值294, ∴不等式对所有的正整数n 都成立时,实数k 的取值范围是⎝⎛⎭⎫-7,294.。
第2讲 等差数列及其前n 项和板块一 知识梳理·自主学习[必备知识]考点1 等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.考点2 等差数列的有关公式 1.通项公式:a n =a 1+(n -1)d . 2.前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.[必会结论]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .若m +n =2p (m ,n ,p ∈N *),则a m +a n =2a p .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d, 则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)等差数列{a n }的前n 项和为S n, 则S n ,S 2n -S n ,S 3n -S 2n 仍成等差数列,其公差为n 2d .[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)等差数列的公差是相邻两项的差.( )(2)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( )(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (5)等差数列{a n }的单调性是由公差d 决定的.( ) 答案 (1)× (2)× (3)× (4)√ (5)√2.[课本改编]在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143 D .176答案 B解析 因为{a n }是等差数列,所以a 4+a 8=2a 6=16⇒a 6=8,则该数列的前11项和为S 11=11(a 1+a 11)2=11a 6=88.故选B.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 S 3,S 6-S 3,S 9-S 6成等差数列,即9,27,a 7+a 8+a 9成等差数列,∴a 7+a 8+a 9=54-9=45.故选B.4.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14 D .15 答案 B解析 由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.故选B.5.[课本改编]在数列{a n }中,a 1=2,2a n +1=2a n +1,则a 101=________. 答案 52解析 由2a n +1=2a n +1,得a n +1-a n =12,故数列{a n }是首项为2,公差为12的等差数列,所以a 101=2+100×12=52.6.[2018·苏北四市模拟]在等差数列{a n }中,已知a 2+a 8=11,则3a 3+a 11的值为________.答案 22解析 设等差数列{a n }的公差为d ,由题意可得a 2+a 8=11=2a 5,则a 5=112,所以3a 3+a 11=3(a 5-2d )+a 5+6d =4a 5=4×112=22.板块二 典例探究·考向突破 考向等差数列的基本运算例 1 (1)[2017·全国卷Ⅰ]记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8 答案 C解析 设{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4.故选C.(2)[2018·吉林模拟]已知等差数列{a n }的前n 项和为S n ,若6a 3+2a 4-3a 2=5,则S 7=( )A .28B .21C .14D .7 答案 D解析 由6a 3+2a 4-3a 2=5,得6(a 1+2d )+2(a 1+3d )-3(a 1+d )=5a 1+15d =5(a 1+3d )=5,即5a 4=5,所以a 4=1,所以S 7=7×(a 1+a 7)2=7×2a 42=7a 4=7.故选D.触类旁通等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【变式训练1】 (1)[2016·全国卷Ⅰ]已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97 答案 C解析 设{a n }的公差为d ,由等差数列前n 项和公式及通项公式,得⎩⎪⎨⎪⎧S 9=9a 1+9×82d =27,a 10=a 1+9d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =1,a n =a 1+(n -1)d =n -2,∴a 100=100-2=98.故选C.(2)设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 答案 -72解析 设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.考向等差数列的性质命题角度1 等差数列项的性质例 2 (1)等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值是( )A .14B .15C .16D .17 答案 C解析 因为{a n }是等差数列,所以a 4+a 6+a 8+a 10+a 12=5a 8=120,∴a 8=24.所以a 9-13a 11=a 8+d -13(a 8+3d )=23a 8=16.(2)若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 5b 5=________.答案214解析 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.命题角度2 等差数列前n 项和性质的应用例 3 (1)已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40 答案 A解析 设这个数列有2n 项,则由等差数列的性质可知:偶数项之和减去奇数项之和等于nd ,即25-15=2n ,故2n =10,即数列的项数为10.故选A.(2)[2018·杭州学军中学月考]设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=( )A.310 B.13 C.18 D.19答案 A解析 令S 3=1,则S 6=3,∴S 9=1+2+3=6.S 12=S 9+4=10,∴S 6S 12=310.故选A. 触类旁通等差数列性质的应用技巧(1)等差数列项的性质:利用等差数列项的性质解决基本量的运算体现了整体求值思想,应用时常将a n +a m =2a k (n +m =2k ,n ,m ,k ∈N *)与a m +a n =a p +a q (m +n =p +q ,m ,n ,p ,q ∈N *)相结合,可减少运算量.(2)等差数列和的性质:在等差数列{a n }中,S n 为其前n 项和,则数列S m ,S 2m -S m ,S 3m-S 2m ,…也是等差数列,且有S 2n =n (a 1+a 2n )=…=n (a n +a n +1);S 2n -1=(2n -1)a n ;若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项).考向等差数列的判定与证明例 4 [2018·辽宁大连双基测试]数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明:1S 1+1S 2+…+1S n >nn +1.解 (1)证明:∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n,即1a n +1-1a n=2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.(2)由(1)知1a n =2n -1,所以S n =n (1+2n -1)2=n 2.证明:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1 =nn +1.触类旁通等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .提醒 在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.【变式训练2】 [2018·昆明模拟]在数列{a n }中,a 1=35,a n +1=2-1a n ,设b n =1a n -1,数列{b n }的前n 项和是S n .(1)证明数列{b n }是等差数列,并求S n ; (2)比较a n 与S n +7的大小. 解 (1)证明:∵b n =1a n -1,a n +1=2-1a n ,∴b n +1=1a n +1-1=1a n -1+1=b n +1,∴b n +1-b n =1,∴数列{b n }是公差为1的等差数列.由a 1=35,b n =1a n -1,得b 1=-52,∴S n =-5n 2+n (n -1)2=n 22-3n .(2)由(1)知,b n =-52+n -1=n -72.由b n =1a n -1,得a n =1+1b n =1+1n -72. ∴a n -S n -7=-n 22+3n -6+1n -72.∵当n ≥4时,y =-n 22+3n -6是减函数,y =1n -72也是减函数,∴当n ≥4时,a n -S n-7≤a 4-S 4-7=0.又∵a 1-S 1-7=-3910<0,a 2-S 2-7=-83<0,a 3-S 3-7=-72<0,∴∀n ∈N *,a n -S n -7≤0,∴a n ≤S n +7.核心规律1.等差数列的判定方法:(1)定义法;(2)等差中项法;(3)通项公式法;(4)前n 项和公式法.2.方程思想和化归思想:在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解.3.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.满分策略1.当公差d ≠0时,等差数列的通项公式是n 的一次函数;当公差d =0时,a n 为常数.2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.3.注意利用“a n -a n -1=d ”时加上条件“n ≥2”;否则,当n =1时,a 0无定义.板块三 启智培优·破译高考题型技法系列7——破解等差数列中的最值问题[2018·北京海淀模拟]等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解题视点 可利用S n =na 1+n (n -1)2d 及二次函数的性质求解;也可以利用首项a 1>0,公差d <0,找最后一个正项求解;还可以利用S n =An 2+Bn 及二次函数图象的对称性求解.解 解法一:由S 3=S 11,得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1.又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. 解法四:由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大. 答题启示 求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.跟踪训练(1)[2018·江西模拟]已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 值是________.答案 20解析 a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.(2)在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78解析 ∵当且仅当n =8时S n 取得最大值,∴⎩⎪⎨⎪⎧a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.板块四 模拟演练·提能增分[A 级 基础达标]1.已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C解析 由已知得S 3=3a 2=12,即a 2=4,∴d =a 3-a 2=6-4=2.故选C.2.[2018·宁德模拟]等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值是( ) A .20 B .22 C .24 D .-8 答案 C解析 因为a 1+3a 8+a 15=5a 8=120,所以a 8=24,所以2a 9-a 10=a 10+a 8-a 10=a 8=24.故选C.3.设S n 为等差数列{a n }的前n 项和,若S 8=4a 3,a 7=-2,则a 9等于( ) A .-6 B .-4 C .-2 D .2 答案 A解析 S 8=8(a 1+a 8)2=4(a 3+a 6).因为S 8=4a 3,所以a 6=0.又a 7=-2,所以d =a 7-a 6=-2,所以a 8=-4,a 9=-6.故选A.4.[2018·北京海淀期末]在等差数列{a n }中,若a 1+a 7+a 8+a 12=12,则此数列的前13项之和为( )A .39B .52C .78D .104 答案 A解析 设数列的公差为d ,则由a 1+a 7+a 8+a 12=12可得4a 1+24d =12,即a 1+6d =3,即a 7=3,故前13项之和为13(a 1+a 13)2=13a 7=39.故选A. 5.[2018·郑州预测]已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=10,且5S 1S 5=15,则a 2=( ) A .2 B .3 C .4 D .5答案 A解析 依题意得55a 1a 3=15,a 1a 3=5,a 2=10a 1a 3=2.故选A.6.已知S n 表示等差数列{a n }的前n 项和,且S 5S 10=13,那么S 5S 20等于( ) A.110 B.19 C.18 D.13答案 A解析 因为该数列是等差数列,所以S 5,S 10-S 5,S 15-S 10,S 20-S 15成等差数列,又因为S 5S 10=13,所以S 10=3S 5,所以S 10-S 5=2S 5,所以S 15-S 10=3S 5,所以S 15=6S 5,同理可求S 20=10S 5,所以S 5S 20=110.故选A. 7.已知数列{a n }是等差数列,a 4=15,a 7=27,则过点P (3,a 3),Q (5,a 5)的直线斜率为( )A .4 B.14 C .-4 D .-14答案 A解析 由数列{a n }是等差数列,知a n 是关于n 的“一次函数”,其图象是一条直线上的等间隔的点(n ,a n ),因此过点P (3,a 3),Q (5,a 5)的直线斜率即过点(4,15),(7,27)的直线斜率,所以直线的斜率k =27-157-4=4.故选A. 8.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 ∵{a n }为等差数列,∴a 7+a 9=2a 8,∴a 7+a 8+a 9=3a 8>0,即a 8>0,又a 7+a 10=a 8+a 9<0. ∴a 9<0,∴{a n }为递减数列.又∵ S 9=S 8+a 9<S 8,S 8=S 7+a 8>S 7, ∴当n =8时,{a n }的前n 项和最大.9.[2018·金版创新题]已知数列{a n }中,a 3=7,a 7=3,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 10=________.答案 73解析 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d , 则1a 3-1=16,1a 7-1=12.∵⎩⎨⎧⎭⎬⎫1a n -1是等差数列, ∴1a 7-1=1a 3-1+4d ,即12=16+4d ,解得d =112, 故1a 10-1=1a 3-1+7d =16+7×112=34,解得a 10=73. 10.一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.答案 5解析 设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.[B 级 知能提升]1.[2018·唐山统考]已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( )A .18B .12C .9D .6 答案 D解析 设等差数列{a n }的公差为d ,由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6.故选D.2.[2018·洛阳统考]设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13 答案 C解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.故选C.3.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.答案 10解析 ∵2a n =a n -1+a n +1,又a n -1+a n +1-a 2n =0, ∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=2(2n -1)=38, 解得n =10.4.[2018·云南模拟]设数列{a n }的前n 项积为T n ,且T n +2a n =2(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)设b n =(1-a n )(1-a n +1),求数列{b n }的前n 项和S n . 解 (1)证明:∵T n +2a n =2,∴当n =1时,T 1+2a 1=2,11 ∴T 1=23,即1T 1=32. 又当n ≥2时,T n =2-2×T n T n -1, 得T n ·T n -1=2T n -1-2T n ,∴1T n -1T n -1=12, ∴数列⎩⎨⎧⎭⎬⎫1T n 是以32为首项,12为公差的等差数列. (2)由(1)知,数列⎩⎨⎧⎭⎬⎫1T n 为等差数列, ∴1T n =32+12(n -1)=n +22,∴a n =2-T n 2=n +1n +2, ∴b n =(1-a n )(1-a n +1)=1(n +2)(n +3)=1n +2-1n +3, ∴S n =⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+( 1n +2-1n +3 )=13-1n +3=n 3n +9. 5.已知数列{a n }的前n 项和S n =2a n -2n +1. (1)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列; (2)若不等式2n 2-n -3<(5-λ)a n 对任意的n ∈N *恒成立,求λ的取值范围. 解 (1)证明:当n =1时,S 1=2a 1-22,得a 1=4. S n =2a n -2n +1,当n ≥2时,S n -1=2a n -1-2n,两式相减得 a n =2a n -2a n -1-2n ,即a n =2a n -1+2n ,所以a n 2n -a n -12n -1=2a n -1+2n 2n -a n -12n -1=a n -12n -1+1-a n -12n -1=1,又a 121=2,所以数列⎩⎨⎧⎭⎬⎫a n 2n 是以2为首项,1为公差的等差数列.(2)由(1)知a n 2n =n +1,即a n =n ·2n +2n . 因为a n >0,所以不等式2n 2-n -3<(5-λ)a n ,即(n +1)(2n -3)<(5-λ)·2n (n +1)等价于5-λ>2n -32n . 记b n =2n -32n ,b 1=-12,b 2=14,当n ≥2时,b n +1b n =2n -12n +12n -32n =2n -14n -6,则b 3b 2=32,即b 3>b 2,所以当n ≥3时,b n +1b n <1,所以(b n )max =b 3=38,所以λ<378.。
第二节 等差数列及其前n 项和【考纲下载】1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题. 4.了解等差数列与一次函数、二次函数的关系.1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *).2.等差数列的通项公式若等差数列{a n }的首项为a 1,公差为d ,则其通项公式为a n =a 1+(n -1)d . 3.等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2.4.等差数列的前n 项和公式S n =na 1+n n -12d =n a 1+a n2.5.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m +n =p +q ,则a m +a n =a p +a q , 特别地,若m +n =2p ,则a m +a n =2a p .(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.1.已知等差数列{a n }的第m 项为a m ,公差为d ,则其第n 项a n 能否用a m 与d 表示? 提示:能,a n =a m +(n -m )d .2.等差数列前n 项和公式的推导运用了什么方法? 提示:倒序相加法.3.等差数列前n 项和公式能否看成关于n 的函数,该函数是否有最值?提示:当d ≠0时,S n 是关于n 的且常数项为0的二次函数,则(n ,S n )是二次函数图象上的一群孤立的点,由此可得:当d >0时,S n 有最小值;当d <0时,S n 有最大值.1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=( ) A .12 B .14 C .16 D .18 解析:选D ∵a 2=2,a 3=4,∴公差d =a 3-a 2=2. ∴a 10=a 2+8d =2+2×8=18.2.设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=( ) A .18 B .20 C .22 D .24解析:选B ∵S 10=S 11,∴a 11=0,即a 1+10d =0.∴a 1=-10d =20.3.已知{a n }是等差数列,且a 3+a 9=4a 5,a 2=-8,则该数列的公差是( ) A .4 B .14 C .-4 D .-14 解析:选A ∵a 2=-8,a 3+a 9=4a 5, ∴(-8+d )+(-8+7d )=4(-8+3d ), 即16=4d ,∴d =4.4.(2013·广东高考)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 解析:设等差数列的公差为d ,则a 3+a 8=2a 1+9d =10,3a 5+a 7=4a 1+18d =2(2a 1+9d )=20.答案:205.(2013·重庆高考)若2,a ,b ,c,9成等差数列,则c -a =________. 解析:设公差为d ,∵2,a ,b ,c,9成等差数列,∴9-2=4d ,∴d =74.又c -a =2d ,∴c -a =2×74=72.答案:72数学思想(七)整体思想在等差数列中的应用利用整体思想解数学问题,就是从全局着眼,由整体入手,把一些彼此独立但实际上紧密联系的量作为一个整体考虑的方法.有不少等差数列题,其首项、公差无法确定或计算繁琐,对这类问题,若从整体考虑,往往可寻得简捷的解题途径.[典例] 设等差数列{a n }的前n 项和S n =m ,前m 项和S m =n (m ≠n ),则它的前m +n 项的和S m +n =________.[解题指导] 可利用等差数列的前n 项和公式求解,也可利用等差数列前n 项和公式的性质求解.[解析] 法一:设{a n }的公差为d , 则由S n =m ,S m =n ,得⎩⎪⎨⎪⎧S n=na 1+nn -12d =m , ①S m =ma 1+mm -12d =n . ②②-①,得(m -n )a 1+m -nm +n -12·d =n -m ,∵m ≠n ,∴a 1+m +n -12d =-1.∴S m +n =(m +n )a 1+m +nm +n -12d=(m +n )⎝⎛⎭⎪⎫a 1+m +n -12d =-(m +n ).法二:设S n =An 2+Bn (n ∈N *),则⎩⎪⎨⎪⎧Am 2+Bm =n , ③An 2+Bn =m , ④③-④,得A (m 2-n 2)+B (m -n )=n -m . ∵m ≠n ,∴A (m +n )+B =-1.∴A (m +n )2+B (m +n )=-(m +n ), 即S m +n =-(m +n ). [答案] -(m +n )[题后悟道] 1.本题的两种解法都突出了整体思想,其中法一把a 1+m +n -12d 看成了一个整体,法二把A (m +n )+B 看成了一个整体,解起来都很方便.2.整体思想是一种重要的解题方法和技巧,这就要求学生要熟练掌握公式,理解其结构特征.3.本题的易错点是不能正确运用整体思想的运算方法,不能建立数量间的关系,导致错误.若两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于( )A .7 B.23 C.278 D.214解析:选D ∵a 5=a 1+a 92,b 5=b 1+b 92,∴a 5b 5=a 1+a 92b 1+b 92=9a 1+a 929b 1+b 92=S 9T 9=7×99+3=214.。
第二节 等差数列及其前n 项和
知识梳理
一、等差数列的概念
1.定义:如果一个数列从第二项开始,每一项与前一项的差都是同一个常数,那么这样的数列叫做等差数列,记作数列{}a n ,首项记作a 1,公差记作d .
2.符号表示: a n +1-a n =d (n ∈N *
). 二、通项公式
若数列{}a n 为等差数列,则a n =a 1+(n -1)d =a m +(n -m )d . 三、前n 项和公式
S n =n a 1+a n 2=na 1+n n -2
d .
四、等差中项
如果三数a ,A ,b 成等差数列,则A 叫做a 和b 的等差中项,即A =a +b
2
.
五、等差数列的判定方法
1.定义法: a n +1-a n =d (常数)(n ∈N *
)⇔{}a n 是等差数列.
2.中项公式法: 2a n +1=a n +a n +2(n ∈N *
)⇔{}a n 是等差数列.
3.通项公式法: a n =kn +b (k ,b 是常数)(n ∈N *
)⇔{}a n 是等差数列.
4.前n 项和公式法:S n =An 2+Bn (A ,B 是常数)(n ∈N *
)⇔{}a n 是等差数列. 六、用函数观点认识等差数列
1.a n =dn +a 1-d ,d ≠0时是关于n 的一次函数. 2.S n =d
2n 2
+⎝
⎛
⎭⎪⎫
a 1-d 2n ,d ≠0时是关于n 的常数项为零的二次函数.
七、等差数列的重要性质
1.在等差数列{}a n 中,若p +q =m +n ,则有a p +a q =a m +a n ;若2m =p +q ,则有2a m
=a p +a q (p ,q ,m ,n ∈N *
,简称为下标和性质).
2.在等差数列{}a n 中,等距离取出若干项也构成一个等差数列,即a n ,a n +k ,a n +2k ,a n
+3k ,…为等差数列,公差为kd .
3.若数列{}a n 是等差数列,S n 是其前n 项的和,那么S k ,S 2k -S k , S 3k -S 2k (k ∈N *
)也成
等差数列,公差为k 2
d .
基础自测
1.理解等差数列的概念.
2.掌握等差数列的通项公式与前n 项和公式.
3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.
4.了解等差数列与一次函数的关系.
1.(2013·江门二模)已知数列{a n }是等差数列,若a 3+a 11=24,a 4=3,则{a n }的公差是( )
A .1
B .3
C .5
D .6
解析:(法一)因为数列{a n }是等差数列,a 3+a 11=24,a 4=3,利用等差数列的性质可得
2a 7=24,所以a 7=12,d =a 7-a 4
7-4
=3.
(法二)设等差数列的公差为d ,
∵a 3+a 11=24,a 4=3,∴⎩
⎪⎨⎪⎧
2a 1+12d =24,
a 1+3d =3,解得a 1=-6,d =3,故选B.
答案:B
2.(2013·宁夏银川一中质检)已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2
+a 12)的值为( )
A. 3 B .± 3
C .-3
3 D .- 3
解析:由等差数列的性质,得a 1+a 7+a 13=3a 7=4π,
∴a 7=4π3,∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π
3
=- 3.故选D.
答案:D
3.各项不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,则a 7的值为________.
解析:由2a 3-a 27+2a 11=0,得2(a 3+a 11)-a 27=0⇒4a 7-a 2
7=0, a 7(4-a 7)=0.∵a 7≠0,∴a 7=4. 答案:4
4.设S n 是等差数列{a n }的前n 项和.若S 3S 6=13,则S 6
S 7
=________.
解析:设等差数列的首项为a 1,公差为d ,则有3a 1+3d 6a 1+15d =13,得a 1=2d ,∴S 6S 7=
6a 1+15d
7a 1+21d
=2735
. 答案:27
35
1.(2013·辽宁卷)下面是关于公差d >0的等差数列{a n }的四个命题:
①数列{a n }是递增数列;②数列{na n }是递增数列;③数列⎩⎨⎧⎭
⎬⎫
a n n 是递增数列;④数列{a n
+3nd }是递增数列.
其中的真命题为( )
A .①②
B .③④
C .②③
D .①④
解析:a n =a 1+(n -1)d ,d >0, ∴a n -a n -1=d >0,命题①正确.
na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小和a 1的取值情况有关.
故数列{na n }不一定递增,命题②不正确.
对于③:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+d
n n -
,
当d -a 1>0,即d >a 1时,数列⎩⎨⎧⎭
⎬⎫
a n n 递增,
但d >a 1不一定成立,则③不正确. 对于④:设b n =a n +3nd ,
则b n +1-b n =a n +1-a n +3d =4d >0.
∴数列{a n +3nd }是递增数列,④正确. 综上,正确的命题为①④. 答案:D
2.(2013·四川卷)在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n 项和.
解析:设该数列公差为d ,前n 项和为S n ,由已知,可得
2a 1+2d =8,(a 1+3d )2
=(a 1+d )(a 1+8d ). 所以,a 1+d =4,d (d -3a 1)=0, 解得a 1=4,d =0或a 1=1,d =3,
即数列{a n }的首项为4,公差为0,或首项为1,公差为3.
所以,数列{a n }的前n 项和S n =4n (n ∈N *)或S n =3n 2
-n 2
(n ∈N *
).
1.(2013·汕头一模)在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 1+a 2+a 3+…+a 10,则k =( )
A .45
B .46
C .47
D .48
解析:∵a k =a 1+a 2+a 3+…+a 10,∴a 1+(k -1)d =10a 1+45d , ∵a 1=0,公差d ≠0,∴(k -1)d =45d ,∴k =46,故选B. 答案:B 2.设各项均为正数的数列{}a n 的前n 项和为S n ,已知数列{}S n 是首项为1,公差为1的等差数列.
(1)求数列{}a n 的通项公式;
(2)令b n =
1
a n S 2n +1+a n +1S 2n -1
,若不等式∑i =1
n
b i ≥
L
2n +1+1
对任意n ∈N *
都成立,求实
数L 的取值范围.
解析:(1)∵数列{}S n 是首项为1,公差为1的等差数列, ∴S n =1+()n -1×1=n .
∴S n =n 2
.
当n =1时,a 1=S 1=1;
当n ≥2时,a n =S n -S n -1=n 2
-()n -12
=2n -1.
又a 1=1适合上式,∴a n =2n -1(n ∈N *
).
(2)∵b n =1
a n S 2n +1+a n +1S 2n -1
=1
()2n +12n -1+()2n -12n +1
=1
()2n +1()2n -1()
2n +1+2n -1
=
2n +1-2n -12
()2n +1()
2n -1
=12⎝ ⎛⎭
⎪⎫1
2n -1-12n +1,
∴∑i =1
n
b i =b 1+b 2+…+b n =12⎝ ⎛⎭⎪⎫1-13+12⎝ ⎛⎭⎪⎫13-15+…+12⎝ ⎛⎭⎪⎫1
2n -1-12n +1=12⎝
⎛⎭⎪⎫
1-12n +1=
2n +1-122n +1. 故要使不等式∑i =1
n
b i ≥
L
2n +1+1
对任意n ∈N *
都成立,
只需
2n +1-122n +1
≥
L
2n +1+1
对任意n ∈N *
都成立,
得L ≤
(
)2n +1-1()2n +1+122n +1=n 2n +1
对任意n ∈N *
都成立.
令c n =
n
2n +1
, 则c n +1
c n =()n +12n +1
n 2n +3=
2n 3+5n 2
+4n +1
2n 3
+3n
2
>1.
∴c n +1>c n .
∴c n >c n -1>…>c 1=
33.∴L ≤33
. ∴实数L 的取值范围为⎝ ⎛⎦
⎥⎤-∞,33.。