2016届高考数学一轮复习 题组层级快练36(含解析)
- 格式:doc
- 大小:73.00 KB
- 文档页数:6
题组层级快练(三)1.(2015·衡水调研)下列命题中正确的是( )A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2-4x-5=0”的充分不必要条件C.命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0”D.已知命题p:∃x∈R,x2+x-1<0,则綈p:∃x∈R,x2+x-1≥0答案 B解析若p∨q为真命题,则p,q有可能一真一假,此时p∧q为假命题,故A错;易知由“x=5”可以得到“x2-4x-5=0”,但反之不成立,故B正确;选项C错在把命题的否定写成了否命题;特称命题的否定是全称命题,故D错.2.若命题p:x∈A∩B,则綈p:( )A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B答案 B3.(2015·郑州二模)已知命题p:∀x>2,x3-8>0,那么綈p是( )A.∀x≤2,x3-8≤0 B.∃x>2,x3-8≤0C.∀x>2,x3-8≤0 D.∃x≤2,x3-8≤0答案 B解析由“∀→∃,>→≤”,可知綈p是:∃x>2,x3-8≤0,选B.4.命题p:∀x∈[0,+∞),(log32)x≤1,则( )A.p是假命题,綈p:∃x0∈[0,+∞),(log32)x0>1B.p是假命题,綈p:∀x∈[0,+∞),(log32)x≥1C.p是真命题,綈p:∃x0∈[0,+∞),(log32)x0>1D.p是真命题,綈p:∀x∈[0,+∞),(log32)x≥1答案 C解析因为0<log32<1,所以∀x∈[0,+∞),(log32)x≤1.p是真命题,綈p:∃x0∈[0,+∞),(log32)x0>1.5.(2014·重庆理)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是( )A.p∧q B.綈p∧綈qC.綈p∧q D.p∧綈q答案 D解析依题意,命题p是真命题.由x>2⇒x>1,而x>1 x>2,因此“x>1”是“x>2”的必要不充分条件,故命题q是假命题,则綈q是真命题,p∧綈q是真命题,选D.6.(2015·潍坊一模)已知命题p,q,“綈p为真”是“p∧q为假”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析因为綈p为真,所以p为假,那么p∧q为假,所以“綈p为真”是“p∧q为假”的充分条件;反过来,若“p∧q为假”,则“p真q假”或“p假q真”或“p假q假”,所以由“p∧q为假”不能推出綈p为真.综上可知,“綈p为真”是“p∧q为假”的充分不必要条件.7.若“綈(p∨q)”为假命题,则( )A.p,q均为真命题B.p,q均为假命题C.p,q中至少有一个为真命题D.p,q中至多有一个为真命题答案 C解析綈(p∨q)为假命题,则p∨q为真命题,所以,根据真值表,故选C.8.已知命题p:∃x∈R,mx2+1≤0,命题q:∀x∈R,x2+mx+1>0,若p∧q为真命题,则实数m的取值范围是( )A.(-∞,-2) B.[-2,0)C.(-2,0) D.(0,2)答案 C解析由题可知若p∧q为真命题,则命题p和命题q均为真命题,对于命题p为真,则m<0,对于命题q为真,则m2-4<0,即-2<m<2,所以命题p和命题q均为真命题时,实数m的取值范围是(-2,0).故选C.9.已知命题p:|x-1|≥2,命题q:x∈Z,若“p且q”与“非q”同时为假命题,则满足条件的x 为( )A.{x|x≥3或x≤-1,x∈Z}B.{x|-1≤x≤3,x∈Z}C.{0,1,2}D.{-1,0,1,2,3}答案 C解析由题意知q真,p假,∴|x-1|<2.∴-1<x<3且x∈Z.∴x=0,1,2.10.已知p:1x2-x-2>0,则綈p对应的x的集合为________.答案{x|-1≤x≤2}解析p:1x2-x-2>0⇔x>2或x<-1,∴綈p:-1≤x≤2.11.已知命题p ,若ab =0,则a =0,则綈p 为________;命题p 的否命题为________. 答案 若ab =0,则a ≠0;若ab ≠0,则a ≠0.12.命题“存在实数x 0,y 0,使得x 0+y 0>1”,用符号表示为________;此命题的否定是________(用符号表示),是________(填“真”或“假”)命题.答案 ∃x 0,y 0∈R ,x 0+y 0>1;∀x ,y ∈R ,x +y ≤1;假13.若命题“存在实数x ,使x 2+ax +1<0”的否定是假命题,则实数a 的取值范围为________. 答案 a <-2或a >2解析 因为命题“存在实数x ,使x 2+ax +1<0”的否定是假命题,所以命题“存在实数x ,使x 2+ax +1<0”是真命题,所以a 2-4>0,解得a <-2或a >2.14.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x在R 上为减函数. 则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是________. 答案 q 1,q 4解析 p 1是真命题,则綈p 1为假命题;p 2是假命题,则綈p 2为真命题. ∴q 1:p 1∨p 2是真命题,q 2:p 1∧p 2是假命题.∴q 3:(綈p 1)∨p 2为假命题,q 4:p 1∧(綈p 2)为真命题. ∴真命题是q 1,q 4.15.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案 (0,12]解析 由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.函数f (x )的值域是[-1,3],函数g (x )的值域是[2-a,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤12.又a >0,故a 的取值范围是(0,12].16.已知a >0,设命题p :函数y =a x 在R 上单调递增;命题q :不等式ax 2-ax +1>0对∀x ∈R 恒成立.若p 且q 为假,p 或q 为真,求实数a 的取值范围.答案 (0,1]∪[4,+∞)解析 ∵y =a x在R 上单调递增,∴p :a >1. 又不等式ax 2-ax +1>0对∀x ∈R 恒成立, ∴Δ<0,即a 2-4a <0,∴0<a <4. ∴q :0<a <4.而命题p 且q 为假,p 或q 为真,那么p ,q 中有且只有一个为真,一个为假. (1)若p 真,q 假,则a ≥4; (2)若p 假,q 真,则0<a ≤1.所以a 的取值范围为(0,1]∪[4,+∞).17.(2015·吉林大学附中一模)设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x +a 2x+7.若“∃x ∈[0,+∞),f (x )<a +1”是假命题,求实数a 的取值范围.答案 a ≤-87解析 y =f (x )是定义在R 上的奇函数,故可求解析式为f (x )=⎩⎪⎨⎪⎧9x +a 2x-7,x >0,0,x =0,9x +a 2x +7,x <0.又“∃x ≥0,f (x )<a +1”是假命题,则∀x ≥0,f (x )≥a +1是真命题,①当x =0时,0≥a +1,解得a ≤-1;②当x >0时,9x +a 2x -7≥a +1,结合基本不等式有6|a |-7≥a +1,得a ≥85或a ≤-87,①②取交集得a 的取值范围是a ≤-87.1.设命题p :∀x ∈R ,x 2+1>0,则綈p 为( ) A .∃x 0∈R ,x 20+1>0 B .∃x 0∈R ,x 20+1≤0 C .∃x 0∈R ,x 20+1<0 D .∀x ∈R ,x 2+1≤0答案 B解析 由已知,该命题是一个全称命题,故其否定是一个特称命题,则綈p :∃x 0∈R ,x 20+1≤0.故选B.2.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( ) A .∃x 0∉∁R Q ,x 30∈Q B .∃x 0∈∁R Q ,x 30∈Q C .∀x ∉∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3∉Q答案 D解析 该特称命题的否定为“∀x ∈∁R Q ,x 3∉Q ”.3.若∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,则cos(θ-π6)的值为________.答案 12解析 因为∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,所以sin θ≥1.又sin θ∈[-1,1],所以sin θ=1,故θ=π2+2k π(k ∈Z ).所以cos(θ-π6)=cos[(π2+2k π)-π6]=cos(π3+2k π)=cosπ3=12. 4.对于中国足球队参与的某次大型赛事,有三名观众对结果作如下猜测:甲:中国非第一名,也非第二名;乙:中国非第一名,而是第三名;丙:中国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名.答案 一解析 由上可知:甲、乙、丙均为“p 且q ”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知是丙是真命题,因此中国足球队得了第一名.5.设命题p :若a >b ,则1a <1b ;命题q :1ab<0⇔ab <0.给出下面四个复合命题:①p ∨q ;②p ∧q ;③(綈p )∧(綈q );④(綈p )∨(綈q ).其中真命题的个数有________个.答案 2解析 p 假,q 真,故①④真.。
题组层级快练(六十)1.以抛物线y 2=4x 的焦点为圆心,半径为2的圆的方程为( ) A .x 2+y 2-2x -1=0 B .x 2+y 2-2x -3=0 C .x 2+y 2+2x -1=0 D .x 2+y 2+2x -3=0答案 B解析 ∵抛物线y 2=4x 的焦点是(1,0),∴圆的标准方程是(x -1)2+y 2=4,展开得x 2+y 2-2x -3=0.2.若圆(x +3)2+(y -1)2=1关于直线l :mx +4y -1=0对称,则直线l 的斜率为( ) A .4 B .-4 C.14 D .-14答案 D解析 依题意,得直线mx +4y -1=0经过点(-3,1), 所以-3m +4-1=0.所以m =1.故直线l 的斜率为-14.3.过点P (0,1)与圆x 2+y 2-2x -3=0相交的所有直线中,被圆截得的弦最长时的直线方程是( ) A .x =0 B .y =1 C .x +y -1=0 D .x -y +1=0答案 C解析 依题意得所求直线是经过点P (0,1)及圆心(1,0)的直线,因此所求直线方程是x +y =1,即x +y -1=0,选C.4.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( ) A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4答案 C解析 设圆心C 的坐标为(a ,b ),半径为r . ∵圆心C 在直线x +y -2=0上,∴b =2-a . ∵|CA |2=|CB |2,∴(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2. ∴a =1,b =1.∴r =2. ∴方程为(x -1)2+(y -1)2=4.5.(2015·四川成都外国语学校)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1 D .(x -2)2+(y -2)2=1答案 B解析 C 1:(x +1)2+(y -1)2=1的圆心为(-1,1),它关于直线x -y -1=0对称的点为(2,-2),对称后半径不变,所以圆C 2的方程为(x -2)2+(y +2)2=1.6.(2015·山东青岛一模)若过点P (1,3)作圆O :x 2+y 2=1的两条切线,切点分别为A 和B ,则弦长|AB |=( )A. 3 B .2 C. 2 D .4答案 A解析 如图所示,∵PA ,PB 分别为圆O :x 2+y 2=1的切线,∴OA ⊥AP .∵P (1,3),O (0,0), ∴|OP |=1+3=2. 又∵|OA |=1,∴在Rt △APO 中,cos ∠AOP =12.∴∠AOP =60°,∴|AB |=2|AO |sin ∠AOP = 3.7.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2答案 B解析 圆的标准方程为(x -1)2+(y -3)2=10,则圆心(1,3),半径r =10,由题意知AC ⊥BD ,且|AC |=210,|BD |=210-5=25,所以四边形ABCD 的面积为S =12|AC |·|BD |=12×210×25=10 2. 8.已知点P 在圆x 2+y 2=5上,点Q (0,-1),则线段PQ 的中点的轨迹方程是( ) A .x 2+y 2-x =0 B .x 2+y 2+y -1=0 C .x 2+y 2-y -2=0 D .x 2+y 2-x +y =0答案 B解析 设P (x 0,y 0),PQ 中点的坐标为(x ,y ),则x 0=2x ,y 0=2y +1,代入圆的方程即得所求的方程是4x 2+(2y +1)2=5,化简,得x 2+y 2+y -1=0.9.已知两点A (0,-3),B (4,0),若点P 是圆x 2+y 2-2y =0上的动点,则△ABP 面积的最小值为( ) A .6 B.112 C .8 D.212答案 B解析 如图,过圆心C 向直线AB 作垂线交圆于点P ,连接BP ,AP ,这时△ABP 的面积最小.直线AB 的方程为x 4+y-3=1,即3x -4y -12=0,圆心C 到直线AB 的距离为d =|3×0-4×1-12|32+-2=165, ∴△ABP 的面积的最小值为12×5×(165-1)=112.10.在平面直角坐标系中,若动点M (x ,y )满足条件⎩⎪⎨⎪⎧x -y +2≥0,x +y -2≤0,y -1≥0,动点Q 在曲线(x -1)2+y 2=12上,则|MQ |的最小值为( )A. 2B.322C .1-22D.5-12答案 C解析 作出平面区域,由图形可知|MQ |的最小值为1-22.11.以直线3x -4y +12=0夹在两坐标轴间的线段为直径的圆的方程为________. 答案 (x +2)2+(y -32)2=254解析 对于直线3x -4y +12=0,当x =0时,y =3;当y =0时,x =-4.即以两点(0,3),(-4,0)为端点的线段为直径,则r =32+422=52,圆心为(-42,32),即(-2,32).∴圆的方程为(x +2)2+(y -32)2=254.12.从原点O 向圆C :x 2+y 2-6x +274=0作两条切线,切点分别为P ,Q ,则圆C 上两切点P ,Q 间的劣弧长为________.答案 π解析 如图,圆C :(x -3)2+y 2=94,所以圆心C (3,0),半径r =32.在Rt △POC 中,∠POC =π6.则劣弧PQ 所对圆心角为2π3.弧长为23π×32=π.13.设圆C 同时满足三个条件:①过原点;②圆心在直线y =x 上;③截y 轴所得的弦长为4,则圆C 的方程是________.答案 (x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8 解析 由题意可设圆心A (a ,a ),如图,则22+22=2a 2,解得a =±2,r 2=2a 2=8.所以圆C 的方程是(x +2)2+(y +2)2=8或(x -2)2+(y -2)2=8.14.一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求此圆的方程.答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0解析 方法一:∵所求圆的圆心在直线x -3y =0上,且与y 轴相切, ∴设所求圆的圆心为C (3a ,a ),半径为r =3|a |.又圆在直线y =x 上截得的弦长为27, 圆心C (3a ,a )到直线y =x 的距离为d =|3a -a |12+12.∴有d 2+(7)2=r 2.即2a 2+7=9a 2,∴a =±1. 故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法二:设所求的圆的方程是(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线x -y =0的距离为|a -b |2.∴r 2=(|a -b |2)2+(7)2.即2r 2=(a -b )2+14.①由于所求的圆与y 轴相切,∴r 2=a 2.② 又因为所求圆心在直线x -3y =0上, ∴a -3b =0.③ 联立①②③,解得a =3,b =1,r 2=9或a =-3,b =-1,r 2=9.故所求的圆的方程是(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9. 方法三:设所求的圆的方程是x 2+y 2+Dx +Ey +F =0,圆心为(-D 2,-E 2),半径为12D 2+E 2-4F .令x =0,得y 2+Ey +F =0.由圆与y 轴相切,得Δ=0,即E 2=4F .④又圆心(-D 2,-E2)到直线x -y =0的距离为|-D 2+E2|2,由已知,得⎝⎛⎭⎪⎪⎫|-D 2+E 2|22+(7)2=r 2,即(D -E )2+56=2(D 2+E 2-4F ).⑤ 又圆心(-D 2,-E2)在直线x -3y =0上,∴D -3E =0.⑥ 联立④⑤⑥,解得D =-6,E =-2,F =1或D =6,E =2,F =1.故所求圆的方程是x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.15.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程. 答案 (1)x +y -3=0(2)(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40 解析 (1)直线AB 的斜率k =1,AB 的中点坐标为(1,2), ∴直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又直径|CD |=410, ∴|PA |=210. ∴(a +1)2+b 2=40.由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2).∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 16.已知实数x ,y 满足x 2+y 2-2y =0. (1)求2x +y 的取值范围;(2)若x +y +c ≥0恒成立,求实数c 的取值范围. 答案 (1)1-5≤2x +y ≤1+ 5 (2)c ≥2-1解析 (1)方法一:圆x 2+(y -1)2=1的参数方程为 ⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ,∴2x +y =2cos θ+sin θ+1. ∵-5≤2cos θ+sin θ≤5, ∴1-5≤2x +y ≤5+1.方法二:2x +y 可看作直线y =-2x +b 在y 轴的截距,当直线与圆相切时b 取最值,此时|2×0+1-b |5=1.∴b =1±5,∴1-5≤2x +y ≤1+ 5.(2)∵x +y =cos θ+1+sin θ=2sin(θ+π4)+1,∴x +y +c 的最小值为1-2+c . ∴x +y +c ≥0恒成立等价于1-2+c ≥0. ∴c 的取值范围为c ≥2-1.1.将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0答案 C解析 因为圆心是(1,2),所以将圆心坐标代入各选项验证知选C.2.设A (0,0),B (1,1),C (4,2),若线段AD 是△ABC 外接圆的直径,则点D 的坐标是( ) A .(-8,6) B .(8,-6) C .(4,-6) D .(4,-3)答案 B解析 线段AB 的垂直平分线x +y -1=0与线段AC 的垂直平分线2x +y -5=0的交点即圆心(4,-3),直径为10,易得点D 的坐标为(8,-6).3.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴相切,则该圆的标准方程是( ) A .(x -3)2+(y -73)2=1B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1 D .(x -32)2+(y -1)2=1答案 B解析 设圆心为(a,1),由已知得d =|4a -3|5=1,∴a =2(舍-12).4.圆心在抛物线x 2=2y (x >0)上,并且与抛物线的准线及y 轴均相切的圆的方程是( ) A .x 2+y 2-x -2y -14=0B .x 2+y 2+x -2y +1=0 C .x 2+y 2-x -2y +1=0 D .x 2+y 2-2x -y +14=0答案 D解析 ∵圆心在抛物线上,∴设圆心(a ,a 22).∴圆的方程为(x -a )2+(y -a 22)2=r 2.∴x 2+y 2-2ax -a 2y +a 2+a 44-r 2=0.对比A ,B ,C ,D 项,仅D 项x ,y 前系数符合条件.5.若方程16-x 2-x -m =0有实数解,则实数m 的取值范围为( ) A .-42≤m ≤4 2 B .-4≤m ≤4 2 C .-4≤m ≤4 D .4≤m ≤4 2答案 B解析 由题意知方程16-x 2=x +m 有实数解,分别作出y =16-x 2与y =x +m 的图像,若两图像有交点,需-4≤m ≤4 2.6.若直线l :4x -3y -12=0与x ,y 轴的交点分别为A ,B ,O 为坐标原点,则△AOB 内切圆的方程为________.答案 (x -1)2+(y +1)2=1解析 由题意知,A (3,0),B (0,-4),则|AB |=5.∴△AOB 的内切圆半径r =3+4-52=1,内切圆的圆心坐标为(1,-1).∴内切圆的方程为(x -1)2+(y +1)2=1.7.已知圆C 的方程为x 2+y 2-mx -2my =0(m ≠0),以下关于这个圆的叙述中,所有正确命题的序号是________.①圆C 必定经过坐标原点;②圆C 的圆心不可能在第二象限或第四象限; ③y 轴被圆C 所截得的弦长为2m ;④直线y =x 与y 轴的夹角的平分线必过圆心. 答案 ①②8.(2015·吉林长春一调)若圆C :x 2+y 2+2x -4y +3=0关于直线2ax +by +6=0对称,则由点(a ,b )向圆所作的切线长的最小值为________.答案 4解析 圆C :(x +1)2+(y -2)2=2,圆心坐标为C (-1,2)代入直线2ax +by +6=0,得-2a +2b +6=0即点(a ,b )在直线x -y -3=0上.过C (-1,2)作l 的垂线,垂足设为D ,过D 作圆C 的切线,切点设为E ,则切线长|DE |最短,于是有|CE |=2,|CD |=|6|2=32,∴切线长|DE |=|CD |2-r 2=4.9.在直角坐标系xOy 中,以M (-1,0)为圆心的圆与直线x -3y -3=0相切. (1)求圆M 的方程;(2)如果圆M 上存在两点关于直线mx +y +1=0对称,求实数m 的值.(3)已知A (-2,0),B (2,0),圆内的动点P 满足|PA |·|PB |=|PO |2,求PA →·PB →的取值范围. 答案 (1)(x +1)2+y 2=4 (2)m =1 (3)[-2,6)解析 (1)依题意,圆M 的半径r 等于圆心M (-1,0)到直线x -3y -3=0的距离,即r =|-1-3|1+3=2.∴圆M 的方程为(x +1)2+y 2=4.(2)∵圆M 上存在两点关于直线mx +y +1=0对称, ∴直线mx +y +1=0必过圆心M (-1,0). ∴-m +1=0,∴m =1.(3)设P (x ,y ),由|PA ||PB |=|PO |2,得x +2+y 2·x -2+y 2=x 2+y 2,即x 2-y 2=2.∴PA →·PB →=(-2-x ,-y )·(2-x ,-y ) =x 2-4+y 2=2(y 2-1). ∵点P 在圆M 内,∴(x +1)2+y 2<4,∴0≤y 2<4,∴-1≤y 2-1<3. ∴PA →·PB →的取值范围为[-2,6).。
题组层级快练(八)1.若函数f (x )=ax 2+bx +c 满足f (4)=f (1),则( ) A .f (2)>f (3) B .f (3)>f (2) C .f (3)=f (2)D .f (3)与f (2)的大小关系不确定 答案 C解析 ∵f (4)=f (1),∴对称轴为52,∴f (2)=f (3).2.若二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,则f (x )的表达式为( ) A .f (x )=-x 2-x -1 B .f (x )=-x 2+x -1 C .f (x )=x 2-x -1 D .f (x )=x 2-x +1答案 D解析 设f (x )=ax 2+bx +c (a ≠0),由题意得⎩⎪⎨⎪⎧c =1,a x +2+b x ++c -ax 2+bx +c =2x .故⎩⎪⎨⎪⎧2a =2,a +b =0,c =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =1,则f (x )=x 2-x +1.故选D.3.如图所示,是二次函数y =ax 2+bx +c 的图像,则|OA |·|OB |等于( )A.caB .-c aC .±c aD .无法确定答案 B解析 ∵|OA |·|OB |=|OA ·OB |=|x 1x 2|=|c a |=-c a(∵a <0,c >0).4.(2015·上海静安期末)已知函数f (x )=-x 2+4x ,x ∈[m,5]的值域是[-5,4],则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2]C .[-1,2]D .[2,5)答案 C解析 二次函数f (x )=-x 2+4x 的图像是开口向下的抛物线,最大值为4,且在x =2时取得,而当x =5或-1时,f (x )=-5,结合图像可知m 的取值范围是[-1,2].5.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图像大致是( )答案 C6.(2015·山东济宁模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤,2 x ,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .4B .2C .1D .3答案 D解析 由解析式可得f (-4)=16-4b +c =f (0)=c ,解得b =4.f (-2)=4-8+c =-2,可求得c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2x ,2 x 又f (x )=x ,则当x ≤0时,x 2+4x +2=x ,解得x 1=-1,x 2=-2. 当x >0时,x =2,综上可知有三解.7.二次函数f (x )的二次项系数为正数,且对任意的x ∈R 都有f (x )=f (4-x )成立,若f (1-2x 2)<f (1+2x -x 2),则实数x 的取值范围是( )A .(2,+∞)B .(-∞,-2)∪(0,2)C .(-2,0)D .(-∞,-2)∪(0,+∞)答案 C解析 由题意知,二次函数的开口向上,对称轴为直线x =2,图像在对称轴左侧为减函数.而1-2x 2<2,1+2x -x 2=2-(x -1)2≤2,所以由f (1-2x 2)<f (1+2x -x 2),得1-2x 2>1+2x -x 2,解得-2<x <0.8.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则实数b 的取值范围是( )A .-1<b <0B .b >0C .b <-1或b >2D .不能确定答案 C解析 由f (1-x )=f (1+x ),得对称轴方程为x =1=a2.∴a =2,f (x )在[-1,1]上是增函数. ∴要使x ∈[-1,1],f (x )>0恒成立.只要f (x )min =f (-1)=b 2-b -2>0,∴b >2或b <-1.9.(2015·上海虹口二模)函数f (x )=-x 2+4x +1(x ∈[-1,1])的最大值等于________. 答案 4解析 因为对称轴为x =2∉[-1,1],所以函数在[-1,1]上单调递增,因此当x =1时,函数取最大值4.10.设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________. 答案 (-4,0]11.设函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图像关于直线x =1对称,则b =________. 答案 612.已知函数f (x )=x 2-6x +5,x ∈[1,a ],并且函数f (x )的最大值为f (a ),则实数a 的取值范围是________.答案 a ≥5解析 ∵f (x )的对称轴为x =3,要使f (x )在[1,a ]上f (x )max =f (a ),由图像对称性知a ≥5. 13.已知y =(cos x -a )2-1,当cos x =-1时,y 取最大值,当cos x =a 时,y 取最小值,则实数a 的范围是________.答案 0≤a ≤1解析 由题意知⎩⎪⎨⎪⎧-a ≤0,-1≤a ≤1,∴0≤a ≤1.14.若函数f (x )=x 2-2x +3在区间[0,m ]上的最小值是2,最大值是3,则实数m 的取值范围是________.答案 [1,2]解析 ∵f (x )=(x -1)2+2≥2, ∴x =1∈[0,m ].∴m ≥1.① ∵f (0)=3,而3是最大值.∴f (m )≤3⇒m 2-2m +3≤3⇒0≤m ≤2.② 由①②知:1≤m ≤2,故应填[1,2].15.在函数f (x )=ax 2+bx +c 中,若a ,b ,c 成等比数列且f (0)=-4,则f (x )有最________值(填“大”或“小”),且该值为________.答案 大 -3解析 ∵f (0)=c =-4,a ,b ,c 成等比,∴b 2=a ·c ,∴a <0.∴f (x )有最大值,最大值为c -b 24a=-3.16.函数f (x )=x 2+2x ,若f (x )>a 在区间[1,3]上满足:①恒有解,则a 的取值范围为________;②恒成立,则a 的取值范围为________.答案 a <15 a <3解析 ①f (x )>a 在区间[1,3]上恒有解,等价于a <[f (x )]max ,又f (x )=x 2+2x 且x ∈[1,3],当x =3时,[f (x )]max =15,故a 的取值范围为a <15.②f (x )>a 在区间[1,3]上恒成立,等价于a <[f (x )]min ,又f (x )=x 2+2x 且x ∈[1,3],当x =1时,[f (x )]min =3,故a 的取值范围为a <3.17.已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =1时,求f (|x |)的单调区间. 答案 (1)最小值-1,最大值35 (2)a ≤-6或a ≥4(3)单调递增区间(0,6],单调递减区间[-6,0]解析 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增.∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图像开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.(3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈,6],x 2-2x +3,x ∈[-6,0].∴f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].18.二次函数f (x )=ax 2+bx +1(a >0),设f (x )=x 的两个实根为x 1,x 2. (1)如果b =2且|x 2-x 1|=2,求实数a 的值;(2)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证:x 0>-1. 答案 (1)a =2-12(2)略 解析 (1)若b =2,则f (x )=ax 2+2x +1. 由f (x )=x ,得ax 2+2x +1=x . 即ax 2+x +1=0.由|x 2-x 1|=2,得(x 2-x 1)2=4. ∴(x 1+x 2)2-4x 1x 2=4.∴(1a )2-41a =4,得a =2-12(a >0).(2)由f (x )=x ,得ax 2+bx +1=x . 即ax 2+(b -1)x +1=0. 设g (x )=ax 2+(b -1)x +1,则⎩⎪⎨⎪⎧g ,g ,即⎩⎪⎨⎪⎧4a +2b -1<0,16a +4b -3>0.画出点(a ,b )的平面区域知该区域内有点均满足2a -b >0.从而2a >b ,∴x 0=-b2a>-1.1.(2013·浙江)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0答案 A解析 由f (0)=f (4),得f (x )=ax 2+bx +c 的对称轴为x =-b2a =2,∴4a +b =0,又f (0)>f (1),∴f (x )先减后增,∴a >0,选A.2.已知f (x )是二次函数,且函数y =ln f (x )的值域为[0,+∞),则f (x )的表达式可以是( ) A .y =x 2B .y =x 2+2x +2 C .y =x 2-2x +3 D .y =-x 2+1答案 B解析 由题意可知f (x )≥1.3.已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( ) A .[2-2,2+2] B .(2-2,2+2) C .[1,3] D .(1,3)答案 B解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1,若有f (a )=g (b ),则g (b )∈(-1,1].即-b 2+4b -3>-1,解得2-2<b <2+ 2.4.对一切实数x ,若不等式x 4+(a -1)x 2+1≥0恒成立,则a 的取值范围是( ) A .a ≥-1 B .a ≥0 C .a ≤3 D .a ≤1答案 A解析 令t =x 2≥0,则原不等式转化为t 2+(a -1)t +1≥0,当t ≥0时恒成立. 令f (t )=t 2+(a -1)t +1,则f (0)=1>0. (1)当-a -12≤0即a ≥1时,恒成立. (2)当-a -12>0即a <1时,由Δ=(a -1)2-4≤0,得-1≤a ≤3. ∴-1≤a <1,综上:a ≥-1.5.若二次函数y =8x 2-(m -1)x +m -7的值域为[0,+∞),则m =________. 答案 9或25 解析 y =8(x -m -116)2+m -7-8·(m -116)2,∵值域为[0,+∞),∴m -7-8·(m -116)2=0,∴m =9或25.6.已知t 为常数,函数y =|x 2-2x -t |在区间[0,3]上的最大值为2,则t =________. 答案 1解析 ∵y =|(x -1)2-t -1|,∴对称轴为x =1.若-t -1<0,即t >-1时,则当x =1或x =3时为最大值,即|1-2-t |=t +1=2或9-6-t =2,得t =1;若-t -1≥0,即t ≤-1时,则当x =3时为最大值,即9-6-t =2,t 无解.故得t =1.7.(2015·北京丰台期末)若f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a ),其中a ≤b ≤c ,对于下列结论:①f (b )≤0;②若b =a +c2,则∀x ∈R ,f (x )≥f (b );③若b ≤a +c2,则f (a )≤f (c );④f (a )=f (c )成立的充要条件为b =0.其中正确的是________.(请填写序号)答案 ①②③解析 f (b )=(b -a )(b -b )+(b -b )(b -c )+(b -c )·(b -a )=(b -c )(b -a ),因为a ≤b ≤c ,所以f (b )≤0,①正确;将f (x )展开可得f (x )=3x 2-2(a +b +c )x +ab +bc +ac ,又抛物线开口向上,故f (x )min=f (a +b +c3).当b =a +c2时,a +b +c3=b ,所以f (x )min =f (b ),所以②正确;f (a )-f (c )=(a -b )(a -c )-(c -a )(c -b )=(a -c )(a +c -2b ),因为a ≤b ≤c ,且2b ≤a +c ,所以f (a )≤f (c ),③正确;因为a ≤b ≤c ,所以当f (a )=f (c )时,即(a -c )(a +c -2b )=0,所以a =b =c 或a +c =2b ,故④不正确.8.已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.解析 (1)∵f (x )=(x -a )2+5-a 2(a >1),∴f (x )在[1,a ]上是减函数.又定义域和值域均为[1,a ],∴⎩⎪⎨⎪⎧f =1-2a +5=a ,f a =a 2-2a 2+5=1.解得a =2.(2)∵f (x )在区间(-∞,2]上是减函数,∴a ≥2. 又x =a ∈[1,a +1],且(a +1)-a ≤a -1, ∴f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2.∵对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4, ∴f (x )max -f (x )min ≤4,即(6-2a )-(5-a 2)≤4,解得-1≤a ≤3. 又a ≥2,∴2≤a ≤3.。
题组层级快练(三十六)1.由下列各表达式给出的数列{a n }: ①S n =a 1+a 2+…+a n =n 2; ②S n =a 1+a 2+…+a n =n 2-1; ③a 2n +1=a n ·a n +2;④2a n +1=a n +a n +2 (n ∈N *). 其中表示等差数列的是( ) A .①④ B .②④ C .①②④ D .①③④答案 A2.在等差数列{a n }中,若a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4答案 B解析 ∵a 1+a 5=10=2a 3,∴a 3=5. 故d =a 4-a 3=7-5=2.3.已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C解析 由已知得S 3=3a 2=12,即a 2=4,∴d =a 3-a 2=6-4=2.4.(2015·沧州七校联考)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( ) A .24 B .48 C .60 D .72答案 B解析 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2.则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48,选B.5.(2015·山东临沂质检)在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .10答案 C解析 ∵a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16.∴a 7-12a 8=2a 7-a 82=a 62=8.6.(2015·湖南箴言中学)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=10,则S 11的值为( ) A .12 B .18 C .22 D .44答案 C解析 ∵数列{a n }是等差数列,且S 8-S 3=10,∴S 8-S 3=a 4+a 5+a 6+a 7+a 8=10,∴5a 6=10,a 6=2,∴S 11=a 1+a 112×11=11a 6=22.7.在等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12答案 B8.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12 B .1 C .2 D .3 答案 C 解析 因为S n =n a 1+a n2,所以S n n =a 1+a n 2.由S 33-S 22=1,得a 32-a 22=1,即a 3-a 2=2,所以数列{a n }的公差为2.9.在等差数列{a n }中,设S n 为其前n 项和,已知a 2a 3=13,则S 4S 5等于( )A.815 B.40121C.1625D.57答案 A解析 由题意可得S 4S 5=a 1+a42a 1+a 52=a 2+a 35a 3=815.10.已知在等差数列{a n }中,|a 3|=|a 9|,公差d <0,S n 是数列{a n }的前n 项和,则( ) A .S 5>S 6 B .S 5<S 6 C .S 6=0 D .S 5=S 6答案 D解析 ∵d <0,|a 3|=|a 9|,∴a 3>0,a 9<0,且a 3+a 9=2a 6=0.∴a 6=0,a 5>0,a 7<0.∴S 5=S 6.故选D.11.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |等于( )A .1 B.34 C.12 D.38答案 C解析 由题设可知前4项和等于四个根之和4·14+4·32·d =2+2,d =12,∴方程的四个根分别为14,34,54,74,∴|m -n |=|14·74-34·54|=12.故选C. 12.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 5b 5等于( )A .7 B.23 C.278D.214 答案 D解析 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92a 1+a992b 1+b9=S 9T 9=214. 13.已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________;S n =________.答案 1n n +4解析 设公差为d ,则由S 2=a 3,得2a 1+d =a 1+2d ,所以d =a 1=12,故a 2=a 1+d =1,S n =na 1+nn -2d =n n +4.14.已知在数列{a n }中,a 3=2,a 5=1,若⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于________. 答案 0解析 记b n =11+a n ,则b 3=13,b 5=12,数列{b n }的公差为12×(12-13)=112,b 1=16,∴b n =n +112,即11+a n=n +112.∴a n =11-nn +1,故a 11=0. 15.已知A n ={x |2n <x <2n +1且x =7m +1,m ,n ∈N },则A 6中各元素的和为________.答案 891解析 ∵A 6={x |26<x <27且x =7m +1,m ∈N },∴A 6的元素x =各数成一首项为71,公差为7的等差数列. ∴71+78+…+127=71×9+9×82×7=891.16.已知S n 是等差数列{a n }的前n 项和,且a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率是________.答案 4解析 设数列{a n }的公差为d ,则依题意,得⎩⎪⎨⎪⎧a 4=a 1+3d =15,S 5=5a 1+10d =55⇒⎩⎪⎨⎪⎧a 1=3,d =4.故直线PQ 的斜率为a 4-a 34-3=d1=4.17.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0. (1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.答案 (1)S 6=-3,a 1=7 (2)d ≤-22或d ≥2 2 解析 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0. 即2a 21+9da 1+10d 2+1=0. 故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.18.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. 答案 (1)略 (2)最大项a 4=3,最小项a 3=-1 解析 (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1. 所以当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.又b 1=1a 1-1=-52, 所以,数列{b n }是以-52为首项,以1为公差的等差数列.(2)解 由(1)知,b n =n -72,则a n =1+1b n =1+22n -7.设函数f (x )=1+22x -7,易知f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞上为减函数.所以,当n =3时,a n 取得最小值-1; 当n =4时,a n 取得最大值3.1.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22 D .44答案 C解析 由题可知S 11=a 1+a 112=a 2+a 102=11×42=22,故选C. 2.(2013·新课标全国Ⅰ理)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A .3 B .4 C .5 D .6答案 C解析 ∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1. ∵S m =ma 1+m m -2×1=0,∴a 1=-m -12.又∵a m +1=a 1+m ×1=3,∴-m -12+m =3.∴m =5.故选C.3.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-2a 2m =0,S 2m -1=39,则m =( ) A .38 B .39 C .20 D .19答案 C解析 ∵a m -1+a m +1=2a 2m ,又∵a m -1+a m +1=2a m ,∴a m =1或0(舍去). ∵S 2m -1=2m -1a 1+a 2m -12=(2m -1)a m ,∴(2m -1)a m =39,∴2m -1=39.∴m =20.4.在等差数列{a n }中,a m =n ,a n =m ,则a m +n 的值为( ) A .m +n B.12(m +n ) C.12(m -n ) D .0答案 D解析 ∵a m -a n =(m -n )d =n -m ,∴d =-1,∴a m +n =a m +nd =n -n =0. 5.已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8等于( ) A .72 B .54 C .36 D .18 答案 A6.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 为( ) A .-23B .-13C.13D.23 答案 D解析 a 10=a 1+9d =10,S 10=10a 1+10×92d =10a 1+45d =70,解得d =23.故选D.。
题组层级快练(四十七)1.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”“索”的“因”应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0答案 C 解析b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.2.(2015·浙江名校联考)设a =lg2+lg5,b =e x(x <0),则a 与b 的大小关系为( ) A .a >b B .a <b C .a =b D .a ≤b答案 A解析 ∵a =lg2+lg5=lg10=1,而b =e x <e 0=1,故a >b . 3.要证明a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.a +b22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0. 4.若实数a ,b 满足a +b <0,则( ) A .a ,b 都小于0 B .a ,b 都大于0C .a ,b 中至少有一个大于0D .a ,b 中至少有一个小于0 答案 D解析 假设a ,b 都不小于0,即a ≥0,b ≥0,则a +b ≥0,这与a +b <0相矛盾,因此假设错误,即a ,b 中至少有一个小于0.5.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定答案 C解析 要比较P ,Q 的大小关系,只要比较P 2,Q 2的大小关系,只要比较 2a +7+2aa +7与2a +7+2a +3a +4的大小,只要比较aa +7与a +3a +4的大小,即比较a 2+7a 与a 2+7a +12的大小, 只要比较0与12的大小,∵0<12,∴P <Q .6.已知函数f (x )满足:f (a +b )=f (a )·f (b ),f (1)=2,则f 21+f 2f 1+f 22+f 4f 3+f 23+f 6f 5+f 24+f 8f 7=( )A .4B .8C .12D .16答案 D解析 根据f (a +b )=f (a )·f (b ),得f (2n )=f 2(n ). 又f (1)=2,则f n +1f n=2.由f 21+f 2f 1+f 22+f 4f 3+f 23+f 6f 5+f 24+f 8f 7=2f 2f 1+2f 4f 3+2f6f5+2f 8f 7=16. 7.已知a >0,b >0,如果不等式2a +1b ≥m 2a +b 恒成立,那么m 的最大值等于( )A .10B .9C .8D .7答案 B解析 ∵a >0,b >0,∴2a +b >0.∴不等式可化为m ≤(2a +1b )(2a +b )=5+2(b a +a b ).∵5+2(b a +ab)≥5+4=9,即其最小值为9,∴m ≤9,即m 的最大值等于9.8.已知命题:“在等差数列{a n }中,若4a 2+a 10+a ( )=24,则S 11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为________.答案 18 解析 S 11=11a 1+a 112=11a 6,由S 11为定值,可知a 6=a 1+5d 为定值.设4a 2+a 10+a n =24,整理得a 1+n +126d =4,可知n =18.9.(2015·江苏盐城一模)已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.答案 略解析 ∵x 22x 1+x 1+x 23x 2+x 2+x 21x 3+x 3≥2x 22+2x 23+2x 21=2(x 1+x 2+x 3)=2,∴x 22x 1+x 23x 2+x 21x 3≥1.10.(1)设x 是正实数,求证:(x +1)(x 2+1)(x 3+1)≥8x 3.(2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值.答案 (1)略 (2)成立,证明略解析 (1)证明:x 是正实数,由均值不等式,得x +1≥2x ,x 2+1≥2x ,x 3+1≥2x 3.故(x +1)(x 2+1)(x 3+1)≥2x ·2x ·2x 3=8x 3(当且仅当x =1时等号成立). (2)解:若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3仍然成立. 由(1)知,当x >0时,不等式成立; 当x ≤0时,8x 3≤0,而(x +1)(x 2+1)(x 3+1)=(x +1)2(x 2+1)(x 2-x +1)=(x +1)2(x 2+1)[(x -12)2+34]≥0,此时不等式仍然成立. 11.已知函数f (x )=a x+x -2x +1(a >1), (1)证明:函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明f (x )=0没有负实数根. 答案 (1)略 (2)略解析 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0,所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0, 所以x 2-2x 2+1-x 1-2x 1+1 =x 2-2x 1+1-x 1-2x 2+1x 2+1x 1+1=3x 2-x 1x 2+1x 1+1>0.于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0. 故函数f (x )在(-1,+∞)上为增函数. (2)设存在x 0<0(x 0≠-1),满足f (x 0)=0, 则ax 0=-x 0-2x 0+1. 又0<ax 0<1,所以0<-x 0-2x 0+1<1,即12<x 0<2,与x 0<0(x 0≠-1)假设矛盾. 故f (x )=0没有负实数根.12.已知等比数列{a n }的前n 项和为S n ,若a m ,a m +2,a m +1(m ∈N *)成等差数列,试判断S m ,S m +2,S m +1是否成等差数列,并证明你的结论.答案 q =1时,不成等差数列;q =-12时,成等差数列 证明略解析 设等比数列{a n }的首项为a 1,公比为q (a 1≠0,q ≠0), 若a m ,a m +2,a m +1成等差数列,则2a m +2=a m +a m +1. ∴2a 1qm +1=a 1qm -1+a 1q m.∵a 1≠0,q ≠0,∴2q 2-q -1=0. 解得q =1或q =-12.当q =1时,∵S m =ma 1,S m +1=(m +1)a 1,S m +2=(m +2)a 1,∴2S m +2≠S m +S m +1.∴当q =1时,S m ,S m +2,S m +1不成等差数列. 当q =-12时,S m ,S m +2,S m +1成等差数列.下面给出证明:证法一:∵(S m +S m +1)-2S m +2 =(S m +S m +a m +1)-2(S m +a m +1+a m +2) =-a m +1-2a m +2=-a m +1-2a m +1q =-a m +1-2a m +1(-12)=0,∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列.证法二:∵2S m +2=2a 1[1--12m +2]1+12=43a 1[1-(-12)m +2], 又S m +S m +1=a 1[1--12m]1+12+a 1[1--12m +1]1+12=23a 1[2-(-12)m -(-12)m +1] =23a 1[2-4(-12)m +2+2(-12)m +2] =43a 1[1-(-12)m +2], ∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列.13.设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求实数a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立.答案 (1)单调递减区间(0,1),单调递增区间(1,+∞) (2)当0<x <1时,g (x )>g (1x );当x >1时,g (x )<g (1x)(3)0<a <e解析 (1)由题设知f (x )=ln x ,g (x )=ln x +1x,∴g ′(x )=x -1x 2.令g ′(x )=0,得x =1. 当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调减区间; 当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调增区间.因此x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以g (x )的最小值为g (1)=1. (2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x,则h ′(x )=-x -12x 2.当x =1时,h (1)=0,即g (x )=g (1x);当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此h (x )在(0,+∞)上单调递减. 当0<x <1时,h (x )>h (1)=0, 即g (x )>g (1x);当x >1时,h (x )<h (1)=0, 即g (x )<g (1x).(3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a对任意x >0成立⇔g (a )-1<1a,即ln a<1,从而得0<a<e.。
题组层级快练(三十九)1.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1),…的前n 项之和为( )A .2n-1 B .n ·2n-n C .2n +1-n D .2n +1-n -2答案 D解析 记a n =1+2+22+…+2n -1=2n-1,∴S n =2·2n-12-1-n =2n +1-2-n .2.数列{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前10项之和为( ) A.13 B.512 C.12 D.712答案 B 解析 b n =1a n =1n +1n +2=1n +1-1n +2, S 10=b 1+b 2+b 3+…+b 10=12-13+13-14+14-15+…+111-112=12-112=512. 3.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( )A .13B .10C .9D .6答案 D解析 ∵a n =2n-12n =1-12n ,∴S n =n -(12+122+…+12n )=n -1+12n .而32164=5+164,∴n -1+12n =5+164.∴n =6. 4.数列{(-1)n (2n -1)}的前2 016项和S 2 016等于( ) A .-2 016 B .2 016 C .-2 015 D .2 015答案 B解析 S 2 016=-1+3-5+7+…-(2×2 015-1)+(2×2 016-1)==2 016.故选B.5.在数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n-1,则a 21+a 22+a 23+…+a 2n 等于( )A .(3n -1)2B.12(9n-1) C .9n-1 D.14(3n-1) 答案 B解析 因为a 1+a 2+…+a n =3n -1,所以a 1+a 2+…+a n -1=3n -1-1(n ≥2).则n ≥2时,a n =2·3n -1.当n =1时,a 1=3-1=2,适合上式,所以a n =2·3n -1(n ∈N *).则数列{a 2n }是首项为4,公比为9的等比数列,故选B. 6.已知等差数列{a n }的公差为d ,且a n ≠0,d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1可化简为( )A.nda 1a 1+ndB.na 1a 1+ndC.da 1a 1+ndD.n +1a 1[a 1+n +1d ]答案 B 解析 ∵1a n a n +1=1d (1a n -1a n +1),∴原式=1d (1a 1-1a 2+1a 2-1a 3+…+1a n -1a n +1)=1d (1a 1-1a n +1)=na 1·a n +1,选B.7.已知函数f (n )=⎩⎪⎨⎪⎧n 2,当n 为正奇数时,-n 2,当n 为正偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200答案 B解析 由题意,得a 1+a 2+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=100.故选B.8.化简S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1的结果是( )A .2n +1+2-n -2 B .2n +1-n +2 C .2n -n -2 D .2n +1-n -2答案 D解析 S n =n +(n -1)×2+(n -2)×22+…+2×2n -2+2n -1,①2S n =n ×2+(n -1)×22+…+3×2n -2+2×2n -1+2n,②②-①,得S n =-n +2+22+…+2n -2+2n -1+2n=-n +21-2n1-2=2n +1-n -2.故选D.9.设函数f (x )=x m+ax 的导数为f ′(x )=2x +1,则数列{1f n}(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1 C.nn -1D.n +1n答案 A解析 ∵f (x )=x m +ax 的导数为f ′(x )=mx m -1+a =2x +1,∴m =2,a =1.∴f (x )=x 2+x =x (x +1). 数列{1f n}(n ∈N *)的前n 项和为S n =11×2+12×3+13×4+…+1n n +1=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1.故选A. 10.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 013的值为( )A.2 0102 011 B.2 0112 012 C.2 0122 013D.2 0132 014答案 D解析 直线与x 轴交于(2n,0),与y 轴交于(0,2n +1), ∴S n =12·2n ·2n +1=1nn +1=1n -1n +1. ∴原式=(1-12)+(12-13)+…+(12 013-12 014)=1-12 014=2 0132 014.11.(1002-992)+(982-972)+…+(22-12)=____________. 答案 5 050解析 原式=100+99+98+97+…+2+1=100×100+12=5 050.12.S n =122-1+142-1+…+12n 2-1=________. 答案n2n +1解析 通项a n =12n2-1=12n -12n +1=12(12n -1-12n +1),∴S n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1)=n2n +1. 13.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =________.答案 ⎩⎪⎨⎪⎧6n -n 21≤n ≤3,n 2-6n +18 n >3解析 由S n =n 2-6n ,得{a n }是等差数列,且首项为-5,公差为2. ∴a n =-5+(n -1)×2=2n -7. ∴n ≤3时,a n <0;n >3时,a n >0.∴T n =⎩⎪⎨⎪⎧6n -n 21≤n ≤3,n 2-6n +18 n >3.14.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N *),则S 100=________. 答案 2 600解析 由已知,得a 1=1,a 2=2,a 3-a 1=0,a 4-a 2=2,…,a 99-a 97=0,a 100-a 98=2. 累加得a 100+a 99=98+3,同理得a 98+a 97=96+3,…,a 2+a 1=0+3, 则a 100+a 99+a 98+…+a 2+a 1 =50×98+02+50×3=2 600.15.数列{a n }的前n 项和为S n ,且a 1=1,a n +1=3S n (n =1,2,3,…),则log 4S 10=________. 答案 9解析 ∵a n +1=3S n ,∴a n =3S n -1(n ≥2). 两式相减,得a n +1-a n =3(S n -S n -1)=3a n . ∴a n +1=4a n ,即a n +1a n=4. ∴{a n }从第2项起是公比为4的等比数列. 当n =1时,a 2=3S 1=3, ∴n ≥2时,a n =3·4n -2.S 10=a 1+a 2+…+a 10=1+3+3×4+3×42+…+3×48=1+3(1+4+…+48)=1+3×1-491-4=1+49-1=49. ∴log 4S 10=log 449=9.16.已知数列{a n }为等比数列.T n =na 1+(n -1)a 2+…+a n ,且T 1=1,T 2=4. (1)求{a n }的通项公式;(2)求{T n }的通项公式. 答案 (1)a n =2n -1(2)T n =2n +1-n -2解析 (1)T 1=a 1=1,T 2=2a 1+a 2=2+a 2=4,∴a 2=2.∴等比数列{a n }的公比q =a 2a 1=2. ∴a n =2n -1.(2)方法一:T n =n +(n -1)·2+(n -2)·22+…+1·2n -1,①2T n =n ·2+(n -1)22+(n -2)23+…+1·2n,② ②-①,得T n =-n +2+22+…+2n -1+2n=-n +21-2n1-2=-n +2n +1-2=2n +1-n -2.方法二:设S n =a 1+a 2+…+a n , ∴S n =1+2+…+2n -1=2n-1.∴T n =na 1+(n -1)a 2+…+2a n -1+a n =a 1+(a 1+a 2)+…+(a 1+a 2+…+a n )=S 1+S 2+…+S n =(2-1)+(22-1)+…+(2n-1) =(2+22+ (2))-n =21-2n1-2-n=2n +1-n -2.17.(2014·大纲全国理)等差数列{a n }的前n 项和为S n ,已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .答案 (1)a n =13-3n (2)T n =n1010-3n思路 (1)先求公差d ,再求通项公式;(2)利用裂项相消法求和. 解析 (1)由a 1=10,a 2为整数,知等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0. 解得-103≤d ≤-52.因此d =-3.所以数列{a n }的通项公式为a n =13-3n . (2)b n =113-3n10-3n =13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎫110-3n -113-3n=13⎝ ⎛⎭⎪⎫110-3n -110=n 1010-3n.1.(2015·安徽安庆二模)在正项数列{a n }中,a 1=1,a 5=16,对任意n ∈N *,函数f (x )=a 2n +1x -a n a n+2·(cos x +sin x )满足f ′(0)=0. (1)求数列{a n }的通项公式; (2)求数列{na n }的前n 项和S n .解析 (1)求导得f ′(x )=a 2n +1-a n a n +2(-sin x +cos x ),由f ′(0)=0,可得a 2n +1=a n a n +2.又a n >0,故数列{a n }为等比数列,且公比q >0.由a 1=1,a 5=16,得q 4=16,q =2.所以通项公式a n =2n -1(n ∈N *).(2)S n =1+2×2+3×22+…+n ·2n -1,①2S n =2+2×22+3×23+…+(n -1)·2n -1+n ·2n.②①-②,得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =2n -1-n ·2n.∴S n =(n -1)·2n+1.2.设数列{a n }是公差大于0的等差数列,a 3,a 5分别是方程x 2-14x +45=0的两个实根. (1)求数列{a n }的通项公式; (2)设b n =a n +12n +1,求数列{b n }的前n 项和T n .解析 (1)因为方程x 2-14x +45=0的两个根分别为5,9,所以由题意可知a 3=5,a 5=9,所以d =2,所以a n =a 3+(n -3)d =2n -1.(2)由(1)可知,b n =a n +12n +1=n ·12n ,∴T n =1×12+2×122+3×123+…+(n -1)×12n -1+n ·12n . ①∴12T n =1×122+2×123+…+(n -1)×12n +n ·12n +1. ② ①-②,得12T n =12+122+123+…+12n -1+12n -n ·12n +1=1-n +22n +1,所以T n =2-n +22n .3.(2015·沧州七校联考)已知数列{a n }的前n 项和S n ,满足S n =2a n -2n (n ∈N *). (1)求数列{a n }的通项公式a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b na n +2}的前n 项和,求证:T n ≥12. 解析 (1)当n ∈N *时,S n =2a n -2n , 则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减,得a n =2a n -2a n -1-2,即a n =2a n -1+2. ∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2.当n =1时,S 1=2a 1-2,则a 1=2.∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列. ∴a n +2=4·2n -1,∴a n =2n +1-2.(2)证明:b n =log 2(a n +2)=log 22n +1=n +1,∴b na n +2=n +12n +1,则T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减,得12T n =222+123+124+…+12n +1-n +12n +2=14+141-12n1-12-n +12n +2=14+12-12n +1-n +12n +2=34-n +32n +2. ∴T n =32-n +32n +1.当n ≥2时,T n -T n -1=-n +32n +1+n +22n=n +12n +1>0,∴{T n }为递增数列,∴T n ≥T 1=12.4.(2014·湖南十二校一联)已知数列{a n }满足a 1=1,a 2=4,a n +2+2a n =3a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和S n ,求使得S n >21-2n 成立的最小整数n . 解析 (1)由a n +2+2a n -3a n +1=0,得a n +2-a n +1=2(a n +1-a n ).∴数列{a n +1-a n }是以a 2-a 1=3为首项,公比为2的等比数列. ∴a n +1-a n =3·2n -1.∴当n ≥2时,a n -a n -1=3·2n -2,a n -1-a n -2=3·2n -3,…,a 3-a 2=3×2,a 2-a 1=3.累加,得a n -a 1=3·2n -2+…+3×2+3=3(2n -1-1).∴a n =3·2n -1-2.又当n =1时,也满足上式,∴数列{a n }的通项公式为a n =3·2n -1-2,n ∈N *.(2)由(1)利用分组求和法,得S n =3(2n -1+2n -2+…+2+1)-2n =3(2n -1)-2n .由S n =3(2n-1)-2n >21-2n ,得3·2n>24,即2n>8. ∴n >3,∴使得S n >21-2n 成立的最小整数n =4.。
题组层级快练(四十八)1.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10答案 B解析 1+12+14+…+12n -1=1-12n1-12>12764,整理得2n>128,解得n >7. ∴初始值至少应取8.2.设f (n )=1+12+13+…+13n -1(n ∈N *),那么f (n +1)-f (n )等于( )A.13n +2B.13n +13n +1C.13n +1+13n +2D.13n +13n +1+13n +2答案 D3.若数列{a n }的通项公式a n =1n +2,记c n =2(1-a 1)(1-a 2)…(1-a n ),试通过计算c 1,c 2,c 3的值,推测c n =__________.答案n +2n +1解析 c 1=2(1-a 1)=2×(1-14)=32,c 2=2(1-a 1)(1-a 2)=2×(1-14)×(1-19)=43,c 3=2(1-a 1)(1-a 2)(1-a 3)=2×(1-14)×(1-19)×(1-116)=54,故由归纳推理得c n =n +2n +1. 4.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有:(S n -1)2=a n S n . (1)求S 1,S 2,S 3;(2)猜想S n 的表达式并证明. 答案 (1)S 1=12,S 2=23,S 3=34(2)S n =nn +1,证明略解析 (1)由(S 1-1)2=S 21,得S 1=12;由(S 2-1)2=(S 2-S 1)S 2,得S 2=23;由(S 3-1)2=(S 3-S 2)S 3,得S 3=34.(2)猜想:S n =nn +1.证明:①当n =1时,显然成立; ②假设当n =k (k ≥1且k ∈N *)时,S k =kk +1成立.则当n =k +1时,由(S k +1-1)2=a k +1S k +1,得S k +1=12-S k=12-kk +1=k +1k +2. 从而n =k +1时,猜想也成立. 综合①②得结论成立.5.已知数列{a n }的各项都是正数,且满足:a 0=1,a n +1=12a n ·(4-a n ),(n ∈N ).证明:a n <a n +1<2,(n ∈N ). 证明 略证明 方法一:用数学归纳法证明: (1)当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,所以a 0<a 1<2,命题正确.(2)假设n =k 时命题成立,即a k -1<a k <2. 则当n =k +1时,a k -a k +1 =12a k -1(4-a k -1)-12a k (4-a k ) =2(a k -1-a k )-12(a k -1-a k )(a k -1+a k )=12(a k -1-a k )(4-a k -1-a k ). 而a k -1-a k <0,4-a k -1-a k >0,所以a k -a k +1<0. 又a k +1=12a k (4-a k )=12[4-(a k -2)2]<2.所以n =k +1时命题成立.由(1)(2)可知,对一切n ∈N 时有a n <a n +1<2. 方法二:用数学归纳法证明:(1)当n =0时,a 0=1,a 1=12a 0(4-a 0)=32,所以0<a 0<a 1<2.(2)假设n =k 时有a k -1<a k <2成立,令f (x )=12x (4-x ),f (x )在[0,2]上单调递增,所以由假设有f (a k -1)<f (a k )<f (2).即12a k -1(4-a k -1)<12a k (4-a k )<12×2×(4-2). 也即当n =k +1时,a k <a k +1<2成立. 所以对一切n ∈N ,有a k <a k +1<2.6.(2014·安徽理选编)设整数p >1,n ∈N *. 证明:当x >-1且x ≠0时,(1+x )p>1+px . 答案 略证明 用数学归纳法证明,①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设当p =k (k ≥2,k ∈N *)时,不等式(1+x )k>1+kx 成立. 则当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )·(1+kx )=1+(k +1)x +kx 2>1+(k +1)x .所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p>1+px 均成立. 7.(2014·陕西理选编)设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N *,求g n (x )的表达式. 答案 g n (x )=x1+nx解析 由题设,得g (x )=x1+x(x ≥0).由已知,g 1(x )=x 1+x ,g 2(x )=g (g 1(x ))=x1+x 1+x 1+x =x 1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x1+nx.下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx .那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k x 1+g k x =x1+kx 1+x 1+kx=x 1+k +x,即结论成立.由①②可知,结论对n ∈N *成立.8.(2015·衡水调研)首项为正数的数列{a n }满足a n +1= 14(a 2n +3),n ∈N *. (1)证明:若a 1为奇数,则对一切n ≥2,a n 都是奇数; (2)若对一切n ∈N *都有a n +1>a n ,求a 1的取值范围. 答案 (1)略 (2)0<a 1<1或a 1>3解析 (1)证明:已知a 1是奇数,假设a k =2m -1是奇数,其中m 为正整数, 则由递推关系,得a k +1=a 2k +34=m (m -1)+1是奇数.根据数学归纳法,可知对任何n ∈N *,a n 都是奇数.(2)方法一:由a n +1-a n =14(a n -1)(a n -3),知当且仅当a n <1或a n >3时,a n +1>a n .另一方面,若0<a k <1,则0<a k +1<1+34=1;若a k >3,则a k +1>32+34=3.根据数学归纳法,可知∀n ∈N *,0<a 1<1⇔0<a n <1;∀n ∈N *,a 1>3⇔a n >3. 综上所述,对一切n ∈N *都有a n +1>a n 的充要条件是0<a 1<1或a 1>3. 方法二:由a 2=a 21+34>a 1,得a 21-4a 1+3>0.于是0<a 1<1或a 1>3. a n +1-a n =a 2n +34-a 2n -1+34=a n +a n -1a n -a n -14.因为a 1>0,a n +1=a 2n +34,所以对任意n ∈N *,a n 均大于0.因此a n +1-a n 与a n -a n -1同号.根据数学归纳法,可知∀n ∈N *,a n +1-a n 与a 2-a 1同号. 因此,对于一切n ∈N *都有a n +1>a n 的充要条件是0<a 1<1或a 1>3.。
题组层级快练(七十五)1.(2015·东北三校一联)在(x 2-1x)5的二项展开式中,第二项的系数为( )A .10B .-10C .5D .-5答案 D解析 展开式中的第二项为T 2=C 15(x 2)5-1(-1x)1,所以其系数为-C 15=-5.2.(2015·河北唐山一模)(3x -2x)8二项展开式中的常数项为( )A .56B .-56C .112D .-112答案 C解析 ∵T r +1=C r 8(3x )8-r (-2x )r =C r 8(-2)r x 83-43r ,∴令83-43r =0,即r =2.∴常数项为C 28(-2)2=112,选C.3.在(x 2-13x)n的展开式中,只有第5项的二项式系数最大,则展开式中的常数项是( )A .-7B .7C .-28D .28答案 B解析 由题意知n =8,T r +1=C r 8·(x 2)8-r ·(-13x)r =(-1)r ·C r 8·x 8-r28-r ·1x r 3=(-1)r ·C r8·x 8-r -r328-r,由8-r -r3=0,得r =6. ∴T 7=C 68·122=7,即展开式中的常数项为T 7=7.4.在(x +1)(2x +1)…(nx +1)(n ∈N *)的展开式中一次项系数为( ) A .C 2n B .C 2n +1 C .C n -1n D.12C 3n +1 答案 B解析 1+2+3+…+n =n ·n +12=C 2n +1.5.若(x +a x)(2x -1x)5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40答案 D解析 令x =1,得(1+a )(2-1)5=2,∴a =1.∴(2x -1x )5的通项为T r +1=C r 5·(2x )5-r ·(-1x)r =(-1)r ·25-r ·C r 5·x 5-2r.令5-2r =1,得r =2.令5-2r =-1,得r =3.∴展开式的常数项为(-1)2×23·C 25+(-1)3·22·C 35=80-40=40.6.(2015·人大附中期末)若(x 2-1ax )9(a ∈R )的展开式中x 9的系数是-212,则⎠⎛0a sin x d x 的值为( )A .1-cos2B .2-cos1C .cos2-1D .1+cos2答案 A解析 由题意得T r +1=C r9·(x 2)9-r·(-1)r ·(1ax )r =(-1)r ·C r 9·x 18-3r ·1ar ,令18-3r =9,得r =3,所以-C 39·1a 3=-212,解得a =2.所以⎠⎛0a sin x d x =(-cos x )| 20=-cos2+cos0=1-cos2.7.(2015·安徽合肥二检)(x 2-x +1)10展开式中x 3项的系数为( ) A .-210 B .210 C .30 D .-30答案 A解析 由题意,得(x 2-x +1)10=[x (x -1)+1]10=C 010[x (x -1)]0·110+C 110[x (x -1)]1·19+C 210[x (x -1)]2·18+C 310[x (x -1)]3·17+…+C 1010[x (x -1)]10·10=C 010+C 110x (x -1)+C 210x 2(x -1)2+C 310x 3(x -1)3+…+C 1010x 10(x -1)10,x 3出现在C 210x 2(x -1)2+C 310x 3(x -1)3=C 210x 2(x 2-2x +1)+C 310x 3(x 3-3x 2+3x -1)中,所以x 3前的系数为C 210(-2)+C 310(-1)=-90-120=-210,故选A.8.(2015·天津河西二模)已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=( ) A .-180 B .180 C .45 D .-45答案 B解析 因为(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,所以[2-(1-x )]10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,所以a 8=C 81022(-1)8=180.9.(2015·山东潍坊一模)设k =⎠⎛0π(sin x -cos x )d x ,若(1-kx )8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+a 3+…+a 8=( )A .-1B .0C .1D .256答案 B解析 ∵k =⎠⎛0π(sin x -cos x )d x =(-cos x -sin x )|π0=2,∴(1-2x )8=a 0+a 1x +a 2x 2+…+a 8x 8.令x =0,得a 0=1;令x =1,得a 0+a 1+a 2+a 3+…+a 8=1.∴a 1+a 2+a 3+…+a 8=0.10.(2014·浙江理)在(1+x )6(1+y )4的展开式中,记x m y n项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .210答案 C解析 由题意知f (3,0)=C 36C 04,f (2,1)=C 26C 14,f (1,2)=C 16C 24,f (0,3)=C 06C 34,因此f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,选C.11.(2015·四川绵阳二诊)若(x -a x2)6展开式的常数项是60,则常数a 的值为________.答案 4 解析 (x -a x2)6展开式的常数项是C 26x 4(-a x2)2=15a =60,∴a =4.12.(2015·上海十三校二联)-1+3C 111-9C 211+27C 311-…-310C 1011+311除以5的余数是________. 答案 3解析 -1+3C 111-9C 211+27C 311-…-310C 1011+311=(-1+3)11=211=2 048=2 045+3,它除以5余数为3.13.若(x -a 2x)8的展开式中常数项为1 120,则展开式中各项系数之和为________.答案 1解析 (x -a 2x )8的展开式的通项为T r +1=C r 8x 8-r (-a 2)r x -r =C r 8(-a 2)r x 8-2r,令8-2r =0,解得r =4,所以C 48(-a 2)4=1 120,所以a 2=2,故(x -a 2x )8=(x -2x)8.令x =1,得展开式中各项系数之和为(1-2)8=1.14.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________. 答案 0 解析 T r +1=C r21x21-r(-1)r ,∴a 10=C 1121(-1)11,a 11=C 1021(-1)10,∴a 10+a 11=0.15.(2014·高考调研原创题)若(cos φ+x )5的展开式中x 3的系数为2,则sin(2φ+π2)=________.答案 -35解析 由二项式定理,得x 3的系数为C 35cos 2φ=2,得cos 2φ=15.故sin(2φ+π2)=cos2φ=2cos 2φ-1=-35.16.(2015·扬州中学月考)设函数f (x ,n )=(1+x )n (n ∈N *). (1)求f (x,6)的展开式中系数最大的项;(2)若f (i ,n )=32i(i 为虚数单位),求C 1n -C 3n +C 5n -C 7n +C 9n . 答案 (1)20x 3(2)32解析 (1)展开式中系数最大的项是第4项T 4=C 36x 3=20x 3. (2)由已知(1+i)n =32i ,两边取模,得(2)n=32,所以n =10.所以C 1n -C 3n +C 5n -C 7n +C 9n =C 110-C 310+C 510-C 710+C 910.而(1+i)10=C 010+C 110i +C 210i 2+…+C 910i 9+C 1010i 10=(C 010-C 210+C 410-C 610+C 810-C 1010)+(C 110-C 310+C 510-C 710+C 910)i =32i ,所以C 110-C 310+C 510-C 710+C 910=32.17.设f (x )=(1+x )m +(1+x )n 的展开式中x 的系数是19(m ,n ∈N *). (1)求f (x )展开式中x 2的系数的最小值;(2)对f (x )展开式中x 2的系数取最小值时m ,n ,求f (x )展开式中x 7的系数. 答案 (1)81 (2)156解析 (1)由题意知C 1m +C 1n =19, ∴m +n =19,∴m =19-n .x 2的系数为C 2m +C 2n =C 219-n +C 2n=12(19-n )(18-n )+12n (n -1) =n 2-19n +171=(n -192)2+3234,∵n ∈N *,∴n =9或n =10时,x 2的系数取最小值(12)2+3234=81.(2)由(1)得当n =9,m =10时,f (x )=(1+x )10+(1+x )9; 当n =10,m =9时,f (x )同上.故f (x )=(1+x )9(x +2)其中(1+x )9展开式中T r +1=C r 9x r ,所以f (x )展开式中x 7的系数为C 69+2C 79=156.。
题组层级快练(六十八)1.若过抛物线y =2x 2的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则x 1x 2=( ) A .-2 B .-12C .-4D .-116答案 D解析 由y =2x 2,得x 2=12y .其焦点坐标为F (0,18),取直线y =18,则其与y =2x 2交于A (-14,18),B (14,18),∴x 1x 2=(-14)·(14)=-116.2.设离心率为e 的双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 过焦点F ,且斜率为k ,则直线l 与双曲线C 的左、右两支都相交的充要条件是( )A .k 2-e 2>1 B .k 2-e 2<1 C .e 2-k 2>1 D .e 2-k 2<1答案 C解析 l 与双曲线的左、右两支都相交的充要条件是-b a <k <b a ,即k 2<c 2-a 2a=e 2-1,即e 2-k 2>1,故选C.3.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3 C.303D.326 答案 C解析 设y -1=k (x -1),∴y =kx +1-k . 代入椭圆方程,得x 2+2(kx +1-k )2=4. ∴(2k 2+1)x 2+4k (1-k )x +2(1-k )2-4=0. 由x 1+x 2=4kk -2k 2+1=2,得k =-12,x 1x 2=13.∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4-43=83.∴|AB |=1+14·263=303. 4.已知抛物线y =2x 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,那么m 的值等于( )A.32B.52 C .2 D .3答案 A解析 因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减,得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2.因为直线AB 与直线y =x +m 互相垂直,所以y 1-y 2x 1-x 2=-1,所以x 1+x 2=-12.而x 1x 2=-12,解得x 1=-1,x 2=12,设线段AB 的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54.因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m =32.5.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1答案 A解析 ①斜率不存在时,方程为x =1符合. ②设斜率为k ,y -1=k (x -1),kx -y -k +1=0.⎩⎪⎨⎪⎧4x 2-y 2=4,y =kx -k +1, (4-k 2)x 2+(2k 2-2k )x -k 2+2k -5=0.当4-k 2=0,k =±2时符合;当4-k 2≠0,Δ=0,亦有一个答案,∴共4条.6.(2015·东北三校)设抛物线y 2=4x 的焦点为F ,过点M (-1,0)的直线在第一象限交抛物线于A ,B ,且满足AF →·BF →=0,则直线AB 的斜率k =( )A. 2B.22 C.3 D.33答案 B解析 依题意,设直线AB 的方程为y =k (x +1)(k ≠0),代入抛物线方程y 2=4x 并整理,得k 2x 2+(2k2-4)x +k 2=0.因为直线与抛物线有两个不同的交点,所以Δ=(2k 2-4)2-4k 4>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=4-2k 2k 2,x 1x 2=1.又因为AF →·BF →=0,所以(x 1-1)(x 2-1)+y 1y 2=0,(x 1-1)(x 2-1)+k 2(x 1+1)(x 2+1)=0,(1+k 2)x 1x 2+(k 2-1)(x 1+x 2)+k 2+1=0.把⎩⎪⎨⎪⎧x 1+x 2=4-2k 2k 2,x 1x 2=1,代入并整理,得k 2=12.又k >0,所以k =22,故选B.7.已知抛物线y 2=8x ,过动点M (a,0),且斜率为1的直线l 与抛物线交于不同的两点A ,B ,|AB |≤8,则实数a 的取值范围是________.答案 -2<a ≤-1解析 将l 的方程y =x -a 代入y 2=8x , 得x 2-2(a +4)x +a 2=0. 则|AB |=x 1+x 22-4x 1x 2]=32+2a ≤8,又∵|AB |>0,∴-2<a ≤-1.8.(2015·上海静安一模)已知椭圆C :x 22+y 24=1,过椭圆C 上一点P (1,2)作倾斜角互补的两条直线PA ,PB ,分别交椭圆C 于A ,B 两点.则直线AB 的斜率为________.答案2解析 设A (x 1,y 1),B (x 2,y 2),同时设PA 的方程为y -2=k (x -1),代入椭圆方程化简得(k 2+2)x2-2k (k -2)x +k 2-22k -2=0,显然1和x 1是这个方程的两解.因此x 1=k 2-22k -2k 2+2,y 1=-2k 2-4k +22k 2+2.由-k 代替x 1,y 1中的k ,得x 2=k 2+22k -2k 2+2,y 2=-2k 2+4k +22k 2+2,所以y 2-y 1x 2-x 1= 2. 9.(2015·福建福州质检)已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若双曲线左支上存在一点P 与点F 2关于直线y =b ax 对称,则该双曲线的离心率为________.答案5解析 由题意可知双曲线左支上存在一点P 与点F 2关于直线y =bx a 对称,则PF 1⊥PF 2.又|PF 2||PF 1|=ba,联立|PF 2|-|PF 1|=2a ,|PF 2|2+|PF 1|2=(2c )2,可得b 3+a 2b =2c 2a .所以b =2a ,e = 5.10.抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值. 答案 (1)±2 2 (2)4解析 (1)依题意知F (1,0),设直线AB 的方程为x =my +1.将直线AB 的方程与抛物线的方程联立,消去x ,得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4m ,y 1y 2=-4.① 因为AF →=2FB →,所以y 1=-2y 2.② 联立①和②,消去y 1,y 2,得m =±24. 所以直线AB 的斜率是±2 2.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点.从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB . 因为2S △AOB =2×12·|OF |·|y 1-y 2|=y 1+y 22-4y 1y 2=41+m 2,所以当m =0时,四边形OACB 的面积最小,最小值是4.11.(2015·四川成都七中适应性训练)如图所示,设抛物线C 1:y 2=4x 的准线与x 轴交于点F 1,焦点F 2.椭圆C 2以F 1和F 2为焦点,离心率e =12.设P 是C 1与C 2的一个交点.(1)求椭圆C 2的方程;(2)直线l 过C 2的右焦点F 2,交C 1于A 1,A 2两点,且|A 1A 2|等于△PF 1F 2的周长,求直线l 的方程. 答案 (1)x 24+y 23=1(2)y =2(x -1)或y =-2(x -1)解析 (1)由条件,F 1(-1,0),F 2(1,0)是椭圆C 2的两焦点,故半焦距为1,再由离心率为12知长半轴长为2,从而C 2的方程为x 24+y 23=1.(2)由(1)可知△PF 1F 2的周长|PF 1|+|PF 2|+|F 1F 2|=6.又C 1:y 2=4x ,而F 2(1,0).若l 垂直于x 轴,易得|A 1A 2|=4,矛盾,故l 不垂直于x 轴,可设其方程为y =k (x -1),与C 1方程联立可得k 2x 2-(2k 2+4)x +k 2=0,从而|A 1A 2|=k 2+1|x 1-x 2|=k 2+1·k 2+2-4k4k 2=k 2+k 2.令|A 1A 2|=6可解出k 2=2,故l 的方程为y =2(x -1)或y =-2(x -1).12.(2014·陕西文)已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 答案 (1)x 24+y 23=1(2)y =-12x +33或y =-12x -33思路 (1)构造关于a ,b ,c 的方程组;(2)利用直线与圆的位置关系得|CD |,直线的方程与椭圆方程联立得方程组,利用根与系数的关系得|AB |,构造关于m 的方程求m ,进而得出直线l 的方程.解析 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎨⎧a =2,b =3,c =1.∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5. 由d <1,得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0.由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3.∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-m 2-=1524-m 2. 由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.13.(2014·辽宁理)圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线C 1:x 2a 2-y 2b2=1过点P 且离心率为 3.(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.答案 (1)x 2-y 22=1(2)x -(362-1)y -3=0或x +(62-1)y -3=0思路 (1)先求切线方程,再利用条件列出方程组求解字母的值;(2)利用关系设出椭圆方程,再利用直线与椭圆的位置关系求解.解析 (1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0), 则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时,x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).由题意知⎩⎪⎨⎪⎧2a 2-2b2=1,a 2+b 2=3a 2,解得⎩⎪⎨⎪⎧a 2=1,b 2=2.故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1.解得b 21=3,因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+23my -3=0.又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-23mm 2+2, ①y 1y 2=-3m 2+2. ②由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m y 1+y2+23=43m 2+2, ③x 1x 2=m 2y 1y 2+3my 1+y 2+3=6-6m 2m 2+2. ④因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2), 由题意知AP →·BP →=0,所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0.⑤ 将①②③④代入⑤整理,得2m 2-26m +46-11=0. 解得m =362-1或m =-62+1.因此直线l 的方程为x -(362-1)y -3=0或x +(62-1)y -3=0.。
题组层级快练(三十三)1.已知向量a =(1,sin θ),b =(1,cos θ),则|a -b |的最大值为( ) A .1 B. 2 C. 3 D .2答案 B解析 ∵a =(1,sin θ),b =(1,cos θ),∴a -b =(0,sin θ-cos θ). ∴|a -b |=02+θ-cos θ2=1-sin2θ.∴|a -b |最大值为 2.故选B.2.在平行四边形ABCD 中,AB →=a ,AD →=b ,则当(a +b )2=(a -b )2时,该平行四边形为( ) A .菱形 B .矩形 C .正方形 D .以上都不正确答案 B解析 在平行四边形中,a +b =AB →+AD →=AC →,a -b =AB →-AD →=DB →,∵|a +b |=|a -b |,∴|AC →|=|DB →|,对角线相等的平行四边形为矩形,故选B. 3.在△ABC 中,若AB →2=AB →·AC →+BA →·BC →+CA →·CB →,则△ABC 是( ) A .等边三角形 B .锐角三角形 C .钝角三角形 D .直角三角形 答案 D解析 由已知,AB →2=AB →·AC →-AB →·BC →+CA →·CB →=AB →·(AC →+CB →)+CA →·CB →=AB →2+CA →·CB →,∴CA →·CB →=0.4.已知A ,B 是圆心为C 半径为5的圆上两点,且|AB →|=5,则AC →·CB →等于( ) A .-52B.52 C .0 D.532答案 A解析 由于弦长|AB |=5与半径相同,则∠ACB =60°⇒AC →·CB →=-CA →·CB →=-|CA →|·|CB →|·cos∠ACB =-5·5·cos60°=-52.5.设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m·n =1+cos(A +B ),则C =( )A.π6B.π3C.2π3D.5π6答案 C解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3,选C.6.设P 是曲线y =1x上一点,点P 关于直线y =x 的对称点为Q ,点O 为坐标原点,则OP →·OQ →=( )A .0B .1C .2D .3答案 C解析 设P (x 1,1x 1),则Q (1x 1,x 1).∴OP →·OQ →=(x 1,1x 1)·(1x 1,x 1)=x 1·1x 1+1x 1·x 1=2.7.在△ABC 中,BC →=a ,CA →=b ,AB →=c ,且a·b =b·c =c·a ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形答案 D解析 因a ,b ,c 均为非零向量,且a·b =b·c ,得b·(a -c )=0⇒b⊥(a -c ). 又a +b +c =0⇒b =-(a +c ),∴[-(a +c )]·(a -c )=0⇒a 2=c 2,得|a|=|c|. 同理|b|=|a|,∴|a|=|b|=|c|. 故△ABC 为等边三角形.8.(2015·辽宁五校协作体第一次联考)已知数列{a n }是等差数列,其前n 项和为S n ,若平面上的三个不共线的向量OA →,OB →,OC →满足OB →=a 1OA →+a 2 014OC →,且A ,B ,C 三点共线,则S 2 014=( )A .1 007B .1 006C .2 012D .2 014答案 A解析 因为OB →=a 1OA →+a 2 014OC →,又A ,B ,C 三点共线,所以a 1+a 2 014=1,∴S 2 014=a 1+a 2 0142×2 014=1007.故选A.9.已知a ,b 是两个非零向量,给定命题p :|a ·b |=|a ||b |,命题q :∃t ∈R ,使得a =t b ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 ∵|a ·b |=|a ||b ||cos θ|=|a ||b |, ∴θ=0°或180°,即a ,b 共线. ∴∃t ∈R ,使得a =t b 成立. ∴p 是q 的充分条件.若∃t ∈R ,使得a =t b ,则a ,b 共线. ∴|a ·b |=|a ||b |.∴p 是q 的必要条件. 综上可知,p 是q 的充要条件.10.(2015·保定模拟)若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形答案 B解析 OB →+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →,∴|AB →+AC →|=|AB →-AC →|⇒|AB →+AC →|2=|AB →-AC →|2⇒AB →·AC →=0,∴三角形为直角三角形,故选B.11.已知直线x +y =a 与圆x 2+y 2=4交于A ,B 两点,且 |OA →+OB →|=|OA →-OB →|,其中O 为原点,则实数a 的值为( ) A .2 B .-2 C .2或-2 D.6或- 6答案 C解析 由|OA →+OB →|=|OA →-OB →|,得OA →⊥OB →. ∴点O 到AB 的距离d =2,即|-a |2=2,解得a =±2. 12.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线的方程为( )A .y 2=8x B .y 2=4x C .y 2=16x D .y 2=42x答案 B解析 如图所示,AF →=FB →⇒F 为线段AB 中点,∵AF =AC ,∴∠ABC =30°.由BA →·BC →=48,得BC =4 3.则AC =4.∴由中位线的性质有p =12AC =2.故抛物线的方程为y 2=4x .故选B.13.已知向量i 和j 为互相垂直的单位向量,向量a =i -2j ,b =i +λj ,a 与b 的夹角为锐角,则实数λ的取值范围是________.答案 (-∞,-2)∪(-2,12)解析 ∵0<〈a ,b 〉<π2,∴0<cos 〈a ,b 〉<1,∴0<a ·b |a |·|b |<1,即0<1-2λ5·1+λ2<1,解得λ<12且λ≠-2,∴λ的取值范围是(-∞,-2)∪(-2,12).14.(2013·新课标全国Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 2解析 方法一:AE →·BD →=(AD →+12AB →)·(AD →-AB →)=AD →2-12AB →2=22-12×22=2.方法二:以A 为原点建立平面直角坐标系(如图),可得A (0,0),E (1,2),B (2,0),C (2,2),D (0,2),AE →=(1,2),BD →=(-2,2),则AE →·BD →=(1,2)·(-2,2)=1×(-2)+2×2=2.15.已知圆O :x 2+y 2=4,直线x -3y +10=0上有一动点P ,过点P 作圆O 的一条切线,切点为A ,则PO →·PA →的最小值为________.答案 6解析 圆心O 到直线x -3y +10=0的距离d =|10|12+-2=10>2,所以直线和圆相离.因为PA与圆O 相切,所以PA ⊥OA ,故PA →·AO →=0.又PO →=PA →+AO →,所以PO →·PA →=(PA →+AO →)·PA →=PA →2+AO →·PA →=PA →2. 又PA ⊥OA ,所以PA →2=|PA →|2=|PO →|2-|OA →|2=|PO →|2-4.显然|PO →|的最小值为圆心O 到直线x -3y +10=0的距离d =10,所以PO →·PA →的最小值为(10)2-4=6.16.(2014·陕西文)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R ).(1)若m =n =23,求|OP →|;(2)用x ,y 表示m -n ,并求m -n 的最大值. 答案 (1)2 2 (2)1解析 (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2).∴|OP →|=22+22=2 2.(2)∵OP →=m (1,2)+n (2,1)=(m +2n,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n .两式相减,得m -n =y -x .令m -n =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.17.(2015·四川雅安中学)已知向量OP →=(2cos(π2+x ),-1),OQ →=(-sin(π2-x ),cos2x ),定义函数f (x )=OP →·OQ →.(1)求函数f (x )的表达式,并指出其最大值和最小值;(2)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且f (A )=1,bc =8,求△ABC 的面积S .答案 (1)f (x )=2sin(2x -π4),最大,最小值分别为2,- 2 (2)2 2解析 (1)∵f (x )=OP →·OQ →=(-2sin x ,-1)·(-cos x ,cos2x )=sin2x -cos2x =2sin(2x -π4),∴f (x )的最大值和最小值分别是2和- 2. (2)∵f (A )=1,∴sin(2A -π4)=22. ∴2A -π4=π4或2A -π4=3π4.∴A =π4或A =π2.又∵△ABC 为锐角三角形,∴A =π4.∵bc =8,∴△ABC 的面积S =12bc sin A =12×8×22=2 2.1.若△ABC 的三内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量p =(a +b ,c ),q =(a -b ,c -a ),若|p +q |=|p -q |,则角B 的大小是( )A .30°B .60°C .90°D .120°答案 B解析 由|p +q |=|p -q |,可得p 2+2p ·q +q 2=p 2-2p ·q +q 2,化简得p ·q =0.又由p ·q =(a +b ,c )·(a -b ,c -a )=a 2-b 2+c 2-ac =0,可得cos B =a 2+c 2-b 22ac =12.由B ∈(0,π),可得B =60°,故选B.2.已知点A (-2,0),B (3,0),动点P (x ,y )满足PA →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线答案 D解析 ∵PA →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴PA →·PB →=(-2-x )(3-x )+y 2=x 2,∴y 2=x +6.3.设O 点在三角形ABC 内部,且有OA →+2OB →+3OC →=0,则三角形ABC 的面积与三角形AOC 的面积之比( )A .2 B.32 C .3D.53答案 C解析 联想三角形ABC 重心满足GA →+GB →+GC →=0可延长OB 至E 使OE →=2OB →,延长OC 至F 使OF →=3OC →,则O 为三角形AEF 的重心从而S △AOC =13S △AOF =19S △AEF , S △AOB =12S △AOE =16S △AEF , S △BOC =13S △BOF =118S △AEF .∴S △ABC =S △AOC +S △AOB +S △BOC =13S △AEF .∴S △AOC =13S △ABC ,故选C.4.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是( ) A .[0,π6]B .[π3,π]C .[π3,2π3]D .[π6,π]答案 B解析 |a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则|a |2-4a ·b ≥0,设向量a ·b 的夹角为θ,cos θ=a ·b |a |·|b |≤14|a |212|a |2=12,∴θ∈[π3,π].。
题组层级快练(三十六)1.由下列各表达式给出的数列{a n }: ①S n =a 1+a 2+…+a n =n 2; ②S n =a 1+a 2+…+a n =n 2-1; ③a 2n +1=a n ·a n +2;④2a n +1=a n +a n +2 (n ∈N *). 其中表示等差数列的是( ) A .①④ B .②④ C .①②④ D .①③④答案 A2.在等差数列{a n }中,若a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4答案 B解析 ∵a 1+a 5=10=2a 3,∴a 3=5. 故d =a 4-a 3=7-5=2.3.已知数列{a n }为等差数列,其前n 项和为S n ,若a 3=6,S 3=12,则公差d 等于( ) A .1 B.53 C .2 D .3答案 C解析 由已知得S 3=3a 2=12,即a 2=4,∴d =a 3-a 2=6-4=2.4.(2015·沧州七校联考)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( ) A .24 B .48 C .60 D .72答案 B解析 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2.则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48,选B.5.(2015·山东临沂质检)在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .10答案 C解析 ∵a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16.∴a 7-12a 8=2a 7-a 82=a 62=8.6.(2015·湖南箴言中学)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=10,则S 11的值为( ) A .12 B .18 C .22 D .44答案 C解析 ∵数列{a n }是等差数列,且S 8-S 3=10,∴S 8-S 3=a 4+a 5+a 6+a 7+a 8=10,∴5a 6=10,a 6=2,∴S 11=a 1+a 112×11=11a 6=22.7.在等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12答案 B8.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12 B .1 C .2 D .3 答案 C 解析 因为S n =n a 1+a n2,所以S n n =a 1+a n 2.由S 33-S 22=1,得a 32-a 22=1,即a 3-a 2=2,所以数列{a n }的公差为2.9.在等差数列{a n }中,设S n 为其前n 项和,已知a 2a 3=13,则S 4S 5等于( )A.815 B.40121C.1625D.57答案 A解析 由题意可得S 4S 5=a 1+a42a 1+a 52=a 2+a 35a 3=815.10.已知在等差数列{a n }中,|a 3|=|a 9|,公差d <0,S n 是数列{a n }的前n 项和,则( ) A .S 5>S 6 B .S 5<S 6 C .S 6=0 D .S 5=S 6答案 D解析 ∵d <0,|a 3|=|a 9|,∴a 3>0,a 9<0,且a 3+a 9=2a 6=0.∴a 6=0,a 5>0,a 7<0.∴S 5=S 6.故选D.11.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |等于( )A .1 B.34 C.12 D.38答案 C解析 由题设可知前4项和等于四个根之和4·14+4·32·d =2+2,d =12,∴方程的四个根分别为14,34,54,74,∴|m -n |=|14·74-34·54|=12.故选C. 12.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 5b 5等于( )A .7 B.23 C.278D.214 答案 D解析 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92a 1+a992b 1+b9=S 9T 9=214. 13.已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________;S n =________.答案 1n n +4解析 设公差为d ,则由S 2=a 3,得2a 1+d =a 1+2d ,所以d =a 1=12,故a 2=a 1+d =1,S n =na 1+nn -2d =n n +4.14.已知在数列{a n }中,a 3=2,a 5=1,若⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于________. 答案 0解析 记b n =11+a n ,则b 3=13,b 5=12,数列{b n }的公差为12×(12-13)=112,b 1=16,∴b n =n +112,即11+a n=n +112.∴a n =11-nn +1,故a 11=0. 15.已知A n ={x |2n <x <2n +1且x =7m +1,m ,n ∈N },则A 6中各元素的和为________.答案 891解析 ∵A 6={x |26<x <27且x =7m +1,m ∈N },∴A 6的元素x =各数成一首项为71,公差为7的等差数列. ∴71+78+…+127=71×9+9×82×7=891.16.已知S n 是等差数列{a n }的前n 项和,且a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率是________.答案 4解析 设数列{a n }的公差为d ,则依题意,得⎩⎪⎨⎪⎧a 4=a 1+3d =15,S 5=5a 1+10d =55⇒⎩⎪⎨⎪⎧a 1=3,d =4.故直线PQ 的斜率为a 4-a 34-3=d1=4.17.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0. (1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.答案 (1)S 6=-3,a 1=7 (2)d ≤-22或d ≥2 2 解析 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0. 即2a 21+9da 1+10d 2+1=0. 故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.18.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. 答案 (1)略 (2)最大项a 4=3,最小项a 3=-1 解析 (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1. 所以当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1.又b 1=1a 1-1=-52, 所以,数列{b n }是以-52为首项,以1为公差的等差数列.(2)解 由(1)知,b n =n -72,则a n =1+1b n =1+22n -7.设函数f (x )=1+22x -7,易知f (x )在区间⎝ ⎛⎭⎪⎫-∞,72和⎝ ⎛⎭⎪⎫72,+∞上为减函数.所以,当n =3时,a n 取得最小值-1; 当n =4时,a n 取得最大值3.1.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( ) A .12 B .18 C .22 D .44答案 C解析 由题可知S 11=a 1+a 112=a 2+a 102=11×42=22,故选C. 2.(2013·新课标全国Ⅰ理)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A .3 B .4 C .5 D .6答案 C解析 ∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1. ∵S m =ma 1+m m -2×1=0,∴a 1=-m -12.又∵a m +1=a 1+m ×1=3,∴-m -12+m =3.∴m =5.故选C.3.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-2a 2m =0,S 2m -1=39,则m =( ) A .38 B .39 C .20 D .19答案 C解析 ∵a m -1+a m +1=2a 2m ,又∵a m -1+a m +1=2a m ,∴a m =1或0(舍去). ∵S 2m -1=2m -1a 1+a 2m -12=(2m -1)a m ,∴(2m -1)a m =39,∴2m -1=39.∴m =20.4.在等差数列{a n }中,a m =n ,a n =m ,则a m +n 的值为( ) A .m +n B.12(m +n ) C.12(m -n ) D .0答案 D解析 ∵a m -a n =(m -n )d =n -m ,∴d =-1,∴a m +n =a m +nd =n -n =0. 5.已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8等于( ) A .72 B .54 C .36 D .18 答案 A6.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 为( ) A .-23B .-13C.13D.23 答案 D解析 a 10=a 1+9d =10,S 10=10a 1+10×92d =10a 1+45d =70,解得d =23.故选D.。