2017—2018学年度上学期高一年期中考数学试卷
- 格式:doc
- 大小:512.50 KB
- 文档页数:7
第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,满分60分,每题四个选项中只有一项是符合题目要求的)1、设集合{|4},{1,2},{2,3}U x N x A B ,则()()U U C A C B =( )(A){0,4}(B){4}(C) {1,2,3}(D)2、下列函数中,既是偶函数,又在)0,(上为减函数的是( )(A)x y 2(B)x y (C)2x y (D)||lg x y 3、已知函数122x y ,当自变量]1,0[x 时,因变量y 的取值范围为( )(A)]2,1[(B)]1,0[(C)]3,2[(D)]2,0[4、已知函数x x x f 3)(,则函数)1(x f 的定义域为( )(A)1,4x x x (B)1,2x x x (C)0,2x x x (D)1,4x x x 5、函数1()1x a f x a x (0a 且1a )的图象恒经过定点( )(A)(1,1)(B)(1,2)(C)(1,3)(D)(0,2)6、用二分法求方程x x 2)1ln(的近似解时,可以取的一个区间是( )(A)(1,2)(B)(2,)e (C)(3,4)(D)(0,1)7、函数223()log ()f x x x 的单调减区间为( )(A) 1(,)2(B) 1(,1)2(C) 1(,)2(D) 1(0,)28、设集合(,),0A x y x R y ,B R ,点(,)x y 在映射:f A B 的作用下的象是2x y ,则对于B 中的数5,与之对应的A 中的元素不.可能..是( )(A)(1,3)(B)2(log 3,2)(C)(0,5)(D)(2,1)9、在平面直角坐标下,函数21()22x xf x x x 的图象( )(A) 关于x 轴对称(B) 关于y 轴对称(C) 关于原点对称(D) 关于直线y x 轴对称。
一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的)1. 已知A={0,1,2,3,4},B={1,3,5},则A ∩B 为( ) A .{0,2} B .{1,3}C .{0,1,3}D .{2}2.已知函数⎩⎨⎧>-≤-=0,10,)1()(2x x x x x f ,则=])2([f f ( )A .4B .1C .0D .-1 3、函数1()lg(1)1f x x x=++-的定义域是( ) A.(-∞,1) B.(1,+∞)C.(-1,1)∪(1,+∞)D.(-∞,+∞) 4、设0.870.75,0.6,log 4a b c ===,则,,a b c 的大小关系是( )A .a c b <<B .c a b <<C .b a c <<D .c b a << 5.下列给出的同组函数中,表示同一函数的是( )3230(1)()();1, 0||(2)()();1,0(3)()1().f x xg x x x x f x g x x x f x g x x ==>⎧==⎨-<⎩==和和和 A .(1)、 (2) B .(2) C . (1)、(3) D .(3) 6、函数xx x f 2ln )(-=的零点所在的大致区间是( ) A.(1,2) B.(2,3) C.(3,4) D.(e,3) 7. 若函数()246f x x x =++,则()x f 在)[0,3-上的值域为( ) A .[]6,2 B .[]3,2 C . )[6,2 D .[]6,3 8.下列函数()f x 中,满足在区间(0,+∞)为减函数的是 ( ) A.1()f x x=B.2()(1)f x x =-C. ()x f x e =D. ()ln(1)f x x =+ 9.已知()f x 在R 上是奇函数,且)()4(x f x f =+,当)2,0(∈x 时,22)(x x f =,则=)7(f ( )A .2-B .2C .98-D .98 10.若2lg (x -2y )=lg x +lg y ,则xy的值为( ) A .4B .1或41C .1或4D .4111.已知函数()f x 在()1,1-上既是奇函数,又是减函数,则满足(1x)f(3x 2)0f -+-<的x 的取值范围是( )A. 1,2⎛⎫+∞ ⎪⎝⎭B. 1,12⎛⎫ ⎪⎝⎭C. 3,4⎛⎫+∞ ⎪⎝⎭D. 3,14⎛⎫⎪⎝⎭12.对实数a 和b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()()222f x x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ).A .()3,21,2⎛⎫-∞-- ⎪⎝⎭B .(]3,21,4⎛⎫-∞--- ⎪⎝⎭C .111,,44⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--+∞ ⎪⎪⎢⎝⎭⎣⎭二、填空题:(本大题共4小题,每小题 5 分,共 20 分.将答案填在答题卡上)13.已知集合{|2},{|1},A x x B x mx ====-若B A ⊆,则m 值的集合为_______。
2017-2018学年高一(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)2015°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.(5分)已知幂函数y=f(x)的图象过点(,),则f(2)的值为()A.B.﹣C.2 D.﹣23.(5分)集合U,M,N,P如图所示,则图中阴影部分所表示的集合是()A.M∩(N∪P)B.M∩∁U(N∪P) C.M∪∁U(N∩P) D.M∪∁U(N∪P)4.(5分)在直径为4cm的圆中,36°的圆心角所对的弧长是()A.cm B.cm C.cm D.cm5.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a6.(5分)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1 7.(5分)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2]B.(﹣1,0)∪(0,2]C.[﹣2,2]D.(﹣1,2]8.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.129.(5分)f(x)为定义域R,图象关于原点对称,当x≥0时,f(x)=2x+2x+b (b为常数),则x<0时,f(x)解析式为()A.f(x)=2x﹣2x﹣1 B.f(x)=﹣2﹣x+2x+1 C.f(x)=2﹣x﹣2x﹣1 D.f(x)=﹣2﹣x﹣2x+110.(5分)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则f(x)<0的解集是()A.{x|﹣3<x<0或x>3}B.{x|x<﹣3或0<x<3}C.{x|x<﹣3或x>3}D.{x|﹣3<x<0或0<x<3}11.(5分)定义在R上的函数f(x)满足f(x+6)=f(x),当﹣3<x≤﹣1时,f(x)=﹣(x+2)2,当﹣1≤x≤3时,f(x)=x.则f(1)+f(2)+…+f(2015)的值为()A.335 B.340 C.1680 D.201512.(5分)已知函数f(x)=,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()A.(,+∞)B.(﹣∞,) C.(0,)D.(,2)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知f(2x+1)=x2﹣2x,则f(5)=.14.(5分)求值:=.15.(5分)函数的单调增区间是.16.(5分)下列几个命题中真命题的序号是.(1)已知函数f(x)的定义域为[2,5),则f(2x﹣1)的定义域为[3,9);(2)函数是偶函数,也是奇函数;(3)若f(x+1)为偶函数,则f(x+1)=f(﹣x﹣1);(4)已知函数f(x)=x2+2ax+2在区间[﹣5,5]上是单调增函数,则实数a≥5.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)设a<0,角α的终边经过点P(﹣3a,4a),求sinα+2cosα的值;(2)已知tanβ=2,求sin2β+2sinβcosβ的值.18.(12分)已知集合A={x|x2﹣2x﹣8≤0},B={x|2a<x<a+4},全集为R,(1)当a=1时,求A∪B,A∩(∁R B);(2)若A∩B=B,求a的取值范围.19.(12分)已知g(x)=﹣x2﹣3,f(x)=ax2+bx+c(a≠0),函数h(x)=g(x)+f(x)是奇函数.(1)求a,c的值;(2)当x∈[﹣1,2]时,f(x)的最小值是1,求f(x)的解析式.20.(12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润f(x)表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?21.(12分)已知函数,且,f(0)=0(1)求函数f(x)的解析式;(2)求函数f(x)的值域;(3)求证:方程f(x)=lnx至少有一根在区间(1,3).22.(12分)已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1.若对任意m,n∈[﹣1,1],m+n≠0都有[f(m)+f(n)](m+n)>0.(1)判断函数f(x)的单调性,并说明理由;(2)若,求实数a的取值范围;(3)若不等式f(x)≤3﹣|t﹣a|a对所有x∈[﹣1,1]和a∈[1,3]都恒成立,求实数t的范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.1.(5分)2015°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【分析】利用终边相同角的表示方法,化简即可判断角所在象限.【解答】解:由2015°=1800°+215°,并且180°<215°<270°,可知2015°是第三象限角.故选:C.【点评】本题考查象限角与轴线角的应用,基本知识的考查.2.(5分)已知幂函数y=f(x)的图象过点(,),则f(2)的值为()A.B.﹣C.2 D.﹣2【分析】设幂函数y=f(x)=xα,把点(,)代入可得α的值,求出幂函数的解析式,从而求得f(2)的值.【解答】解:设幂函数y=f(x)=xα,把点(,)代入可得=α,∴α=,即f(x)=,故f(2)==,故选:A.【点评】本题主要考查求幂函数的解析式,求函数的值的方法,属于基础题.3.(5分)集合U,M,N,P如图所示,则图中阴影部分所表示的集合是()A.M∩(N∪P)B.M∩∁U(N∪P) C.M∪∁U(N∩P) D.M∪∁U(N∪P)【分析】根据题目所给的图形得到以下几个条件:①在集合M内;②不在集合P 内;③不在集合N内.再根据集合的交集、并集和补集的定义得到正确答案.【解答】解:根据图形得,阴影部分含在M集合对应的椭圆内,应该是M的子集,而且阴影部分不含集合P的元素,也不含集合N的元素,应该是在集合P∪N的补集中,即在C U(P∪N)中,因此阴影部分所表示的集合为M∩C U(P∪N),故选B.【点评】本题着重考查了用Venn图表达集合的关系及集合的三种运算:交集、并集、补集的相关知识,属于基础题.4.(5分)在直径为4cm的圆中,36°的圆心角所对的弧长是()A.cm B.cm C.cm D.cm【分析】,再利用弧长公式l=αr即可得出.【解答】解:=(弧度).∴36°的圆心角所对的弧长==cm.故选:B.【点评】本题考查了弧长公式l=αr,属于基础题.5.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a【分析】利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c >1,则答案可求.【解答】解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:C.【点评】本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.6.(5分)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1【分析】根据对数函数的图象和性质即可得到结论.【解答】解:∵函数单调递减,∴0<a<1,当x=1时log a(x+c)=log a(1+c)<0,即1+c>1,即c>0,当x=0时log a(x+c)=log a c>0,即c<1,即0<c<1,故选:D.【点评】本题主要考查对数函数的图象和性质,利用对数函数的单调性是解决本题的关键,比较基础.7.(5分)函数f(x)=+的定义域为()A.[﹣2,0)∪(0,2]B.(﹣1,0)∪(0,2]C.[﹣2,2]D.(﹣1,2]【分析】分式的分母不为0,对数的真数大于0,被开方数非负,解出函数的定义域.【解答】解:要使函数有意义,必须:,所以x∈(﹣1,0)∪(0,2].所以函数的定义域为:(﹣1,0)∪(0,2].故选B.【点评】本题考查对数函数的定义域,函数的定义域及其求法,考查计算能力.8.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3 B.6 C.9 D.12【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.9.(5分)f(x)为定义域R,图象关于原点对称,当x≥0时,f(x)=2x+2x+b (b为常数),则x<0时,f(x)解析式为()A.f(x)=2x﹣2x﹣1 B.f(x)=﹣2﹣x+2x+1 C.f(x)=2﹣x﹣2x﹣1 D.f(x)=﹣2﹣x﹣2x+1【分析】根据已知可得f(x)为奇函数,由f(0)=0,可得:b=﹣1,进而根据当x<0时,﹣x>0,f(x)=﹣f(﹣x)得到x<0时,f(x)的解析式.【解答】解:∵f(x)为定义域R,图象关于原点对称,∴f(x)为奇函数,f(0)=20+b=0,解得:b=﹣1,当x<0时,﹣x>0,∴f(﹣x)=2﹣x﹣2x﹣1,∴f(x)=﹣f(﹣x)=﹣2﹣x+2x+1,故选:B.【点评】本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的性质,是解答的关键.10.(5分)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则f(x)<0的解集是()A.{x|﹣3<x<0或x>3}B.{x|x<﹣3或0<x<3}C.{x|x<﹣3或x>3}D.{x|﹣3<x<0或0<x<3}【分析】利用函数是奇函数且在(0,+∞)内是增函数,得到函(﹣∞,0)上单调递增,利用f(﹣3)=0,得f(3)=0,然后解不等式即可.【解答】解:∵f(x)是奇函数,f(﹣3)=0,∴f(﹣3)=﹣f(3)=0,解f(3)=0.∵函数在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0.当x>3时,f(x)>0,∵函数f(x)是奇函数,∴当﹣3<x<0时,f(x)>0.当x<﹣3时,f(x)<0,则不等式f(x)<0的解是0<x<3或x<﹣3.故选:B.【点评】本题主要考查函数奇偶性和单调性之间的关系,利用函数奇偶性的对称性,可解不等式的解集.11.(5分)定义在R上的函数f(x)满足f(x+6)=f(x),当﹣3<x≤﹣1时,f(x)=﹣(x+2)2,当﹣1≤x≤3时,f(x)=x.则f(1)+f(2)+…+f(2015)的值为()A.335 B.340 C.1680 D.2015【分析】可得函数f(x)是R上周期为6的周期函数,计算f(1)+f(2)+f(3)+f(4)+f(5)+f(6)可得结论.【解答】解:∵定义在R上的函数f(x)满足f(x+6)=f(x),∴函数f(x)是R上周期为6的周期函数,∵当﹣3<x≤﹣1时,f(x)=﹣(x+2)2,当﹣1≤x≤3时,f(x)=x,∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=f(1)+f(2)+f(3)+f(﹣2)+f(﹣1)+f(0)=1+2+3+0﹣1+0=5,∴f(1)+f(2)+…+f(2015)=335×5+1+2+3+0﹣1=1680故选:C.【点评】本题考查函数的周期性,涉及函数值的求解,属基础题.12.(5分)已知函数f(x)=,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是()A.(,+∞)B.(﹣∞,) C.(0,)D.(,2)【分析】求出函数y=f(x)﹣g(x)的表达式,构造函数h(x)=f(x)+f(2﹣x),作出函数h(x)的图象,利用数形结合进行求解即可.【解答】解:∵g(x)=b﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣b+f(2﹣x),由f(x)﹣b+f(2﹣x)=0,得f(x)+f(2﹣x)=b,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.即h(x)=,作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当b=时,h(x)=b,有两个交点,当b=2时,h(x)=b,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=b恰有4个根,则满足<b<2,故选:D.【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知f(2x+1)=x2﹣2x,则f(5)=0.【分析】令2x+1=t,可得x=,代入所给的条件求得f(t)=﹣(t﹣1),由此求得f(5)的值.【解答】解:∵已知f(2x+1)=x2﹣2x,令2x+1=t,可得x=,∴f(t)=﹣(t﹣1),故f(5)=4﹣4=0,故答案为0.【点评】本题主要考查用换元法求函数的解析式,求函数的值,属于基础题.14.(5分)求值:=102.【分析】直接利用对数与指数的运算法则化简求解即可.【解答】解:=(lg2)2+(lg5)2+2lg2lg5+1+0.4﹣2×42=1+1+=2+100=102.故答案为:102.【点评】本题考查对数运算法则以及有理指数幂的运算法则的应用,考查计算能力.15.(5分)函数的单调增区间是.【分析】由复合函数单调性和二次函数的单调性结合定义域可得.【解答】解:由﹣x2+x+6>0可解得﹣2<x<3,对数函数y=log0.8t在(0,+∞)单调递减,二次函数t=﹣x2+x+6在(,+∞)单调递减,由复合函数单调性结合定义域可得原函数的单调递增区间为.故答案为:.【点评】本题考查对数函数的单调性,涉及二次不等式的解法和复合函数单调性,属基础题.16.(5分)下列几个命题中真命题的序号是(2)(4).(1)已知函数f(x)的定义域为[2,5),则f(2x﹣1)的定义域为[3,9);(2)函数是偶函数,也是奇函数;(3)若f(x+1)为偶函数,则f(x+1)=f(﹣x﹣1);(4)已知函数f(x)=x2+2ax+2在区间[﹣5,5]上是单调增函数,则实数a≥5.【分析】(1)由f(x)的定义域为[2,5),知2x﹣1∈[2,5),解出x的范围即为定义域;(2)求出定义域可得函数为y=0,满足f(x)=f(﹣x),也满足f(x)=﹣f(﹣x),故是偶函数,也是奇函数,(3)由f(x+1)为偶函数,由定义可知f(﹣x+1)=f(x+1);(4)利用二次函数的对称轴可得﹣a≤﹣5,求出a的范围即可.【解答】解:(1)∵f(x)的定义域为[2,5),∴2x﹣1∈[2,5),∴x∈[,3),故错误;(2)的定义域为{1,﹣1},此时y=0,故是偶函数,也是奇函数,故正确;(3)f(x+1)为偶函数,∴f(﹣x+1)=f(x+1),故错误;(4)已知函数f(x)=x2+2ax+2在区间[﹣5,5]上是单调增函数,∴﹣a≤﹣5,∴a≥5,故正确.故正确选项为(2)(4).【点评】考查了符合函数的定义域和奇偶性,二次函数的单调性判断.属于基础题型,应熟练掌握.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)(1)设a<0,角α的终边经过点P(﹣3a,4a),求sinα+2cosα的值;(2)已知tanβ=2,求sin2β+2sinβcosβ的值.【分析】(1)由P的坐标,利用任意角的三角函数定义求出sinα与cosα的值,代入原式计算即可得到结果;(2)原式利用同角三角函数间的基本关系化简,将tanβ的值代入计算即可求出值.【解答】解:(1)∵a<0,角α的终边经过点P(﹣3a,4a),∴sinα=﹣=﹣,cosα==,则原式=﹣+=;(2)∵tanβ=2,∴原式====.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.18.(12分)已知集合A={x|x2﹣2x﹣8≤0},B={x|2a<x<a+4},全集为R,(1)当a=1时,求A∪B,A∩(∁R B);(2)若A∩B=B,求a的取值范围.【分析】(1)求出集合A,B,再求出A∪B,A∩(∁R B);(2)若A∩B=B,则B⊆A,分类讨论,即可求a的取值范围.【解答】解:(1)A={x|﹣2≤x≤4},a=1时,B={x|2<x<5},∴A∪B={x|﹣2≤x<5},A∩(C R B)={x|﹣2≤x≤2}…(6分)(2)∵A∩B=B,∴B⊆A.B=∅时,2a≥a+4,∴a≥4;B≠∅时,,∴﹣1≤a≤0.综合:a≥4或﹣1≤a≤0…(6分)【点评】本题主要考查集合的基本运算,属于基础题.要正确判断两个集合间的关系,必须对集合的相关概念有深刻的理解,善于抓住代表元素,认清集合的特征.19.(12分)已知g(x)=﹣x2﹣3,f(x)=ax2+bx+c(a≠0),函数h(x)=g(x)+f(x)是奇函数.(1)求a,c的值;(2)当x∈[﹣1,2]时,f(x)的最小值是1,求f(x)的解析式.【分析】(1)法一:化简h(x)=g(x)+f(x)=(a﹣1)x2+bx+c﹣3,由(a﹣1)x2﹣bx+c﹣3=﹣(a﹣1)x2﹣bx﹣c+3对x∈R恒成立得到,从而求解,法二:化简h(x)=g(x)+f(x)=(a﹣1)x2+bx+c﹣3,由奇函数可得a﹣1=0,c﹣3=0,从而求解;(2)根据二次函数的性质,讨论对称轴所在的位置,从而确定f(x)的最小值在何时取得,从而求f(x)的解析式.【解答】解:(1)(法一):f(x)+g(x)=(a﹣1)x2+bx+c﹣3,又f(x)+g(x)为奇函数,∴h(x)=﹣h(﹣x),∴(a﹣1)x2﹣bx+c﹣3=﹣(a﹣1)x2﹣bx﹣c+3对x∈R恒成立,∴,解得;(法二):h(x)=f(x)+g(x)=(a﹣1)x2+bx+c﹣3,∵h(x)为奇函数,∴a﹣1=0,c﹣3=0,∴a=1,c=3.(2)f(x)=x2+bx+3,其图象对称轴为,当,即b≥2时,f(x)min=f(﹣1)=4﹣b=1,∴b=3;当,即﹣4≤b<2时,,解得或(舍);当,即b<﹣4时,f(x)min=f(2)=7+2b=1,∴b=﹣3(舍),∴f(x)=x2+3x+3或∴.【点评】本题考查了函数的奇偶性的应用与及二次函数的最值的求法,属于基础题.20.(12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=,其中x是仪器的月产量.(注:总收益=总成本+利润)(1)将利润f(x)表示为月产量x的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?【分析】(1)根据利润=收益﹣成本,由已知分两段当0≤x≤400时,和当x>400时,求出利润函数的解析式;(2)根据分段函数的表达式,分别求出函数的最大值即可得到结论.【解答】解:(1)由于月产量为x台,则总成本为20000+100x,从而利润f(x)=;(2)当0≤x≤400时,f(x)=300x﹣﹣20000=﹣(x﹣300)2+25000,∴当x=300时,有最大值25000;当x>400时,f(x)=60000﹣100x是减函数,∴f(x)=60000﹣100×400<25000.∴当x=300时,有最大值25000,即当月产量为300台时,公司所获利润最大,最大利润是25000元.【点评】本题主要考查函数的应用问题,根据条件建立函数关系,利用分段函数的表达式结合一元二次函数的性质求出函数的最值是解决本题的关键.21.(12分)已知函数,且,f(0)=0(1)求函数f(x)的解析式;(2)求函数f(x)的值域;(3)求证:方程f(x)=lnx至少有一根在区间(1,3).【分析】(1)根据f(1)和f(0)列方程,求出a,b;(2)由y=,分离2x=>0,求得值域;(3)构造函数g(x)=f(x)﹣lnx,运用函数零点存在定理,确定函数在(1,3)存在零点.【解答】解:(1)由已知可得,,解得,a=1,b=﹣1,所以,;(2)∵y=f(x)=,∴分离2x得,2x=,由2x>0,解得y∈(﹣1,1),所以,函数f(x)的值域为(﹣1,1);(3)令g(x)=f(x)﹣lnx=﹣lnx,因为,g(1)=f(1)﹣ln1=>0,g(3)=f(3)﹣ln3=﹣ln3<0,根据零点存在定理,函数g(x)至少有一零点在区间(1,3),因此,方程f(x)﹣lnx=0至少有一根在区间(1,3)上.【点评】本题主要考查了函数解析式的求法,函数值域的求法,以及方程根的存在性及根的个数判断,属于中档题.22.(12分)已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1.若对任意m,n∈[﹣1,1],m+n≠0都有[f(m)+f(n)](m+n)>0.(1)判断函数f(x)的单调性,并说明理由;(2)若,求实数a的取值范围;(3)若不等式f(x)≤3﹣|t﹣a|a对所有x∈[﹣1,1]和a∈[1,3]都恒成立,求实数t的范围.【分析】(1)由奇函数的定义和单调性的定义,将n换为﹣n,即可得到;(2)由题意可得f(a+)<﹣f(﹣3a)=f(3a),由f(x)在[﹣1,1]递增,可得不等式组,解得即可;(3)由题意可得,3﹣|t﹣a|a≥f(x)max=1,即|t﹣a|a≤2对a∈[1,3]恒成立.再由绝对值的含义,可得对a∈[1,3]恒成立,分别求得两边函数的最值,即可得到t的范围.【解答】解:(1)用﹣n代替n得:[f(m)+f(﹣n)](m﹣n)>0,又f(x)为奇函数,则[f(m)﹣f(n)](m﹣n)>0,根据符号法则及单调性的定义可知:f(x)为增函数;(2)若,即为f(a+)<﹣f(﹣3a)=f(3a),由f(x)在[﹣1,1]递增,可得,解得;(3)由题意可得,3﹣|t﹣a|a≥f(x)max=1,即|t﹣a|a≤2对a∈[1,3]恒成立.即对a∈[1,3]恒成立,由于a﹣在[1,3]递增,可得a=3时,取得最大值;a+≥2=2,当且仅当a=取得最小值.即有.【点评】本题考查函数的奇偶性和单调性的运用:求最值和解不等式,考查不等式恒成立问题的解法注意转化为求函数的最值,考查运算能力,属于中档题.。
2017--2018学年度第二学期高一数学期中试卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知ABC ∆中,31sin ,2,3===B AC AB .则=C ( )。
A.ο30 B.ο60 C.ο30或ο150 D.ο60或ο120 2 设11a b >>>-,则下列不等式中恒成立的是 ( ) A ba 11< Bb a 11> C 2a b > D 22a b > 3.已知数列{}n a 满足*112,10()n n a a a n N +=-+=∈,则此数列的通项n a 等于 ( ).A 21n + .B 1n + .C 1n - .D 3n -4. 在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( ) A 090 B 060 C 0135 D 0150 5. 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-≤⎩≥≥,,.则目标函数4z x y =+的最大值为( ) A.4 B.11C.12 D.14 6. 一元二次不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b +的值是( ) A 10 B 10- C 14 D 14-7.在等差数列{}n a 中,若210,a a 是方程21280x x +-=的两个根,那么6a 的值为A .-12B .-6C .12D .68.△ABC 中,cos cos A a B b=,则△ABC 一定是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 9.若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成 立的最大自然数n 是:( )A .4005 B . 4006 C .4007 D .4008 10.在△ABC 中,若3a = 2b sin A , 则B 为( )A . 3πB . 6πC . 6π或65πD . 3π或32π 11 《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样的一道题目,把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和.则最小的1份为( )A .53 B .56 C .103 D .11612.在等差数列{}n a 中,前四项之和为40,最后四项之和为80,所有项之和是210,则项数n 为( )A .12 B .14 C .15 D .16二、填空题:本大题共4小题,每小题5分,满分20分. 13 不等式24x ≥的解集是 .14.若a >b >c >1,则abc , ab , bc , ac 的从小到大的顺序是15一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60o ,行驶4h后,船到达C 处,看到这个灯塔在北偏东15o ,这时船与灯塔的距离为 km .16.在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a = .三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程或演算步骤.17. (本小题满分10分)已知{}n a 为等差数列,且36a =-,60a =。
第Ⅰ卷 选择题(60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,选出符合题目要求的一项.1、设全集}6,5,4,3,2,1{=U ,集合}5,4,2{},3,2,1{==B A ,则()A B U ð=( )A.}2{B.}6{C.}6,5,4,3,1{D.}5,4,3,1{2、已知集合{}22,A x x x x R =|=∈,满足B A ⊆的所有非空集合B 的个数是( )A.1B.2C.3D.4 3、下列函数中,是奇函数且在定义域内单调递减的函数为( )A. y x x =B.3y x =- C.1y x=D.2x y -= 4、在映射中B A f →:,},|),{(R y x y x B A ∈==,且),(),(:y x y x y x f +-→,则与B 中元素)2,1(-对应的A 中的元素为() A.)1,3(-B.)23,21(C.)23,21(--D.)1,3(-5、函数2)1lg(2)(-++=x x f x的一个零点所在的区间为( )A .)1,0(B .)2,1(C .)3,2(D .)4,3(6、设函数1()0x f x x ⎧=⎨⎩为有理数为无理数,则下列结论错误..的是 ( ) A .()f x 的定义域为R B .()f x 的值域为{0,1}C .()f x 是偶函数D .()f x 是单调函数7、122,121()2,12(0.2)之间的大小关系为 ( ) A. 11122212(0.2)()2<< B. 11122212()(0.2)2<<C. 1112221()(0.2)22<<D. 1112221(0.2)()22<< 8、函数1x y e +=与1x y e -=的图像( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线1x =对称 9、已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg lg aa b b=-; ③b ab a lg )lg(212= ; ④1lg()log 10ab ab =. 其中正确命题的个数为 ( ) A .0 B .1 C .2 D .3 10、下列判断中,正确的是 ( )A .函数11y x =-在区间(0,)+∞上为减函数 B .函数2(0)y ax c ac =+≠是偶函数,且在区间(0,2)上为增函数 C .函数22log y x =与函数22log y x =是同一个函数D .对于指数函数x y a =(1a >)与幂函数n y x =(0n >),总存在一个0x ,当0x x > 时,就会有x n a x >11、已知(1)y f x x =-+是奇函数,且(0)0f =,若2()(1)g x f x x =++,则(3)g -=( )A .7B .9C .11D .312、已知函数2(2)()2x x f x x x ⎧+≤⎪=⎨->⎪⎩,方程2()()0f x af x -=(其中(0,2)a ∈)的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为 ( )A .6,4B .4,6C .4,0D .6,0第Ⅱ卷 非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分。
2017-2018学年高一(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.集合A={1,2}的非空子集个数为()A.4 B.2 C.1 D.32.设集合A={x|x<3},B={x|2x>4},则A∩B=()A.∅B.{x|0<x<3} C.{x|1<x<3} D.{x|2<x<3}3.已知角α的终边经过点P(﹣3,4),则sinα的值等于()A.﹣B.C.D.﹣4.周长为9,圆心角为1rad的扇形面积为()A.B.C.πD.25.与函数f(x)=|x|表示同一函数的是()A.f(x)=B.f(x)=C.f(x)=()2D.f(x)=6.下列函数既是奇函数,又在区间(0,+∞)上是增函数的是()A.y=x﹣1B.y=x2C.y=lgx D.y=x37.已知函数f(x)=的图象如图所示,则a+b+c=()A.B.C.3 D.8.已知函数y=f(x)与函数y=e x的图象关于直线y=x对称,函数y=g(x)的图象与y=f(x)的图象关于x轴对称,若g(a)=1,则实数a的值为()A.﹣e B.C.D.ex+x 的零点依次为a,b,c,则下9.已知三个函数f(x)=2x+x,g(x)=x﹣3,h(x)=log2列结论正确的是()A.a<b<c B.a<c<b C.b<a<c D.c<a<b10.设函数f(x)定义在实数集R上,满足f(1+x)=f(1﹣x),当x≥1时,f(x)=2x,则下列结论正确的是()A.f()<f(2)<f()B.f()<f(2)<f()C.f()<f()<f(2)D.f(2)<f()<f()11.已知函数f(x)定义在实数集R上的偶函数,且在区间[0,+∞)上单调递减,若实数aa)+f(log a)≤2f(﹣1),则a的取值范围是()满足f(log2A.[2,+∞]∪(﹣∞,] B.(0,]∪[2,+∞)C.[,2] D.(0,]12.已知函数,则函数y=f[f(x)]﹣1的图象与x轴的交点个数为()A.3个B.2个C.0个D.4个二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题纸的横线上,填在试卷上的答案无效.13.f(x)=的定义域为.14.函数f(x)=a x﹣1﹣2恒过定点.15.函数f(x)=lg(﹣x2+2x)的单调递减区间是.16.已知tanα=,,则sinα﹣cosα= .三、解答题:共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知全集U=R,集合A={x|1≤x<5},B={x|2≤x≤8},C={x|﹣a<x≤a+3}.A)∩B;(1)求A∪B,(∁R(2)若A∩C=C,求a的取值范围.18.(12分)已知f(α)=+cos(2π﹣α).(1)化简f(α);(2)若f(α)=,求+的值.19.(12分)已知函数f(x)=log2(1)判断f(x)的奇偶性并证明;(2)若f(3m+1)<f(m),求m的取值范围.20.(12分)已知函数g(x)=x2﹣(m﹣1)x+m﹣7.(1)若函数g(x)在[2,4]上具有单调性,求实数m的取值范围;(2)若在区间[﹣1,1]上,函数y=g(x)的图象恒在y=2x﹣9图象上方,求实数m的取值范围.21.(12分)某化工厂生产的一种溶液,按市场要求,杂质含量不能超过0.1%.若初时含杂质2%,每过滤一次可使杂质含量减少,问至少应过滤几次才能使产品达到市场要求?(已知:lg2=0.3010,lg3=0.4771)22.(12分)已知f(x)=ln(e x+1)+ax是偶函数,g(x)=e x﹣be﹣x是奇函数.(1)求a,b的值;(2)判断g(x)的单调性(不要求证明);(3)若不等式g(f(x))>g(m﹣x)在[1,+∞)上恒成立,求实数m的取值范围.2017-2018学年高一(上)期中试卷(理科数学)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.1.集合A={1,2}的非空子集个数为()A.4 B.2 C.1 D.3【考点】子集与真子集.【分析】若集合A中有n个元素,则集合A中有2n﹣1个真子集.【解答】解:集合{1,2}的子集的个数为22=4个,去掉空集,得到集合{1,2}的非空子集的个数为22﹣1=3个.故选:D.【点评】本题考查子集的概念和应用,解题时要熟记若集合A中有n个元素,则集合A中有2n个子集,有2n﹣1个真子集.2.设集合A={x|x<3},B={x|2x>4},则A∩B=()A.∅B.{x|0<x<3} C.{x|1<x<3} D.{x|2<x<3}【考点】交集及其运算.【分析】求解指数不等式化简集合B,然后直接利用交集运算求解【解答】解:∵B={x|2x>4}={x|x>2},又A={x|x<3},∴A∩B={x|2<x<3},故选:D【点评】本题考查了交集及其运算,考查了一元二次不等式及指数不等式的解法,是基础的计算题.3.已知角α的终边经过点P(﹣3,4),则sinα的值等于()A.﹣B.C.D.﹣【考点】任意角的三角函数的定义.【分析】由任意角的三角函数的定义可得x=﹣3,y=4,r=5,由此求得sinα=的值.【解答】解:∵已知角α的终边经过点P(﹣3,4),由任意角的三角函数的定义可得x=﹣3,y=4,r=5,∴sinα==,故选C.【点评】本题主要考查任意角的三角函数的定义,4.周长为9,圆心角为1rad的扇形面积为()A.B.C.πD.2【考点】扇形面积公式.【分析】根据扇形的面积公式进行求解,即可得出结论.【解答】解:设扇形的半径为r,弧长为l,则l+2r=9,∵圆心角为1rad的弧长l=r,∴3r=9,则r=3,l=3,则对应的扇形的面积S=lr=×3=,故选A.【点评】本题主要考查扇形的面积计算,根据扇形的面积公式和弧长公式是解决本题的关键.5.与函数f(x)=|x|表示同一函数的是()A.f(x)=B.f(x)=C.f(x)=()2D.f(x)=【考点】判断两个函数是否为同一函数.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,函数f(x)==|x|(x≠0),与函数f(x)=|x|(x∈R)的定义域不同,所以不是同一函数;对于B,函数f(x)==|x|(x∈R),与函数f(x)=|x|(x∈R)的定义域相同,对应关系也相同,所以是同一函数;对于C,函数f(x)==x(x≥0),与函数f(x)=|x|(x∈R)的定义域不同,对应关系也不同,所以不是同一函数;对于D,函数f(x)==x(x∈R),与函数f(x)=|x|(x∈R)的对应关系不同,所以不是同一函数.故选:B.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.6.下列函数既是奇函数,又在区间(0,+∞)上是增函数的是()A.y=x﹣1B.y=x2C.y=lgx D.y=x3【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据函数奇偶性和单调性的性质分别进行判断即可.【解答】解:A.y=x﹣1为奇函数,在(0,+∞)上是减函数,不满足条件.B.y=x2是偶函数,当x>0时,函数为增函数,不满足条件.C.y=lgx定义域为(0,+∞),函数为非奇非偶函数,不满足条件.D.y=x3是奇函数,在(﹣∞,+∞)上是增函数,满足条件.故选:D【点评】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数奇偶性和单调性的性质.7.已知函数f(x)=的图象如图所示,则a+b+c=()A.B.C.3 D.【考点】函数的图象.【分析】先由图象可求得直线的方程,又函数的图象过点(0,2),将其坐标代入可得c值,从而即可求得a+b+c的值.【解答】解:由图象可求得直线的方程为y=2x+2,(x+)的图象过点(0,2),又函数y=logc将其坐标代入可得c=,所以a+b+c=2+2+=.故选:B【点评】本题考查了函数图象的识别和应用,属于基础题.8.已知函数y=f(x)与函数y=e x的图象关于直线y=x对称,函数y=g(x)的图象与y=f(x)的图象关于x轴对称,若g(a)=1,则实数a的值为()A.﹣e B.C.D.e【考点】指数函数的图象与性质.【分析】根据y=f(x)与y=e x的图象关于直线y=x对称,求出f(x),再根据y=g(x)的图象与y=f(x)的图象关于x轴对称,求出y=g(x),再列方程求a的值即可.【解答】解:函数y=f(x)与函数y=e x的图象关于直线y=x对称,∴f(x)=lnx,函数y=g(x)的图象与y=f(x)的图象关于x轴对称,∴y=﹣lnx,∴g(a)=﹣lna=1,a=.故选:C.【点评】本题考查了函数图象对称的应用问题,是基础题目.x+x 的零点依次为a,b,c,则下9.已知三个函数f(x)=2x+x,g(x)=x﹣3,h(x)=log2列结论正确的是()A.a<b<c B.a<c<b C.b<a<c D.c<a<b【考点】函数零点的判定定理.【分析】根据零点存在定理,分别求三个函数的零点,判断零点的范围,再判断函数的单调性,确定函数的零点的唯一性,从而得到结果.【解答】解:函数f(x)=2x+x,f(﹣1)=﹣1=﹣<0,f(0)=1>0,可知函数的零点a <0;令g(x)=x﹣3=0得,b=3;函数h(x)=logx+x=0,h()=﹣1+=﹣<0,h(1)=1>0,2∴函数的零点满足<c<1,∵f(x)=2x+x,g(x)=x﹣3,h(x)=logx+x在定义域上是增函数,2∴函数的零点是唯一的,则a<c<b,故选:B.【点评】本题考查的重点是函数的零点及个数的判断,基本初等函数的单调性的应用,解题的关键是利用零点存在定理,确定零点的值或范围.10.设函数f(x)定义在实数集R上,满足f(1+x)=f(1﹣x),当x≥1时,f(x)=2x,则下列结论正确的是()A.f()<f(2)<f()B.f()<f(2)<f()C.f()<f()<f(2)D.f(2)<f()<f()【考点】抽象函数及其应用.【分析】由已知得函数f(x)的图象关于直线x=1对称,⇒函数f(x)在(1,+∞)上递增,在(﹣∞,1)上递减,⇒f()<f()<f(0),及f()<f()<f(2).【解答】解:函数f(x)定义在实数集R上,且满足f(1+x)=f(1﹣x),∴函数f(x)的图象关于直线x=1对称,∴f(2)=f(0).又∵当x≥1时,f(x)=2x,∴函数f(x)在(1,+∞)上递增,在(﹣∞,1)上递减,∴f ()<f ()<f (0),及f ()<f ()<f (2).故选:C .【点评】本题考查了函数的对称性及单调性,属于中档题.11.已知函数f (x )定义在实数集R 上的偶函数,且在区间[0,+∞)上单调递减,若实数a满足f (log 2a )+f (log a )≤2f (﹣1),则a 的取值范围是( )A .[2,+∞]∪(﹣∞,]B .(0,]∪[2,+∞)C .[,2]D .(0,]【考点】奇偶性与单调性的综合.【分析】由偶函数的性质将f (log 2a )+f (log a )≤2f (﹣1),化为:f (log 2a )≤f (1),再由f (x )的单调性列出不等式,根据对数函数的性质求出a 的取值范围.【解答】解:因为函数f (x )是定义在R 上的偶函数,所以f (log a )=f (﹣log 2a )=f (log 2a ),则f (log 2a )+f (loga )≤2f (﹣1),为:f (log 2a )≤f (1), 因为函数f (x )在区间[0,+∞)上单调递减,所以|log 2a|≥1,解得0<a ≤或a ≥2,则a 的取值范围是(0,]∪[2,+∞)故选:B .【点评】本题考查函数的奇偶性、单调性的应用,以及对数函数的性质,属于中档题.12.已知函数,则函数y=f[f (x )]﹣1的图象与x 轴的交点个数为( ) A .3个 B .2个 C .0个 D .4个【考点】函数的图象.【分析】函数y=f[f (x )]﹣1的图象与x 轴的交点个数即为f[f (x )]﹣1=0的解得个数,根据函数解析式的特点解得即可,【解答】解:y=f[f (x )]﹣1=0,即f[f (x )]=1,当f(x)+1=1时,即f(x)=0时,此时log2x=0,解得x=1,或x+1=0,解得x=﹣1,当log2f(x)=1时,即f(x)=2时,此时x+1=2,解得x=1(舍去),或log2x=2,解得x=4,综上所述函数y=f[f(x)]﹣1的图象与x轴的交点个数为3个,故选:A.【点评】此题考查的是函数于函数图象交点个数的问题.在解答的过程当中充分体现了函数与方程的思想、问题转化的思想.值得同学们体会反思.二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填在答题纸的横线上,填在试卷上的答案无效.13.f(x)=的定义域为[﹣1,1)∪(1,+∞).【考点】函数的定义域及其求法.【分析】根据函数f(x)的解析式,列出不等式组,求出解集即可.【解答】解:要使函数f(x)=有意义,应满足,即,解得x≥﹣1且x≠1;所以函数f(x)的定义域为[﹣1,1)∪(1,+∞).故答案为:[﹣1,1)∪(1,+∞).【点评】本题考查了根据函数解析式求定义域的应用问题,是基础题目.14.函数f(x)=a x﹣1﹣2恒过定点(1,﹣1).【考点】指数函数的单调性与特殊点.【分析】根据指数函数的性质进行求解.【解答】解:令x﹣1=0得x=1,此时f(1)=1﹣2=﹣1.故函数f(x)=a x﹣1﹣2恒过定点(1,﹣1).故答案为:(1,﹣1).【点评】本题主要考查指数函数的图象和性质,利用指数函数过定点,是解决本题的关键.15.函数f(x)=lg(﹣x2+2x)的单调递减区间是[1,2).【考点】复合函数的单调性.【分析】令t=﹣x2+2x>0,求得函数的定义域,根据f(x)=g(t)=lgt,故本题即求函数t 的减区间.再利用二次函数的性质,得出结论.【解答】解:令t=﹣x2+2x>0,求得0<x<2,故函数的定义域为(0,2),则f(x)=g(t)=lgt,故本题即求函数t的减区间.利用二次函数的性值可得令t=﹣x2+2x在定义域内的减区间为[1,2),故答案为:[1,2).【点评】本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.16.已知tanα=,,则sinα﹣cosα= .【考点】同角三角函数基本关系的运用.【分析】根据同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得sinα、cosα的值,可得sinα﹣cosα的值.【解答】解:∵tanα==,,sin2α+cos2α=1,∴sinα=﹣,cosα=﹣,∴sinα﹣cosα=,故答案为:.【点评】本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.三、解答题:共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)(2016秋•扶余县校级期中)已知全集U=R,集合A={x|1≤x<5},B={x|2≤x ≤8},C={x|﹣a<x≤a+3}.(1)求A∪B,(∁A)∩B;R(2)若A∩C=C,求a的取值范围.【考点】集合的包含关系判断及应用;交、并、补集的混合运算.【分析】(1)直接利用并集、补集和交集的概念求解;(2)由C∩A=C,∴C⊆A,然后分C为空集和不是空集分类求解a的范围,最后取并集.【解答】解:(1)A∪B={x|1≤x≤8},∁R A═{x|x≥5或x<1},(∁RA)∩B═{x|5≤x≤8},(2)∵A∩C=C,∴C⊆A当C=∅时 a+3<﹣a解得a≤﹣当C≠∅时解得:﹣综上所述:a≤﹣1【点评】本题考查了交、并、补集的混合运算,考查了集合间的关系,解答的关键是端点值的取舍,是基础题.18.(12分)(2016秋•扶余县校级期中)已知f(α)=+cos(2π﹣α).(1)化简f(α);(2)若f(α)=,求+的值.【考点】同角三角函数基本关系的运用.【分析】(1)利用诱导公式即可化简求值得解.(2)将已知等式两边平方,利用同角三角函数基本关系式可求sinαcosα的值,即可化简所求计算得解.【解答】解:(1)f(α)=+cosα=sinα+cosα.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)∵f(α)=sinα+cosα=,∴1+2sinαcosα=,∴sinαcosα=﹣,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)∴+==﹣.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.19.(12分)(2016秋•扶余县校级期中)已知函数f(x)=log2(1)判断f(x)的奇偶性并证明;(2)若f(3m+1)<f(m),求m的取值范围.【考点】复合函数的单调性;函数奇偶性的判断;对数函数的图象与性质.【分析】(1)f(x)为奇函数,结合对数的运算性质和奇偶性的定义,可得答案.(2)根据复合函数的单调性“同增异减”的原则,可得f(x)在定义域(﹣1,1)上是减函数,则f(3m+1)<f(m)可化为:﹣1<m<3m+1<1,解得答案.【解答】解:(1)f(x)为奇函数,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)证明如下:因为,定义域为(﹣1,1)关于原点对称﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣f(﹣x)=,∴f(x)+f(﹣x)=0,即f(﹣x)=﹣f(x),故f(x)为奇函数﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)令u==﹣1为(﹣1,1)上的减函数,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)由复合函数的单调性可知f(x)在定义域(﹣1,1)上是减函数,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)所以f(3m+1)<f(m)可化为:﹣1<m<3m+1<1,解得:<m<0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查的知识点是复合函数的单调性,函数的奇偶性,对数函数的图象和性质,难度中档.20.(12分)(2016秋•扶余县校级期中)已知函数g(x)=x2﹣(m﹣1)x+m﹣7.(1)若函数g(x)在[2,4]上具有单调性,求实数m的取值范围;(2)若在区间[﹣1,1]上,函数y=g(x)的图象恒在y=2x﹣9图象上方,求实数m的取值范围.【考点】二次函数的性质;函数单调性的判断与证明.【分析】(1)求出函数的对称轴,根据二次函数的单调性求出m的范围即可;(2)问题转化为x2﹣(m+1)x+m+2>0对任意x∈[﹣1,1]恒成立,设h(x)=x2﹣(m+1)x+m+2,求出函数的对称轴,通过讨论对称轴的范围,求出m的范围即可.【解答】解:(1)对称轴x=,且图象开口向上.若函数g(x)在[2,4]上具有单调性,则满足≤2或≥4,解得:m≤5或m≥9;(2)若在区间[﹣1,1]上,函数y=g(x)的图象恒在y=2x﹣9图象上方,则只需:x2﹣(m﹣1)x+m﹣7>2x﹣9在区间[﹣1,1]恒成立,即x2﹣(m+1)x+m+2>0对任意x∈[﹣1,1]恒成立,设h(x)=x2﹣(m+1)x+m+2其图象的对称轴为直线x=,且图象开口向上①当≥1即m≥1时,h(x)在[﹣1,1]上是减函数,=h(1)=2>0,所以h(x)min所以:m≥1;②当﹣1<<1,即﹣3<m<1,函数h(x)在顶点处取得最小值,=h()=m+2﹣>0,解得:1﹣2<m<1;即h(x)min③当≤﹣1即m≤﹣3时,h(x)在[﹣1,1]上是增函数,所以,h(x)min=h(﹣1)=2m+4>0,解得:m>﹣2,此时,m∈∅;综上所述:m>1﹣2.【点评】本题考查了二次函数的性质,考查函数的单调性以及分类讨论思想,是一道中档题.21.(12分)(2014秋•增城市期末)某化工厂生产的一种溶液,按市场要求,杂质含量不能超过0.1%.若初时含杂质2%,每过滤一次可使杂质含量减少,问至少应过滤几次才能使产品达到市场要求?(已知:lg2=0.3010,lg3=0.4771)【考点】指数函数的实际应用.【分析】设出过滤次数,由题意列出基本不等式,然后通过求解指数不等式得n的取值.【解答】解:设过滤n次,则,即,∴n≥.又∵n∈N,∴n≥8.即至少要过滤8次才能达到市场要求.【点评】本题考查了等比数列,考查了等比数列的通项公式,训练了指数不等式的解法,是基础题.22.(12分)(2016秋•扶余县校级期中)已知f(x)=ln(e x+1)+ax是偶函数,g(x)=e x ﹣be﹣x是奇函数.(1)求a,b的值;(2)判断g(x)的单调性(不要求证明);(3)若不等式g(f(x))>g(m﹣x)在[1,+∞)上恒成立,求实数m的取值范围.【考点】函数恒成立问题;函数单调性的判断与证明;函数奇偶性的判断.【分析】(1)根据函数奇偶性的性质即可求a,b的值;(2)根据指数函数的单调性即可判断g(x)的单调性;(3)根据函数的单调性将不等式g(f(x))>g(m﹣x)在[1,+∞)上恒成立,进行转化,即可求实数m的取值范围.【解答】解:(1)∵f(x)=ln(e x+1)﹣ax是偶函数,∴f(﹣x)=f(x),即f(﹣x)﹣f(x)=0,则ln(e﹣x+1)+ax﹣ln(e x+1)+ax=0,ln(e x+1)﹣x+2ax﹣ln(e x+1)=0,则(2a﹣1)x=0,即2a﹣1=0,解得a=.若g(x)=e x﹣be﹣x是奇函数.则g(0)=0,即1﹣b=0,解得b=1;(2)∵b=1,∴g(x)=e x﹣e﹣x,则g(x)单调递增;(3)由(II)知g(x)单调递增;则不等式g(f(x))>g(m﹣x)在[1,+∞)上恒成立,等价为f(x)>m﹣x在[1,+∞)上恒成立,即ln(e x+1)﹣x>m﹣x在[1,+∞)上恒成立,则m<ln(e x+1)+x,设m(x)=ln(e x+1)+x,则m(x)在[1,+∞)上单调递增。
2017-2018学年度高一上学期期中考试 数 学(总分150) 时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合}1,0,1{-=M ,{}1,0,2-=N ,则N M ⋂=( )A .{-1,0,1}B .{0,1}C .{1}D .{0} 2. 函数)13lg(13)(2++-=x xx x f 的定义域是( )A .),31(+∞-B .)1,31(- C. )31,31(- D.)31,(--∞3. 设221(1),()log (1).x x f x x x ⎧+≤=⎨>⎩ 则(1)(4)f f += ( )A. 5B. 6C. 7D. 8 4.判断下列各组中的两个函数是同一函数的为( )A .3)5)(3(1+-+=x x x y ,52-=x y ;B .x x f =)(,2)(x x g =;C.()f x =()F x = D .1()|25|f x x =-, 2()25f x x =- 5.()2333)2(ππ-+-的值为( )A.5B. 52-πC. 1-D.π25-6.如果集合A={x |a x 2+2x +1=0}中只有一个元素,则a 的值是( ) A .0 B .0 或1 C .1 D .不能确定7、已知幂函数()y f x =的图象过⎛ ⎝⎭,则它的一个单调递减区间是( ) A.),2(+∞ B .(),0-∞ C .(),-∞+∞ D .[)0,+∞8. 方程330x x --=的实数解落在的区间是( )A .[1,0]-B .[0,1]C .[1,2] D.[2,3] 9.若2()2(1)2f x x a x =+-+在(,4]-∞上是减函数,则a 的取值范围是 ( ) A .(,3]-∞- B .[3,)-+∞ C .(,5]-∞D .[3,)+∞10. 函数121()3xf x x ⎛⎫=- ⎪⎝⎭的零点个数为A .3B .2C .1D .011.函数 与 () 在同一坐标系中的图像只可能是( )12.若函数()y f x =定义域为R ,且满足f (-x )=-f (x ),当a ∈(-∞,0], b ∈(-∞,0]时,总有()()0f a f b a b->-(a ≠b ),若f (m +1)>f (2),则实数m 的取值范围是( )A .-3≤m ≤1B .m >1C .-3<m <1D .m <-3或m >1二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题5分,共20分)13.已知f (x )是定义在R 上的奇函数,当x >0时,f (x)=1+,则f (-2)=14.函数32+=-x a y (a >0且a ≠1)的图象必经过点 15.函数)2(log 22+=x y 的值域为 .16.关于函数f(x)=lg 21x x+(x>0,x ∈R),下列命题正确的是____ ____.(填序号)①函数y =f(x)的图象关于y 轴对称; ②在区间(-∞,0)上,函数y =f(x)是减函数; ③函数y =f(x)的最小值为lg2;④在区间(1,+∞)上,函数y =f(x)是增函数.x a y =x y alog -=1,0≠>a a 且三、解答题(本大题共6小题,满分70分,解答题写出必要的文字说明、推演步骤)。
2017-2018学年第一学期高一年级期中考试数学试卷命题人: 审题人:(考试时间:120分钟 试卷分值:150分)第Ⅰ卷一.选择题:本大题共12小题,每小题5分1.计算sin 600°=( )A .B .12-CD .122.设0.335log 2,log 2,a b c π===,则( )A .a c b >>B .b c a >>C .c b a >>D .c a b >>3.已知a 是第二象限角,(P x 为其终边上一点,且cos α=x 等于( ) AB .C .D .4.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( ) A .()0,1 B .()12, C .()23, D .()34-,5.对于定义在R 上的函数()f x ,则( )A .若()()22f f -=,则()f x 是偶函数B .若()()22f f -≠,则()f x 可能是偶函数C . 若()()22f f -=,则()f x 是奇函数D .若()()22f f -≠,则()f x 是非奇非偶函数6.已知2tan sin 3,02πααα⋅=-<<,则sin α等于( )A B . C .12 D .12- 7.已知函数()2f x x x x =-+,则下列结论正确的是( )A .()f x 是偶函数,递增区间是()0∞,B .()f x 是偶函数,递减区间是()1-∞-,C.()f x 是奇函数,递增区间是()∞-,-1D .()f x 是奇函数,递增区间是()-1,18.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.右图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油9.函数()412x x f x x ⎛⎫-=- ⎪⎝⎭的图像( )对称 A .关于原点 B .关于直线y x = C .关于x 轴 D .关于y 轴10.函数()()f x x R ∈是奇函数,且对于任意x 都有()()4f x f x +=,已知()f x 在[]02,上的解析式()()1,01sin ,12x x x f x x x π⎧-≤≤⎪=⎨<≤⎪⎩,则154146f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( ) A .716 B . 516 C .1116 D .131611.若函数()y f x =的图像上不同两点M N ,关于原点对称,则称点对[],M N 是函数()y f x =的对“优美点对”(点对[],M N 与[],N M 看作同一对“优美点对”),已知函数()ln 2,02,0x e x f x x x x ⎧>⎪=⎨+<⎪⎩,而此函数的“优美点对”有( )A .3对B .2对C .1对D .0对12.已知函数()10,0lg ,0x x f x x x -⎧≤=⎨<⎩,函数()()()()24g x f x f x m m R =-+∈,若函数()g x 有四个零点,则实数m 的取值范围是( )A .[)lg5,4B .[)34,C .[){}34lg5,D .(]4-∞,二.填空题:本题共4小题,每小题5分.13.函数ln y x 的定义域为14.幂函数()f x k x α=⋅的图像过点12⎛ ⎝⎭,则k α+= 15.已知函数()221x f x -=-在区间[]0m ,上的值域为[]0,3,则实数m 的范围是16.如图,已知正方形ABCD 的边长为6,边BC 平行于x 轴,顶点,,A B C 分别在函数13log a y x =,()232log log 1a a y x y x a ==>,的图像上,则是实数a 的值为三.解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知集合{}{}12,1A x x B x m x m =-≤≤=≤≤+(1)当2m =-时,求()R C A B(2)若B A ⊆,求实数m 的取值范围18.化简求值(1)()13022720.259π⎛⎫-+ ⎪⎝⎭ (2)()222lg5lg8lg5lg 20lg 23++⋅+ 19.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线20x y -=上,(1)求tan θ(2)求()()3sin cos 2sin sin 2πθπθπθπθ⎛⎫++- ⎪⎝⎭⎛⎫--- ⎪⎝⎭的值 20.某家用电器公司生产一款新型热水器,首先每年需要固定投入200万元,其次每生产1百台,需再投入0.9万元.假设该公司生产的该款热水器全年能全部售出,但生销售1百台需要付运费0.1万元.根据以往的经验,年销售总额()g x (万元)关于年产量x (百台)的函数为()214,040200800400.x x x g x x ⎧-≤≤⎪=⎨⎪>⎩ (1)将年利润()f x 表示为年产量x 的函数;(2)求该公司生产的该款热水器的最大年利润及相应的年产量.21.(本题满分12分)已知函数()122x x p f x q+-=+的定义域为R ,且()y xf x =是偶函数. (1)求实数,p q 的值;(2)证明:函数()f x 在R 上是减函数;(3)当132x ≤≤时,()()21320f mx x f x -++->恒成立,求实数m 的取值范围.22.已知函数()2f x x x a =-,期中a R ∈.(1)设0a >,函数()f x 在(),m n 上既有最大值又有最小值,请写出m 的取值范围(不必说明理由).(2)当01x ≤≤时,求()f x 的最大值.。
准考证号: 姓名: 班级:2017—2018年度高二年级第一学期期中考试数学试卷(100分)一、单项选择题 (每题3分,共30分)1.已知点A (0,x ),B (3,2-),且AB =5,则=x ( ) A.2- B.6 C.61或- D.26或-2.点A (4,3-),B (4,2)的对称中心的坐标是( )A.)4,21(B.)4,21(-C.)0,21(-D.)0,25(-3.已知直线l 经过点)0,2(-A 与点)3,5(-B ,则该直线的倾斜角是( ) A. 150 B. 135 C. 75 D. 454.下列哪对直线互相平行( )A.2:1-=y l 5:2=x lB. 12:1+=x y l 52:2-=x y lC. 1:1+=x y l 5:2--=x y lD. 13:1+=x y l 53:2--=x y l 5.若原点到直线08=++y ax 的距离为6,则a 的值是( ) A.37 B. 33± C. 37± D. 336.过点)1,0(,且一法向量为)3,2(的直线方程为( ) A.0332=-+y x B. 0332=++y x C. 0323=++y x D. 0323=-+y x7.方程064222=--++y x y x 表示的图形是( )A.以)2,1(-为圆心,11为半径的圆B.以)2,1(为圆心,11为半径的圆C.以)2,1(--为圆心,11为半径的圆D.以)2,1(-为圆心,11为半径的圆 8.直线01343:=++y x l 与圆9)1()1(22=-+-y x 的位置关系是( ) A. 相交 B.相离 C.相切 D.无法确定 9.过点)2,1(P 且与圆522=+y x 相切的直线方程是( ) A.052=++y x B.052=-+y x C.02=-y x D.052=-+y x 10.两直线01=+-y x 和05=-+y x 的交点坐标为( )A.)3,2(B.)3,2(-C. )3,2(-D. )3,2(--二.填空题(每题4分,共32分) 1.已知),5,1(),1,2(--B A 则AB =2.过点)2,4(),1,1(),0,0(N M O 的圆的方程是3.直线a x =与圆03222=--+x y x 相切,则=a4.与直线04=+-y x 平行,且截距为2-的直线的方程为5.x 轴上到直线01=+-y x 的距离为2的点的坐标是6.过点)1,0(和)3,0(且半径为1的圆的方程为7.圆066222=++++y x y x 的圆心坐标为8.直线05=++C y x 与圆2522=+y x 相切,则C =三.解答题(前五小题各6分,最后一题8分,共38分) 1.求过点)3,4(-且与直线035=-+y x 垂直的直线方程。
2017-2018学年高一上学期期中数学试题一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若{}21A x x ==,{}2230B x x x =--=,则A B = ( )A. {}3B. {}1C. ∅D. {}1- 2.下列函数中,既是奇函数又是增函数的为 ( )A. 1y x =+B. 2y x =-C. 1y x= D. ||y x x = 3.若0<a ,则函数1)1(--=x a y 的图象必过点 ( )A .(0,1) B.(0,0) C.()0,1- D.()1,1-4.设4log , 2 ,3.03.03.02===c b a ,则 ( )A. b a c <<B. a b c <<C. c a b <<D. a c b <<5.函数()f x 在区间()2,3-上是增函数,则(4)y f x =+的递增区间是 ( )A .()2,7B .()2,3-C .()6,1--D .()0,5 6.若方程()20f x -=在(,0)-∞内有解,则()y f x =的图象是 ( )7.已知函数)30(42)(2<<++=a ax ax x f ,其图象上两点的横坐标1x ,2x 满足21x x <,且a x x -=+121,则有 ( )A .)()(21x f x f > B.)()(21x f x f = C.)()(21x f x f < D.)(),(21x f x f 的大小不确定 8.设函数)(x f 是定义在R 上的奇函数,且对任意R ∈x 都有)4()(+=x f x f ,当 )02(,-∈x 时,x x f 2)(=,则)2011()2012(f f -的值为 ( )A.21- B.21 C. 2 D.2- 9.对任意实数,x y ,定义运算x y ax by cxy *=++,其中,,a b c 是常数,等式右边的运算是通常的加法和乘法运算.已知123,234*=*=,并且有一个非零常数m ,使得对任意实数x ,都有x m x *=,则m 的值是 ( )A.4B.4-C.5-D.610.设()31x f x =-,c b a <<且()()()f c f a f b >>,则下列关系中一定成立的是( )A .33c b >B .33b a >C .233>+a cD .233<+a c 二、填空题:本大题共7小题,每小题4分,共28分.11.已知111f x x ⎛⎫= ⎪+⎝⎭,则()2f =_____________.12.函数y =的定义域为 . 13.函数()()(2)f x x a x =+- 为偶函数,则实数a =14.已知函数()1).f x a =≠若()f x 在区间(]0,1上是减函数,则实数a 的取值范围是 .15.关于x 的一元二次方程0152=--ax x 有两个不同的实根,一根位于区间)0,1(-,另一根位于区间)2,1(,则实数a 的取值范围为 . 16.已知函数22,1()45,1x x f x x x x +≤⎧=⎨-+>⎩,若()0f x a -=恰有两个实数根,则a 的取值范围是 .17.设[]x 表示不超过x 的最大整数,如[][]1.51, 1.52=-=-,若函数()()0,11x x a f x a a a=>≠+,则()()()1122g x f x f x ⎡⎤⎡⎤=-+--⎢⎥⎢⎥⎣⎦⎣⎦的值域为 . 三、解答题:本题共5大题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)计算:(Ⅰ)1022-(Ⅱ)212lg 2lg 52⨯+⨯19.(本小题满分14分)已知集合41242x A x -⎧⎫=≤<⎨⎬⎩⎭,{}211180B x x x =-+<. (Ⅰ)分别求()R C A B ,()R C B A ; (Ⅱ)已知{}1+<<=a x a x C ,若B C ⊆,求实数a 的取值集合.20.(本小题满分14分)已知函数()42x xf x a b =-⋅+,当1x =时,()f x 有最小值1-; (Ⅰ)求,a b 的值; (Ⅱ)求满足()0f x ≤的x 的集合A ;21.(本小题满分15分)已知函数()x b b ax x f 22242-+-=,()()21a x x g ---=,()R b a ∈, (Ⅰ)当0=b 时,若()x f 在[)+∞,2上单调递增,求a 的取值范围;(Ⅱ)求满足下列条件的所有实数对()b a ,:当a 是整数时,存在0x ,使得()0x f 是()x f 的最大值,()0x g 是()x g 的最小值.22.(本小题满分15分)已知函数2()(0)x ax b f x x x++=≠是奇函数,且满足(1)(4)f f = (Ⅰ)求实数a 、b 的值;(Ⅱ)试证明函数()f x 在区间(0,2]单调递减,在区间(2,)+∞单调递增; (Ⅲ)是否存在实数k 同时满足以下两个条件:①不等式()02k f x +<对(0,)x ∈+∞恒成立; ②方程()f x k =在[]61x ,∈--上有解.若存在,试求出实数k 的取值范围,若不存在,请说明理由.考试答案若0=a ,()x x f 4-=,则()x f 在[)+∞,2上单调递减,不符题意。
2017—2018学年度上学期高一年期中考数学试卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集{}5,4,3,2,1=U ,集合{}=12A ,,{}5,4,1=B ,则B C A U ⋂=( ) A. {}3,2,1 B. {}2 C. {}3 D. {}3,2 2.设{}{}1,2,3,,,M N e g h ==,从M 到N 的四种对应方式如图,其中是从M 到N 的映射的是()ABCD3.下列函数中不能..用二分法求零点的是( ) A .13)(-=x x fB .||)(x x f =C . 3)(x x f =D .x x f ln )(=4.[])81(log log log 346的值为( )A . 0B .1C . 2D . -15.设()f x 是定义在R 上的奇函数,且(2)()f x f x +=,当[)0,1x ∈时,()24f x x =-则( 2.5)f -的值为( )A .-3B .52-C .12-D .36. 已知函数1()3()3x xf x =-,则()f x ( )A. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数7.为了得到函数2ln(1)y x =+-的图象,只需把函数ln y x =的图象上所有点( )。
A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位 8. 如下图所示,向高为H 的水瓶,,,A B C D 同时以等速注水,注满为止;若水深h 与注水时间t 的函数图象如右图,则水瓶的形状是( )9. 设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,则q p +等于( ) A. 2- B. 1- C. 1 D.2 10.设z y x ,,为正数,且zyx432==,则( )A. z x y 423=>B. y z x 342>>C. z x y 423>>D. y z x 342>= 11.根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与MN最接近的是( ) (参考数据:48.03lg ≈)A.3310B.5310C.7310D.931012. []x 表示不超过x 的最大整数,定义函数()[]f x x x =-.下列四个结论:①函数()f x 的值域为[]0,1;②方程()12f x =有无数个解;③函数()f x 为周期函数;④函数()f x 是R 上的增函数。
则正确的结论有( )个 A. 1 B. 2 C. 3 D. 4二、填空题:本大题共4小题,每小题5分,共20分。
把答案填在答题卡的相应位置。
13. 函数12+=-x ay (0>a 且1≠a )的图象恒过定点A ,则A 的坐标为 ;14. 函数12)5()(---=m x m m x f 是幂函数,且当),0(+∞∈x 时,)(x f 是增函数,则m 的值为 ; 15.函数32)(2++-=x x x f 的单调递减区间是 ;16.已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是 ;三、解答题:本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
17. (本题满分10分)(Ⅰ)计算:2lg 5lg 2lg50+⋅; (Ⅱ)设3436xy ==,求21x y+的值。
18. (本题满分12分)已知全集为R ,集合}2733|{≤≤=xx A ,2{|log 1}B x x =>. (Ⅰ)分别求B A ⋂,A B C R ⋃)(;(Ⅱ)已知集合{}0))(1(<--=a x x x C ,若C A ⊆,求实数a 的取值范围.19.(本题满分12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:⎪⎩⎪⎨⎧>≤≤-=)400(80000)4000(21400)(2x x x x x R ,其中x 是仪器的月产量. (Ⅰ)将利润表示为月产量x 的函数(用)(x f 表示);(Ⅱ)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)20. (本题满分12分)集合A 是由具备下列性质的函数()f x 组成的:①函数()f x 的定义域是[)0,+∞;②函数()f x 的值域是[)2,4-;③函数()f x 在[)0,+∞上是增函数,试分别探究下列两小题:说明理由;(Ⅱ)对于(Ⅰ)中你认为属于集合A 的函数()f x ,不等式()()()221f x f x f x ++<+ 是否对于任意的0x ≥恒成立?若成立,请给出证明;若不成立,请说明理由。
21. (本题满分12分)定义在(1,1)-上的函数()f x 满足:①对任意,(1,1)x y ∈-都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭;②当0x <,()0f x >.(Ⅰ)判断函数()f x 的奇偶性,并说明理由;(Ⅱ)判断函数()f x 在(0,1)上的单调性,并说明理由; (Ⅲ)若21)51(-=f ,试求111()()()21119f f f --的值.22. (本题满分12分)若在定义域内存在实数0x ,使得()()()0011f x f x f +=+成立,则称函数有“飘移点”0x . (Ⅰ)函数()1f x x=是否有“飘移点”?请说明理由; (Ⅱ)证明函数()22xf x x =+在()01,上有“飘移点”;(Ⅲ)若函数()2lg 1a f x x ⎛⎫= ⎪+⎝⎭在()0,+∞上有“飘移点”,求实数a 的取值范围.泉州七中2017—2018学年度上学期高一年期中考数学试卷答案一、BCBAD,ACDAD,DB二、13. )2,2( 14. 3 15. []3,1 16. 10 三、17. 解:(Ⅰ)原式=2(lg 5)(1lg 5)lg 2++………………………………………2分 =2(lg 5)lg 2lg 2lg 5++=(lg5lg 2)lg5lg 2++………………………………………3分 =lg5lg 2+=1………………………………………………………………5分 (Ⅱ)∵3436xy==, ∴34log 36,log 36x y ==………………7分∴363611log 3,log 4x y==……………………………………8分 ∴21x y+=23636362log 3log 4log (34)1+=⨯=……………10分 18. 解:(Ⅰ)}31|{}2733|{≤≤=≤≤=x x x A x………………………1分}2|{}1l o g |{2>=>=x x x x B ,………………………2分 所以{}32≤<=⋂x x B A ………………………4分{}{}{}3312)(≤=≤≤⋃≤=⋃x x x x x x A B C R ……………………6分(Ⅱ)①当1<a 时,{}1<<=x a x C ,C A ⊆不成立………………8分②当1=a 时,C =∅,此时C A ⊆;…………………9分 ③当1a >时,若C A ⊆,则1a 3<≤;…………………11分 综上,可得a 的取值范围是[]3,1……………12分19.解:(Ⅰ)由每月产量x 台,知总成本为20000100x +……2分从而()()()21300200000400210060000400x x x f x x x ⎧-+-≤≤⎪=⎨⎪-+>⎩……6分(Ⅱ) ○1当()()210400,300250002x f x x ≤≤=--+时()max 30025000x f x ==时,……9分○2当()40010060000x f x x >=-+时,为减函数 ()100400600002000025000f x ∴<-⨯+=<……11分答:当月产量为300台时,利润最大,最大利润25000元。
……12分20. 解:(Ⅰ)∵函数[)0,+∞,但值域为[)+∞-,2 。
∴()1f x A ∉ ………………2分对于()2f x 定义域为[)0,+∞,满足条件①.………3分而由0x ≥知(]10,12x ⎛⎫∈ ⎪⎝⎭,∴[)1462,42x⎛⎫-⋅∈- ⎪⎝⎭满足条件②………4分又∵()[)1101,0,22xu x ⎛⎫<<∴=+∞ ⎪⎝⎭在上减函数,∴()2f x 在[0,+∞)上是增函数,满足条件③,∴()2f x 属于集合A .…………………………….6分(Ⅱ)由于()2f x 属于集合A ,原不等式211114646246222x x x ++⎡⎤⎛⎫⎛⎫⎛⎫-⋅+-⋅<-⋅⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦对任意0x ≥总成立。
……8分 整理为:31022x⎛⎫-⋅< ⎪⎝⎭………….10分∵对任意10,02xx ⎛⎫≥> ⎪⎝⎭,∴原不等式对任意0x ≥总成立………….12分21.解:(Ⅰ)令0x y ==,则(0)(0)(0)f f f +=,得(0)0f =,………………2分 令y x =-,则()()(0)0f x f x f +-==,所以()()f x f x -=-,()f x 是(1,1)-上的奇函数………………4分 (Ⅱ)任取1201x x <<<,12121212()()()()()1x x f x f x f x f x f x x --=+-=-其中,120x x -<,1201x x <<,1210x x ->,………………6分 所以121201x x x x -<-,121201x x f x x ⎛⎫-> ⎪-⎝⎭,故12()()0f x f x ->,12()()f x f x >因此()f x 在(0,1)上单调递减. ………………8分 (Ⅲ)111111315()()()()()()()()()211192111971913f f f f f f f f f --=+-+-=+-= …………10分因为1)135()51()51(-==+f f f ,所以1)191()111()21(-=--f f f …………12分 22. 解:(Ⅰ)假设函数1()f x x =有“飘移点”0x ,则001111x x =++即20010x x ++=, 此方程无实根,矛盾,所以函数1()f x x=没有飘移点。