09-10-1-B-概率与数理统计
- 格式:doc
- 大小:101.50 KB
- 文档页数:8
山东建筑大学历年概率论试题汇总···········································································································装 订线··································································································山东建筑大学试卷 共 3 页 第 1 页2009至2010第 1 学期 课程名称 概率论与数理统计 试卷 (A ) 专业: 理工科各专业考试性质: 闭卷 考试时间 120 分钟 题号 一 二 三 总分 分数一、 填空题(每题3分,共24分)1、 掷两颗骰子,已知两颗骰子的点数之和为6,则其中有一颗为1点的概率为______.2、 若()0.4P A =,7.0)(=⋃B A P ,A 和B 独立,则()P B = 。
第二章随机变量故 a = e-\2.3解:用X表示甲在两次投篮中所投中的次数,X~B(2,0.7)用Y表示乙在两次投篮中所投中的次数,Y~B(2,0.4)(1)两人投中的次数相同P(X=Y}= P{X=O,Y=O}+ P{X=1/Y=1) +P{X=2/Y=2}=(7"0.7°0.32 x C:0.4°06 + C;0.7'0" X^'O.4'0.61+(7;O.72O.3O X£?;0.420.6° = 0.3124 (2)甲比乙投中的次数多P{X>Y}= P{X=1,Y=O}+ P(X=2/Y=0} +P(X=2#Y=1)=C;0.7i0.3' x (7"0.4°0.62 + C:0.72().3°X (7"0.4°0.62 + C"0.720.3° x。
:0.4’0.6’ = 0.56282.4 解:(1) P{1^X^3}= P(X=1}+ P(X=2}+ P{X=3}=- + —+ - = -15 15 15 5P{X =0} =1.5°0!(2) P(O.5<X<2.5}=P{X=1}+ P{X=2}= 4 + 4 = -1 12.5 解:(1) P{X=2,4,6,…}二兰 + ^ + 二 + …上二血 ~~=-22 24 26 22k 5 . I 31 -------4 (2) P(X^3}=l-P{X<3}=l-P{X=l)-P(X=2} = l-|-i = l2. 6解:设A ,表示第i 次取出的是次品,X 的所有可能取值为0, L 2P{X = 0} = p {不瓦兄*} = P (不)P (瓦I 君)P (存I 不瓦)P (瓦I 不瓦砌= 18 17 16 15 12 - X -- XX20 19 18 17 19P{X =1} = P{A] 瓦瓦瓦}+ P {忘否瓦}+ P {&瓦&瓦}+尸{不买瓦&}2 18 17 16 18 2 17 16 18 18 2 16 18 17 16 2 32 -20 19 18 17 20 19 18 17 20 19 18 17 20 19 18 17 ~95 12 323 P{X =2} = l-P{X =0}-P{X =l} = i ----------- ---- =—19 95 952.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)P(X 2 3) = P(X = 3) + P(X = 4) = C :0.430.6' + C :0.4,0.6° = 0.1792⑵设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)P(X 2 3) = P(X = 3) + P(X = 4) + P(X = 5) =+ C :0.4,0.6' + (7^().45().6° =0.317442.8 (1) X 〜P0)=P(O.5X3)=P(1.5)(2)X〜P(入)=P(0.5X4)=P(2)2°21P{X >2} = l-P{X =0}-P{X = !} = !- —e-2- — e-2 = l-3e-22.9解:设应配备m名设备维修人员。
《概率论与数理统计》课程自学指导书《概率论与数理统计》课程自学指导书前言.. 《概率论与数理统计》是城市规划专业和地理信息系统专业的专业必修课。
《概率统计》教材系统阐述了概率论和数理统计的基本内容、理论和应用方法。
概率统计是研究随机现象客观规律的数学学科,它的应用非常广泛,并具有独特的思维和方法。
通过概率论的学习能使学生了解概率与数理统计的基本概念和基本理论,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
通过本课程的学习,能够为学生学习后继课程及进一步提高打下必要的数学基础。
其内容可分为三大部分。
第一部分概率论部分,包括第一、二、三、四、五章。
作为基础知识,为读者提供了必要的理论基础。
第二部分数理统计部分,包括第六、七、八、九章,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析。
第三部分随机过程部分,主要讨论了平稳随机过程,还介绍了马尔可夫过程。
本指导书是作为函授学员在集中授课后,指导自学而编制的。
内容较为简明扼要。
主要是为了让学员能够抓住要领,掌握重点,理解难点,从而达到能够融会贯通、灵活掌握概率统计的基本概念、基本理论从而解决实际问题的目的。
本指导书的主要参考书目:1.景泰等编。
概率论与数理统计.上海科学技术文献出版社,1991.2.玉麟主编。
概率论与数理统计.复旦大学出版社,1995。
3.大茵,陈永华编。
概率论与数理统计。
浙江大学出版社.1996本课程的考核内容以教学大纲为依据,注重基本概念、基本理论的掌握和应用的考核。
主要考核方式为笔试。
第一章概率论的基本概念一、内容概述 #本章介绍了概率论的基本概念:随机试验、样本空间、随机事件、频率与概率,讨论研究等可能概型问题、条件概率及独立性问题。
二、教学目的要求 #(1)理解并掌握概率论的基本概念。
(2)理解掌握等可能概型问题。
(3)理解并掌握条件概率。
(4)了解独立性。
三、重、难点内容解析 #1.随机试验,样本空间,概率的概念。
第1页 共30页淮 海 工 学 院09 - 10 学年 第2学期 概率论与数理统计 试卷(A闭卷)答案及评分标准1.一袋中有6个白球,4个红球,任取两球都是白球的概率是-----------------( B ) ()A 1/2 ()B 1/3 ()C 1/4 ()D 1/6 2.设随机变量~(3,)X b p ,且{1}{2}P X P X ===,则p 为---------------(A )()A 0.5 ()B 0.6 ()C 0.7 ()D 0.83.设),(Y X 的联合概率密度为(,)f x y ,则边缘概率密度()X f x =----------( C )()A (,)f x y dx +∞-∞⎰()B (,)xf x y dx +∞-∞⎰()C (,)f x y dy +∞-∞⎰()D (,)yf x y dy +∞-∞⎰4.设X 是一随机变量,则下列各式中错误的是----------------------------------( C )()A [()]()E D X D X = ()B [()]()E E X E X = ()C [()]()D EX E X = ()D [()]0D E X =5.已知()0E X =,()3D X =,则由切比雪夫不等式得{||6}P X ≥≤------( B )()A 1/4()B 1/12 ()C 1/16 ()D 1/366.设总体()21,2XN ,12,,,n X X X 为X 的一个样本,则---------------( C )()A()10,12X N - ()B ()10,14X N - ()C ()0,1N ()D ()0,1N7.设总体2~(,)X N μσ,2,μσ未知,n X X X ,,,21 为来自X 的样本,样本均值为X ,样本标准差为S ,则μ的置信水平为α-1的置信区间为-------( D )()A 2()X z α±()B 2((1))X z n α±-()C 2(())X n α±()D 2((1))X n α- 8.设总体2~(,)X N μσ,2,μσ未知,检验假设22220010:,:H H σσσσ=≠的拒绝域为--------------------------------------------------------------------------------------( A )()A 2222122(1)(1)n n ααχχχχ-≥-≤-或 ()B 22(1)n αχχ≥-()C 22221(1)(1)n n ααχχχχ-≥-≤-或 ()D 221(1)n αχχ-≤-二、填空题(本大题共4小题,每题4分,共16分)1.设,,A B C 表示三个随机事件,则事件“,,A B C 不都发生”可用,,A B C 的运算关系表示为ABC .2.随机变量X 的数学期望()2E X =,方差()4D X =,则2()E X = 8第2页 共30页3.设X Y 和相互独立,且()~0,1X U ,Y 的概率密度为121,0()20,y Y e y f y -⎧>⎪=⎨⎪⎩其他,则(,)X Y 的概率密度为121,(0,1),0(,)20,y ex y f x y -⎧∈>⎪=⎨⎪⎩其他.4.设n X X X ,,,21 是来自正态总体),(~2σμN X 的一个简单随机样本,2,X S 分别为样本均值和样本方差,则()E X =μ,2()E S =2σ.三、计算题(本大题共4小题,每题7分,共28分)1.已知()()0.4,0.7P A P AB ==,分别在下列两种条件下,求()P B 的值.(1)若A 与B 互不相容;(2)若A 与B 相互独立. 解 由加法公式()()()()P AB P A P B P AB =+- ------------2'(1)A 与B 互不相容,即()0AB P AB =∅⇒=,代入加法公式得,()0.70.40.3P B =-= ------------2' (2)A 与B 相互独立,即()()()P AB P A P B =代入加法公式得,0.70.4()0.4()P B P B =+-,得()0.5P B = ------------3'2.已知随机变量X 的概率密度函数为2,01,()0,,ax x f x ⎧<<=⎨⎩其他 求(1)常数a ;(2){0.3}.P X > 解 (1)120()1,13f x dx ax dx a +∞-∞=∴=∴=⎰⎰ -----------------4'(2) 11230.30.3{0.3}30.973.P X x dx x >===⎰-----------------3'3.已知随机变量~(0,1)X U ,求随机变量ln Y X =的概率密度函数)(y f Y . 解 1,01,()0,X x f x <<⎧=⎨⎩其他,---------------------2'1()ln ,()0y g x x g x x'===>,()g x 在(0,1)严格单调增, 反函数(),()yyx h y e h y e '==={}{}min (0),(1),max (0),(1)0.g g g g αβ==-∞==----------------------2'[()]|'()|,,()0,X Y f h y h y y f y αβ⋅<<⎧=⎨⎩其他,,0,0,0y e y y ⎧<=⎨≥⎩ ---------------------3'4.设随机变量X求(1)(),X Y 的分布律;(2){3}.P X Y += 解 (1)-------------------5'(2){3}{1,2}{2,1}P X Y P X Y P X Y +====+==0.210.210.42.=+= ---------------------2'第3页 共30页四、应用题(本题8分)某商店将同牌号同瓦数的一、二、三级灯泡混在一起出售,三个级别的灯泡比例为1:2:1,出售灯泡时需试用. 一、二、三级品在试用时被烧毁的概率分别为0.1, 0.2, 0.3. 现有一顾客买一灯泡试用正常,求该灯泡为三级品的概率. 解: 设1A =“一级品”,2A =“二级品”,3A =“三级品”,B =“灯泡正常”,------------------2'123123121(),(),(),444(|)0.9,(|)0.8,(|)0.7,P A P A P A P B A P B A P B A ====== ------------------2' 313112233()(|)(|)()(|)()(|)()(|)P A P B A P A B P A P B A P A P B A P A P B A ∴=++10.940.281.1210.90.80.7444⨯==⨯+⨯+⨯ ----------------4'五、计算题(本题8分)设随机变量X 在[2,5]上服从均匀分布,现对X 进行三次独立观测,试求其中至少有一次“观测值大于3”的概率.解 1,25,()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他,---------------2'5312{3}33p P X dx =>==⎰ ---------------2'设Y 表示三次独立观测中“观测值大于3”的次数,则2~(3,)3Y b ---------------2'3126{1}1{0}1()327P Y P Y ∴≥=-==-= -----------------2'六、计算题(本题8分)设总体X 的概率密度为1,0,(;)0,0.xe xf x x θθθ-⎧>⎪=⎨⎪≤⎩其中0>θ为未知参数,12,,,n X X X 为来自X 的样本,12,,,n x x x 为相应的样本值,(1)求θ的最大似然估计量1ˆθ; (2)试问1ˆθ与21ˆ2X X θ=-是不是θ的无偏估计量?当1n >时,上述两个估计量哪一个较为有效?解 (1) 似然函数112111()(;),,,,0nii x nnin ni i L f x ex x x θθθθ=-==∑==>∏∏ -------2'11ln ()ln nii L n x θθθ==--∑,令21ln ()10()ni i d L n x d θθθθ==-+=∑,解得11ˆni i x x n θ===∑, 所以θ的最大似然估计量为1ˆ.X θ= ----------------2' (2) 1ˆ()(),E E X θθ== 21ˆ()(2)2,E E X X θθθθ=-=-= ∴估计量12ˆˆθθ与都是θ的无偏估计量。
概率论与数理统计试题 A 卷 2007-2008学年 第二学期 2008.06一、填空题(每空3分,共18分)1. 事件A 发生的概率为0.3,事件B 发生的概率为0.6,事件A ,B 至少有一个发生的概率为0.9,则事件A ,B 同时发生的概率为____________2. 设随机向量(X ,Y )取数组(0,0),(-1,1),(-1,2),(1,0)的概率分别为,45,41,1,21cc c c 取其余数组的概率均为0,则c =__________3. 设随机变量X 在(1,6)上服从均匀分布,则关于y 的方程012=+-Xy y 无实根的概率为_______________. 4. 若)1,0(~N X ,)1,0(~N Y ,且X 与Y 相互独立,则Y X Z +=服从______________5. 设总体X 的概率密度为⎩⎨⎧<<+=其他,0,10,)1();(x x x f θθθ,n X X X ,,21 为来自总体X 的一个样本,则待估参数)(-1>θθ的最大似然估计量为_____________. 6. 当2σ已知,正态总体均值μ的置信度为α-1的置信区间为(样本容量为n )___________二、选择题(每题3分,共18分)1. 对任意事件A 与B ,下列成立的是-------------------------------------------------------------( ) (A ))0)((),()|(≠=B P A P B A P (B ))()()(B P A P B A P += (C ))0)((),|()()(≠=A P A B P A P AB P (D ))()()(B P A P AB P =2. 设随机变量X ),(~p n B 且期望和方差分别为48.0)(,4.2)(==X D X E ,则----( )(A) 3.0,8==p n (B) 4.0,6==p n (C) 4.0,3==p n (D ) 8.0,3==p n 3. 设随机变量X 的分布函数为F X (x ),则24+=X Y 的分布函数F Y (y )为-------------( ) (A) 1()22X F y + (B) 1(2)2X F y +(C) (2)4X F y - (D )(24)X F y -4. 若随机变量X 和Y 的相关系数0=XY ρ,则下列错误的是---------------------------------( ))1(~-n t S X (A) Y X ,必相互独立 (B) 必有)()()(Y E X E XY E = (C) Y X ,必不相关 (D ) 必有)()()(Y D X D Y X D +=+5. 总体)1,0(~N X ,n X X X ,,21 为来自总体X 的一个样本,2,S X 分别为样本均值和样本方差,则下列不正确的是--------------------------------------------------------------------( )(A) ),0(~n N X n (B) (C) (D )6. 设随机变量)2,1( =k X k 相互独立,具有同一分布, ,0=k EX ,2σ=K DX ,2,1=k ,则当n 很大时,1nkk X=∑的近似分布是--------------------------------------------------------( ) (A) 2(0,)N n σ (B) 2(0,)N σ (C) 2(0,/)N n σ(D) 22(0,/)N n σ三、解答题(共64分)1. (本题10分)设一批混合麦种中一、二、三等品分别占20%、70%、10%,三个等级的发芽率依次为0.9,0.7,0.3,求这批麦种的发芽率。
【北邮考研辅导班】北邮数学2019考研专业目录考研科目考研大纲参考书启道北邮考研辅导班,为考生提供全面得北邮考研信息,包含招生目录,考试科目及参考书,招生简章,报考条件,考研经验,考研分数线与报录比,考研真题及答案等,欢迎来砸窗!【北邮考研辅导班】-数学考研专业目录【北邮考研辅导班】-数学考研考试科目通过招生目录可以看出,数学专业考研分为27个研究方向,考试初试科目为:①101思想政治理论②201英语一③601数学分析④811概率论⑤816高等代数启道北邮专业课辅导,专注北邮考研辅导,专业辅导北邮热门专业课,如:801通信原理,804信号与系统,802电子电路,803计算机学科基础综合,807软件工程专业综合,805物理学,806电磁场理论等等,内部师资辅导,经验丰富,夯实基础,选启道,直击北邮!【北邮考研辅导班】-数学考研大纲601数学分析一、考试目的要求考生比较系统地理解和掌握数学分析的基本概念、基本理论和基本方法。
同时,考察考生的逻辑推理能力、计算能力和运用所学知识分析问题和解决问题的能力。
二、考试内容1、实数集与函数实数的概念,实数的性质,绝对值与不等式,区间与邻域,有界集与无界集,上确界与下确界,确界原理;函数的定义,函数的表示法,分段函数,有界函数,单调函数,奇函数与偶函数,周期函数。
2、数列极限极限概念,收敛数列的性质(唯一性,有界性,保号性,单调性),数列极限存在的条件(单调有界准则,迫敛性法则,柯西准则)。
3、函数极限函数极限的概念,单侧极限的概念,函数极限的性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性),函数极限存在的条件(归结原则(Heine定理),柯西准则),两个重要极限,无穷小量与无穷大量,阶的比较。
4、函数连续一点连续的定义,区间连续的定义,单侧连续的定义,间断点及其分类,连续函数的局部性质及运算,闭区间上连续函数的性质(大小值性、有界性、介值性、一致连续性),复合函数的连续性,反函数的连续性,初等函数的连续性。
西南交大09~10第二学期《概率论与数理统计B》期末试题1西南交通大学2021-2021学年第(二)学期考试试卷班级学生人数姓名课程代码2100031课程名称概率论与数理统计B考试时间120分钟密封装订线密封装订线密封装订线题号一二三四五六七八九十总成绩得分批改老师签名考生注意:1.请将班级、学号、姓名填写清楚;2.所有题目的答案写在后面。
一.判断题(对的打“√”,错的打“?”,每题2分,共10分)1.如果a和B是随机事件,那么一定有p(AB)?1.p(ab)。
(2)假设事件a和B 彼此独立,而P(a)?0.1,p(b)?0.2,则a和B不能彼此不兼容(3)让样本x1、X2和X3来自群体n(?,),和那就不知道了221?2?xi?13i是一个统计量.()4.如果e(x2)?那么一定有p(x×0)?1. ()5. 假设二维随机变量(x,y)的分布函数为f(x,y),那么f(1,2)?1.p(x?1,y?2)。
()二.选择题(每题3分,共30分)1.如果x和y是任意两个随机变量,cov(x,y)已知吗?0,必须有()(a)x与y相互独立(b)d(xy)?dxdy(c)e(xy)?exey(d)d(x?y)?dx?dy2.下列各函数中可以作为某个随机变量的分布函数的是()(a)f(x)?1(b)f(x)?sinx1?x2?1?(c)f(x)??1?x2??1?0x?0x?0?(d)f(x)??1.2x?0? 1x?0x?0 3. 如图所示,构成系统的四个电子元件的可靠性为p,每个元件能否正常工作是相互关联的2134独立的,则系统的可靠性为();(a)p4(b)p3?p2(c)p3?2p4(d)2p3?p44.设随机事件a,b互不相容,则必有()(a) p(a)?1.p(b)(b)p(a?b)?1(c)p(ab)?p(a)p(b)(d)p (ab)?一5.设x1,x2,?,xn为来自正态总体n(0,1)的简单随机样本,x和s2分别为样本均值和样本方差,则()nxn?t(n?1)(b)?xi2??2(n?1)(a)si?1(c)x?n(0,1)(d)nx?n (0,1)6.已知x~e(),且y?2x?1,利用切比雪夫不等式估计p(0?y?10)()(a)?991616(b)?(c)?(d)?25252525127.设随机变量x和y相互独立,且都服从[0,1]区间上的均匀分布,则服从相应区间或区域上的均匀分布的随机变量是()(a) x2(b)x?y(c)x?Y(d)(x,Y)8。
4.设X i ,S 2表示来自总体 N (7,「2B (X 1_ X 2)_(»1 _ 巴)~ N(0,1)第六章样本及抽样分布•、选择题1.设X i ,X2^\\,X n 是来自总体X 的简单随机样本,则X 「X 2,川,X n 必然满足() A.独立但分布不同;B.分布相同但不相互独立;C 独立同分布; D.不能确定2 •下列关于“统计量”的描述中,不正确的是( ).A •统计量为随机变量 B.统计量是样本的函数C.统计量表达式中不含有参数D •估计量是统计量 3下列关于统计学“四大分布”的判断中,错误的是(1A.若 F ~ F(q,n 2),则 ~F(n 2,njB •若 T ~t(n),贝UT 2~ F(1, n)22C .若 X ~ N(0,1),则X ~ x (1)n、(X —)2j二2D .在正态总体下 2~ x (n -1))的容量为n ,的样本均值和样本方差 (i = 1,2),且两总体相互独立,则下列不正确的是(_ 2 2A.令~卩(口 -1小2 -1)C.X1 p ~t(nJS1 / . n1 D.2仇一1金〜x2(n2-1)■、二25.设X1,X2,I山X n是来自总体的样本1 n—,则H/Xi-X)2是()A.样本矩B.二阶C.二阶中心矩D.统计量6X1,X2,IH,X n是来自正态总体N(0,1)的样本,X,S2分别为样本均值与样本方差,则).XY =a(X 1 2X 2)9设X 1,X 2,HI,X n 是来自正态总体 N(0,22)的简单随机样本,若2 2 2b(X 3 X 4 X 5) c(X 6 X 7 X 8 X 9)服从 X 分布,a,b, c 的值分别为(A. X 〜N (0,1)B. nX 〜N (0,1)C.2 2、X i ~ x (n)7.给定一组样本观测值 X 1,X2^|,X 9 且得X i =45〕X 2= 285,则样本方差S 2i =1的观测值为( ).A. 7.5B.60C.2065D.8设X 服从t(n)分布, P{| X |「} =a ,则 P{X ::: -,}为().A.B. 2aC. — ■ aD.A. 8‘12‘16 B . 20'12'16C. 10设随机变量X 和Y 相互独立,且都服从正态分布 丫1,丫2,…,丫9分别是来自两总体的简单随机样本 A. t(9) B. t(8) 3‘3‘3D.2‘3‘4 N(0,32),设 X 1,X 2, ,X g 和 ,则统计量U 二 C. N(0,81) 服从分布是( D. N(0,9)).】、填空题1.在数理统计中, 称为样本.2 .我们通常所说的样本称为简单随机样本,它具有的两个特 占 八、、设随机变量X 1,X 2,…,X n 相互独立且服从相同的分布,EX -',DX 二X i ,则 EX 二 ;DX 二4.(X 1,X 2,…,X 10)是 来自总 体 X ~ N(0,0.32)的 个样本,1.446C) 注:X ~ N(0, ^),n「102P抵X iJ 45.已知样本X i,X2,…,X i6取自正态分布总体N(2,1) , X为样本均值,已知P{X _讣=0.5 , 则,________________ .10.6设总体X~N(〜;「2) , X是样本均值,S n是样本方差,n为样本容量,则常用的随2机变量(n ~12)Sn服从________________ 分布.■.第六章样本及抽样分布答案一、选择题1.( C )2.( C) 注:统计量是指不含有任何未知参数的样本的函数3.( D)对于答案D,由于------- ~ N(0,1),i =1,2,IH,n,且相互独立,根据2分布的定义有CTn、(X i -叮4 2 ~x2( n)5.(D)X~t(n-1)才是正确的S n-12 兰1}=2P{X —12 兰1}—14.(C) 注:~ t(n 1-1)才是正确的=2P 谏-12 2 「5 乞1 2 “5 i;.;—1 =2::」()T9~29由t 分布的定义有999解:' X i ~ N(0,92)= ' X i 9~ N 0,1Y 2y /y9' X i 9---------- 〜t 992 、Y 2 81i 吕填空题1. 与总体同分布,且相互独立的一组随机变量2. 代表性和独立性4. 0.15.26. 2(n-1)7.(A ) S 29 Zi 49 -1X i -X92 — 2X i-9 Xi 49一1285-9 25 =7.58. (A) 9. (B) 解: 由题意可知X iX 3 X 4 X 5~ N(0,12),2X 2 ~ N (0,20), X 7 X 8 X 9 ~ N(0,16),且相互独立,因此2 2 2(X 1 +2X 2 )十。
课程编号A073004 北京理工大学2009-2010学年第一学期
2008级概率论与数理统计试题(B 卷)
班级 学号 姓名
(本试卷共8页,七个大题,满分100分;第2页空白纸及每张纸的背面为草稿纸,空白草稿纸不得撕下)
附表: 2.1315.)15(025.0=t .7531.1)15(05.0=t 0.025(16) 2.1199.t =
0.05(16) 1.7459.t =
一、(12分)某厂卡车运送防“甲流”用品下乡,顶层装10个纸箱,其中5箱民用口罩、3箱医用口罩、2箱消毒棉花. 到目的地时发现丢失1箱(各箱丢失的可能性相等),不知丢失哪一箱. 现从剩下9箱中任意打开2箱, (1) 求这两箱都是民用口罩的概率;
(2) 若这两箱都是民用口罩,求丢失的一箱也是民用口罩的概率。
二、(14分)1、设连续型随机变量X 的分布函数
()20,0
,01
1,1x F x Ax x x <⎧⎪
=≤<⎨⎪≥⎩
求(1)常数A ; (2)111223P X X ⎛⎫
-<<
<< ⎪⎝⎭
. 2、设随机变量X 的密度函数
()2
32,0
0,0x X x e x f x x -⎧≥⎪=⎨<⎪⎩
求2
Y X =的密度函数.
三、(18分)1、设随机变量X ,Y 相互独立,X 服从(0,1)上的均匀分布,Y 服从期望为1的指数分布. (1) 写出 (X , Y )的联合密度f (x , y ). (2) 计算 )(X Y P ≤. (3) 计算.
1,21⎪⎭
⎫ ⎝⎛><Y X P
2、设随机向量 (X , Y ) 具有如下的概率分布:
.
,2,1,0,,2,1,0,)!
(!2),(4
==-===-n n m m n m e m Y n X P n ; (1)分别求出X ,Y 的概率分布. (2)判断X ,Y 是否相互独立,说明理由.
四、(18分)设二维离散型随机变量)
X的联合分布律为
(Y
,
X 0 1 2 3
Y
1 0 3/8 3/8 0
3 1/8 0 0 1/8
(1)求)
X
E;
E
(
),
(Y
(2)求方差)
D
X
D;
(Y
(
),
(3)求协方差)
X.
cov(Y
,
五、(8分)设随机变量X 具有数学期望EX μ=,方差2DX σ=,
则对于任意给定的正数0ε>,不等式22()P X σμεε
-≥≤成立。
此不等式称为切比雪夫不等式。
(1)当X 为离散型随机变量时证明此不等式成立。
设X 的概率分布律为(),1,2,...,,....i i P X x p i n ===
(2)已知正常成人男性血液中,每毫升白细胞平均为7300,
均方差为700,利用此不等式估计每毫升含白细胞数在5200~9400之间的概率.
六、(18分)设总体X 的概率密度函数为
(1),()0,c x x c f x ααα-+⎧>=⎨⎩
,
其它.
其中c >0已知,
1α>为未知参数. 12,,,n X X X 为抽自总体X 的样本,12,,,n x x x 为相应的样本观测值. (1)求参数α的矩估计;
(2)求参数α和总体均值EX μ=的最大似然估计; (3)求参数A 使得1n
i i A iX =∑是总体均值()E X μ=的无偏估计.
七、(12分)设某产品的某项质量指标服从正态分布,现从一批产品中随机抽取了16个,测得该项指标的平均值为1627,标准差S=40。
问能否认为这批产品的该项指标值为1600?(0.05)
α=。