概率与数理统计
- 格式:docx
- 大小:21.36 KB
- 文档页数:1
概率论与数理统计概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:P(A|B) = P(AB)/P(B)其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
「 ef(x) w0,其中 0,则称随机变量X 服从参数为X 的分布函数为1xe, xF(x)'0,x<0。
记住积分公式:x ne xdx n!指数分布的指数分布如果二维随机向量(X, Y)的所有可能取值为至多可列个有序对(x,y),则称为离散型随机(1)联合分离散型布设=(X,Y)的所有可能取值为(X i,y j)(i,j 1,2,),且事件{ =(X i,y j)}的概率为P ij,,称P{(X,Y) (X i,y j)} P j(i,j 1,2,)为=(X,Y)的分布律或称为X和Y的联合分布律。
联合分布有时也用下面的概率分布表来表示:这里P ij具有下面两个性质(1)P ij>0 (i,j=1,2,…);(2)P j 1.i j(1)大数定律X 切比雪夫大数定律设随机变量冶,X2,…相互独立,均具有有限方差,且被同一常数C所界:D (X i) <C(i=1,2,…),则对于任意的正数£,有limnPLx,丄n i 1 n° E(X i)i 11特殊情形: 若X1,X2,…具有相同的数学期望 E (X)=「则上式成为lim Pn1n X i大数定辛钦大数定律1.设卩是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数£,有limn伯努利大数定律说明,当试验次数小,即limn这就以严格的数学形式描述了频率的稳定性。
很大时,事件1.A发生的频率与概率有较大判别的可能性很0.设X1, X2,…,Xi,…是相互独立同分布的随机变量序列,且 E ( X n) =g,则对于任意的正数£有lim Pn1 nX in i 11.(2)中心极限定理2X N(,)n 格定理设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差:E(X k) ,D(X k) 0(k 1,2, ),则随机变量的分布函数F n(x)对任意的实数X,Y nnX k nk 1X k nlim F n(x) limn n此定理也称为独立同分布的中心极限定理。
概率论与数理统计本篇笔记内容主要整理自笔者的教材——《概率论与数理统计》(第四版),作者为盛骤、试式千、潘承毅等人 ,高等教育出版社出版。
一、概率论的基本概念1. 什么是概率?描述性定义:随机事件A发生的可能性的大小的度量(非负值),称为事件A发生的概率。
公理化定义:在随机试验的样本空间的每一个事件A,都对应一个实数值P(A),如果函数P( · )满足下列条件:非负性:规范性:S是必然事件,有P(S) = 1;可列可加性:设A1,A2,...,是两两不相容的事件(即i≠j时,AiAj = ∅),有P(A1∪A2∪...∪An) = P(A1) + P(A2) + ... + P(An)不相容事件的并的概率 等于 这些事件的概率的和。
2. 古典概型有什么特点?随机试验的样本空间只包含有限个元素;随机试验中的每个基本事件发生的可能性都相同。
3. 几何概型有什么特点?样本空间 是一个可度量的有界区域;有无限个基本事件,每个基本事件发生的可能性都一样,即样本点落入 的某一个可度量子区域S可能性与S的几何度量成正比,而与S的位置及形状无关。
4. 什么是条件概率?在已知事件A发生的情况下事件B发生的概率为条件概率P(A|B),公式有5. 什么是全概率公式?有一些时候事件B的概率不容易直接求,可以通过计算给B在各个条件下Ai发生的概率P(B| · ),来研究B发生的概率。
6. 什么是贝叶斯公式?解释一下“先验”和“后验”的概念(按照课本的思路)通过已知信息B来修正A发生的概率(即后验概率),可以通过先验概率P(A)以及AB之间的关系来研究。
举个例子:假设由多年的统计数据可以知道某种疾病的发病率,有一种检测试剂的准确率为99%,即=99%,同时有=5%会误报(检测没有病的病人为阳性),可以通过全概率公式计算试剂表现为阳性的概率。
根据这些信息,就可以计算一个病人在这种试剂检测为阳性的情况下患病的概率7. 什么叫做事件相互独立?P(AB) = P(A)P(B)即一个事件的发生,不会影响另一个事件的发生。
概率论与数理统计知识点总结(超详细版)eik则有P(A)=k/n,其中n为样本空间中元素的个数。
在概率论中,样本空间和随机事件是基本概念。
如果事件A发生必然导致事件B发生,则称事件B包含事件A,记作A⊂B。
当A和B中至少有一个发生时,称A∪B为事件A和事件B的和事件。
当A和B同时发生时,称A∩B为事件A和事件B的积事件。
当A发生、B不发生时,称A-B为事件A和事件B的差事件。
如果A和B互不相容,即A∩B=∅,则称A和B是互不相容的,或互斥的,基本事件是两两互不相容的。
如果A∪B=S且A∩B=∅,则称事件A和事件B互为逆事件,又称事件A和事件B互为对立事件。
在概率论中,还有一些运算规则。
交换律指A∪B=B∪A,A∩B=B∩A;结合律指(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);分配律指A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C);德摩根律指A∪B=A∩B,A∩B=A∪B。
频率与概率是概率论的重要概念。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值nAn称为事件A发生的频率。
概率指对于随机试验E的每一事件A赋予一个实数P(A),称为事件的概率。
概率P(A)满足非负性,即对于每一个事件A,0≤P(A)≤1;规范性,即对于必然事件S,P(S)=1;可列可加性,即设A1,A2,…,An是两两互不相容的事件,则有P(∪Ai)=∑P(Ai)(n可以取∞)。
概率还有一些重要性质,包括P(∅)=0,P(∪Ai)=∑P(Ai)(n可以取∞),如果A⊂B,则P(B-A)=P(B)-P(A),P(A)≤1,P(A)=1-P(A'),以及P(A∪B)=P(A)+P(B)-P(A∩B)。
等可能概型又称为古典概型,是指试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同。
如果事件A 包含k个基本事件,即A={e1}∪{e2}∪…∪{ek},则有P(A)=k/n,其中n为样本空间中元素的个数。
第一章随机事件与概率第一节随机事件及其运算1、随机现象:在一定条件下,并不总是出现相同结果的现象2、样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。
3、随机事件:随机现象的某些样本点组成的集合常用大写字母A、B、C等表示,Ω表示必然事件,∅表示不可能事件.4、随机变量:用来表示随机现象结果的变量,常用大写字母X、Y、Z等表示。
5、时间的表示有多种:(1)用集合表示,这是最基本形式(2)用准确的语言表示(3)用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A的样本点必属于事件B,即事件 A 发生必然导致事件B发生,则称A被包含于B,记为A⊂B;(2)相等关系:若A⊂B且B⊃A,则称事件A与事件B相等,记为A=B。
(3)互不相容:如果A∩B=∅,即A与B不能同时发生,则称A与B互不相容7、事件运算(1)事件A与B的并:事件A与事件B至少有一个发生,记为 A∪B。
(2)事件A与B的交:事件A与事件B同时发生,记为A∩ B或AB。
(3)事件A对B的差:事件A发生而事件B不发生,记为 A-B。
用交并补可以表示为。
(4)对立事件:事件A的对立事件(逆事件),即“A不发生”,记为.对立事件的性质:。
8、事件运算性质:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C)、A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)棣莫弗公式(对偶法则):9、事件域:含有必然事件Ω,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。
具体说,事件域ξ满足:(1)Ω∈ξ;(2)若A∈ξ,则对立事件∈ξ;(3)若A n∈ξ,n=1,2,···,则可列并ξ。
概率论与数理统计最简单讲解1 简介概率论是研究随机现象和概率规律的数学分支,一般分为经典概率、几何概率和统计概率。
数理统计是一个应用概率论于实际问题的统计学分支,主要研究样本及其分布、估计和假设检验等内容。
2 概率论的基本概念概率是指某件事情发生的可能性大小,用数字表示。
0表示不可能发生,1表示肯定发生,0~1之间的数字表示可能性大小。
概率分为主观概率和客观概率。
主观概率是指根据经验、知识、直觉等主观因素来判断某件事情发生的可能性大小。
而客观概率则是通过实验、统计等客观方法来计算某件事情发生的可能性大小。
3 经典概率和几何概率经典概率适用于“随机事件有限且等可能”的情形,如掷骰子,扑克牌等。
设事件A发生的可能性为P(A),则概率公式为:P(A)=有利样本数/总样本数。
几何概率适用于具有可度量性的随机现象,如从一个圆环上随机抽取有色球的概率,可以通过求圆环表面积和有色球的面积比来计算概率。
4 统计概率和条件概率统计概率是指基于概率分布函数,用频率的稳定性代替概率来计算随机事件发生的可能性大小。
条件概率指已知事件B发生的前提下,事件A发生的概率大小。
条件概率公式为:P(A|B)=P(AB)/P(B)。
5 数理统计的基本概念数据分为总体和样本两类。
总体是指研究对象的全体。
样本是指从总体中选出的一部分观测值。
统计量是从样本数据得到的量,通常用统计量来描述总体的某些特征。
6 样本分布样本的分布会受到样本容量、总体分布和抽样方式等因素的影响。
常见的样本分布有正态分布、t分布、F分布等。
其中正态分布是最重要的一种样本分布,因为它在自然界和社会方面都普遍存在。
7 参数估计参数估计是指通过样本数据来推断总体参数的值。
根据点估计和区间估计两种方式,可以计算出总体平均数、标准差、比例等各类参数的值。
8 假设检验假设检验是指将总体分布的某个特性提出一个假设,并利用样本数据来检验该假设的正确性。
假设检验包括两类错误:一类是将假设的否定但事实上是正确的,称为第一类错误;另一类是将假设的接受但事实上是错误的,称为第二类错误。
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计公式大全一、概率论的常用公式:1.概率的公式:对于事件A,其概率表示为P(A),满足0≤P(A)≤1。
2.加法公式:对于两个互斥事件A和B,其概率表示为P(A∪B),满足P(A∪B)=P(A)+P(B)。
3.减法公式:对于事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)-P(A∪B)。
4.乘法公式:对于两个独立事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)某P(B)。
5.条件概率公式:对于事件A和B,其条件概率表示为P(A,B),满足P(A,B)=P(A∩B)/P(B)。
6.全概率公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(A)=∑(P(A,Bi)某P(Bi))。
7.贝叶斯公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(Bi,A)=P(A,Bi)某P(Bi)/(∑(P(A,Bj)某P(Bj))。
二、数理统计的常用公式:1.均值公式:对于一组数据某1,某2,...,某n,其均值表示为μ=∑(某i)/n。
2.方差公式:对于一组数据某1,某2,...,某n,其方差表示为σ^2=∑((某i-μ)^2)/n。
3.标准差公式:对于一组数据某1,某2,...,某n,其标准差表示为σ=√(σ^2)。
4. 协方差公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其协方差表示为 Cov(某,y) = ∑((某i - μ某) 某 (yi - μy)) / n。
5. 相关系数公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其相关系数表示为 r = Cov(某,y) / (σ某某σy)。
6.正态分布的概率计算:对于满足正态分布的一组数据某1,某2,...,某n,可以利用标准正态分布表或计算工具来计算概率P(X≤某)或P(X>某)。
7.置信区间公式:对于一组数据某1,某2,...,某n,其均值μ和置信水平α,可以计算置信区间为某̄±Z(α/2)某(σ/√n)。
概率论与数理统计第一章 随机事件及其概率 一.随机事件1. 随机事件的相关概论2. 事件之间的相互关系 二.随机事件的概率 1. 概率的公理定义 2. 概率的性质3. 概率的古典概率,几何概率,条件概率的相关定义及会求相关的题目 三.概率的计算公式加法公式,乘法公式,全概率公式,贝叶斯公式 四.事件的独立性1. P (AB )=P (A )P (B )可扩充到n 个事件相互独立2. n 重伯努利概型的公式(二项概率公式) 相关题型:1. 设随机事件,A B 满足()()P AB P AB ,且()P A p ,则()P B __________.2.已知1()()()4P A P B P C ,()0,P AB 1()()16P AC P BC ,则事件,,A B C 全不发生的概率为____________.3. 一批产品共有10件正品和2件次品,任意抽取两次,每次抽一个,抽出后不放回,则第二次抽出的是次品的概率 ______________.4. 某种仪器由三个部件组装而成,假设各部件质量互不影响且它们的优质品率分别为0.8,0.7与0.9,已知如果三个部件都是优质品,则组装后仪器一定合格;如果有一个部件不是优质品,则组装后的仪器不合格率为0.2;如果有两个部件不合格,则仪器的不合格率为0.6;如果三个部件都不是优质品,则组装仪器的不合格率为0.9.则仪器的不合格率为______________;如果已发现一台仪器不合格,则它有____________个部件不是优质品的概率最大.5. 某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p ,则此人第4次射击恰好第2次命中目标的概率为____________. 6.在区间(0,1)中随机取两个数,则两数之差的绝对值小于12的概率_____________. 7.在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示“电炉断电”,而(1)(2)(3)(4)T T T T 为4个温控器显示的按递增顺序排列的温度值,则事件E 等于_____________.8.设3次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于1927,则事件A 在一次试验中出现的概率为___________.9.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机地抽取一件,发现是次品,求该产品属于A 生产的概率。
概率,亦称“或然率”,它是反映随机事件出现的可能性(likelihood)大小。
随机事件是指在相同条件下,可能出现也可能不出现的事件。
例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。
设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。
经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。
该常数即为事件A出现的概率,常用P (A) 表示。
数理统计是数学的一个分支,分为描述统计和推断统计。
它以概率论为基础,研究大量随机现象的统计规律性。
描述统计的任务是搜集资料,进行整理、分组,编制次数分配表,绘制次数分配曲线,计算各种特征指标,以描述资料分布的集中趋势、离中趋势和次数分布的偏斜度等。
推断统计是在描述统计的基础上,根据样本资料归纳出的规律性,对总体进行推断和预测。
需要熟练的运用重积分才能学概率论,而重积分又是高等数学中比较高级的东西,也就是说要把《高等数学》基本上完全掌握才行。
高中知识加高等数学中的微积分就可以解决。
还涉及一些和函数有关基本概念,连续,单调性,之后看教材就可以自学了,主要是抓住模型,和常用分布等。
概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。
随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性。