精密和超精密加工现状与发展趋势
- 格式:doc
- 大小:49.50 KB
- 文档页数:7
超精密加工技术的应用与发展创新随着工业化程度的不断提高,各行各业对于产品加工精度的要求也越来越高。
超精密加工技术作为一种高精度加工手段,在多种行业中得到了广泛的应用和重要的发展。
本文将从超精密加工技术的概念和特点、应用领域以及发展创新方面,探讨这一技术的现状与未来。
一、超精密加工技术的概念和特点超精密加工技术作为先进的制造技术,是一种在非接触条件下通过高度控制精度和极小加工力实现的超精度制造过程。
其主要特点在于能够完成高精度、高透明度的加工,同时实现最大限度的纳米级表面精度和形状控制,并实现极高的材料利用率和能源效率。
当前,超精密加工技术已经成为了生产微电子元件、高精度仪器、光学设备、医疗器械以及航空、航天等领域的重要手段。
二、超精密加工技术的应用领域1. 微电子元件制造微电子元件制造是超精密加工技术的重要应用领域之一。
超精密加工技术主要应用于微电子元件的表面处理和制造过程。
通过高度精密的加工,能够最大限度地实现微电子元件的纳米级精度和优异的表面平整度。
2. 光学设备制造光学设备制造是超精密加工技术的另一个重要应用领域。
通过超精密加工技术,能够实现近乎完美的光学表面加工,达到光学元件的超精度。
该技术广泛应用于反射镜,激光器器件,非球面透镜增益校准等领域,为光学设备的制造和优化提供了可靠的手段。
3. 生物医疗设备生物医疗设备是超精密加工技术引入的新领域之一。
超精密加工技术能够实现各种医疗设备的高精度加工,例如人工关节、医疗导管、人工晶体等生物医疗设备。
通过超精密加工技术,这些医疗设备得以轻松地实现形状的精确定位和表面的高质量加工,从而拓展了生物医疗设备的应用领域。
4. 航空航天领域超精密加工技术在航空航天领域的发展也非常突出。
通过超精密加工技术,可以实现各种轻量化和高精度零部件的制造,包括发动机组件、喷气口、舵机组件和其他高温材料。
这种高质量加工技术能够提高飞行器的飞行效率和安全性,并显著提高其性能和使用寿命。
车辆工程技术90机械电子1 超精密加工的技术范畴 在工业的加工领域当中,通常情况下按照加工的精度来划分的话,可以将机械加工一般可以分为三类,分别是:一般加工、精密加工和超精密加工。
随着生产技术的飞速发展,关于加工精度的划分标准也在随着时间的发展而变化,加工的进程也会随之而向前推移,可能过去的精密加工已经沦落为现今社会当中的一半加工的程度了。
因此,可以知道这个划分界限并不是一定的,它是会随着科学技术的发展而提高的,毕竟在如今的数据记录当中并没有主体的数值限制。
超精密加工的环境是在机床设备上进行的,利用刀具与零件之间产生的具有严格约束性的相对运动,从而达到加工出精度超高的产品,接着需要对加工好的材料进行相应的摩擦和去除毛刺,从而获得高形状、高精度的零件。
一般在学术界领域,超精度加工的加工精度通常在0.1μm 以上的,其表面的粗糙度也都是低于0.025μm的。
近年来,随着纳米技术的兴起,超精密加工目前已经进入纳米级精度阶段,逐渐的出现了纳米加工及其相关联的纳米技术。
经过近年来对纳米技术的使用和完善,这项技术已经逐渐的走向成熟,形成了一整套的超精密加工体系,其中包含了超精密切削、超精密磨削、超精密微细加工以及超精密计量等等,慢慢的向更高层次进行突破。
但是影响超精密加工的因素很多,目前只有在现有的基础上,经过研究和采用各种各样新型的技术、并且能够在各个方面融入这些新型技术,真正做到精益求精,达到更高的精度,才能突破传统加工模式的加工精度的界限。
实际上超精密的加工技术就是超精度切削、磨削和细微加工技术的综合应用。
2 超精密加工的关键技术2.1 主轴 目前阶段,在超精密加工机床的使用过程中,使用最高精度的主轴是空气静压轴承主轴,就我国制作出来的磁悬浮列车的轴承也远远达不到空气静压轴承主轴的加工精度,因此磁悬浮列车至今为止还是需要利用空气轴承。
就目前的超精密加工技术而言,空气静压轴承主轴的精度可以达到0.05μm,国内已经达到了这个加工精度的水平,然而国外甚至可以达到0.03μm,即使已经达到了如此精确的加工精度,却依旧不能满足纳米加工技术对于主轴的加工精度要求。
超精密加工技术的发展现状超精密加工技术的发展现状,哎呀,真是个让人觉得又神奇又复杂的话题啊!咱们得先了解一下超精密加工是什么。
它其实就是用极高的精度来加工材料,想想看,能把东西做到这么精准,真是令人叹为观止。
现在的制造业可离不开它,尤其是在航空、医疗、电子这些领域,越是高端的东西,越离不开超精密加工。
想象一下,微米级别的加工,那得多细腻啊!说真的,这技术的发展,真的是让人感觉到科技的力量。
在这过程中,咱们得提到几项关键技术,比如说光刻、超声波加工,还有激光加工。
光刻技术可谓是个“大明星”,在芯片制造中大显身手,像是在细致的画布上作画,光线勾勒出无数精致的图案。
超声波加工呢,哎,别小看它,利用声波的振动来加工,能把很多材料轻松处理掉,真是个“小帮手”。
激光加工嘛,嘿,那可是一把双刃剑,精准又快速,火花四溅的场景让人忍不住想为它点赞。
不过,话说回来,技术再先进,也得面对一些挑战。
比如说,成本问题。
超精密加工的设备可不是白菜价,维护保养更是个大开销。
这让很多小企业在这条路上犹豫不决,真是让人心疼。
材料的选择也非常重要,有些材料在超精密加工中表现得特别好,而有些则像个“死胖子”,怎么都弄不动。
为了追求更好的效果,研究人员们可是费尽心思,真是“煞费苦心”啊。
还有就是人才的培养。
这方面可不能马虎,超精密加工需要的人才既要有理论知识,又要有丰富的实践经验。
现在的大学里,很多学校已经开始设置相关课程,目的就是希望能培养出更多的技术人才,未来可得靠他们“撑门面”呢。
真心希望越来越多的人能加入这个行业,给我们带来更多的惊喜。
说到应用,超精密加工的舞台可大了!像航天器、手术刀、手机的内部零件等等,几乎无处不在。
你看看,航天器上那些复杂的零部件,没有超精密加工,恐怕就飞不起来了!还有手术刀,医生可不能用个普通的刀子,精细的切口直接关系到手术的成功与否,这可是关乎生命的大事啊!而手机的微小零件,哪个能离开超精密加工的加持?所以说,这技术的重要性,不用多说,大家都懂。
超精密加工技术在未来机械领域的发展前景概述超精密加工技术在未来机械领域的发展前景[前言]近二十年以来机械制造业正以迅猛的发展步伐向精密加工、超精密加工发展,在未来的发展过程中精密加工、超精密加工将成为在国际竞争、市场竞争中取胜的关键技术。
现代制造业之所发要致力于提高加工精度,其主要原因在于提高产品的性能和质量,提高其质量的稳定性和性能的可靠性,促进产品的小型化、功能性强,零件互换性好,产品的装配、调试生产率高,并促进制造装配自动化。
随着制造业的发展,现在的精密机械加工正在从微米、亚微米级工艺发展,在今后的加工中,普通机械加工、精密加工与超精密加工精度可分别达到1μm、0.01μm、0.001μm(即1nm),而且超精密加工正在向原子级加工精度逼进(0.1nm)。
随着极限加工精度的不断提高,为科学技术的发展和进步创造了条件,也为机械冷加工提供了良好的物质手段。
关键词超精密加工发展趋势发展策略后续研发一、引言我们一提到超精密这个词语,就觉得它比较神秘,但跟任何其他复杂的高新技术一样,经过一段时间的熟悉、适应,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是如此。
实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。
超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。
二、正文超精密加工当前是指被加工零件的尺寸和形状精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,目前正在向纳米级加工技术发展。
超精密加工技术在国际上处于领先地位的国家是美国、英国和日本。
美国是开展超精密加工技术研究最早的国家,也是迄今处于领先地位的国家。
英国的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,是当今世界上精密工程的研究中心之一。
精密加工行业报告精密加工是一种高精度的机械加工技术,它在各种行业中都有着广泛的应用。
随着科技的不断发展和进步,精密加工行业也在不断壮大和壮大。
本报告将对精密加工行业的发展现状、市场需求、技术趋势等方面进行分析和展望。
一、精密加工行业的发展现状。
随着科技的不断进步和发展,精密加工行业也在不断壮大。
目前,全球精密加工行业的市场规模已经达到了数千亿美元。
在中国,精密加工行业也在快速发展,成为了国民经济中不可或缺的一部分。
从国内外市场来看,精密加工行业的需求量也在不断增加,市场潜力巨大。
二、精密加工行业的市场需求。
精密加工行业的市场需求主要来自于汽车、航空航天、电子、医疗器械、光学仪器等行业。
随着这些行业的不断发展,对精密加工零部件的需求也在不断增加。
特别是在汽车和航空航天行业,对零部件的精度和质量要求非常高,这就对精密加工行业提出了更高的要求。
三、精密加工行业的技术趋势。
随着科技的不断进步,精密加工行业的技术也在不断更新和改进。
目前,数控机床、激光加工、电火花加工、超声波加工等先进技术已经在精密加工行业中得到了广泛应用。
这些先进技术不仅提高了加工效率,还提高了加工精度,降低了成本,提高了产品质量。
四、精密加工行业的发展趋势。
未来,精密加工行业将会朝着智能化、自动化、数字化的方向发展。
随着人工智能、大数据、云计算等技术的不断发展,精密加工行业将会迎来新的发展机遇。
同时,随着全球制造业的转移和升级,精密加工行业也将会面临更大的市场机遇和挑战。
总之,精密加工行业是一个充满活力和发展潜力的行业。
随着科技的不断发展和进步,精密加工行业也将迎来新的发展机遇。
我们相信,在政府的政策支持和企业的不懈努力下,精密加工行业一定会迎来更加美好的未来。
精密和超精密加工技术的发展我国目前已是一个“制造大国”,制造业规模名列世界第四位,仅次于美国、日本和德国,近年来在精密加工技术和精密机床设备制造方面也取得了不小进展。
但我国还不是一个“制造强国”,与发达国外相比仍有较大差距。
目前国外已开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。
为了使我国的国防和科技发展不受制于人,我们必须投入必要的人力物力,自主发展精密和超精密加工技术,争取尽快将我国的精密和超精密加工技术水平提升到世界先进水平。
下面对国内外精密和超精密加工技术的最新发展情况介绍如下。
精密机床技术的发展精密机床是精密加工的基础。
当今精密机床技术的发展方向是:在继续提高精度的基础上,采用高速切削以提高加工效率,同时采用先进数控技术提高其自动化水平。
瑞士DIXI公司以生产卧式坐标镗床闻名于世,该公司生产的DHP40高精度卧式高速镗床已增加了多轴数控系统,成为一台加工中心;同时为实现高速切削,已将机床主轴的最高转速提高到24000r/min。
瑞士MIKROM公司的高速精密五轴加工中心的主轴最高转速为42000r/min,定位精度达5μm,已达到过去坐标镗床的精度。
从这两台机床的性能可以看出,现在的加工中心与高速切削机床之间已不再有严格的界限划分。
使用金刚石刀具的超精密切削技术超精密切削技术的进展金刚石刀具超精密切削技术是超精密加工技术的一个重要组成部份,不少国防尖端产品零件:如陀螺仪、各种平面及曲面反射镜和透镜、精密仪器仪表和大功率激光系统中的多种零件等:都需要利用金刚石超精密切削来加工。
使用单晶金刚石刀具在超精密机床上进行超精密切削,可以加工出光洁度极高的镜面。
超精密切削的切削厚度可极小,最小切削厚度可至1nm。
超精密切削使用的单晶金刚石刀具要求刃口极为锋锐,刃口半径在0.5,0.01μm。
因刃口半径甚小,过去对刃口的测量极为困难,现在已可用原子力显微镜:AFM:方便地进行测量。
对精密和超精密加工技术的认识一、引言精密加工技术是一种高精度、高效率的制造方法,广泛应用于电子、航空航天、医疗器械等领域。
而超精密加工技术则是在精密加工技术的基础上进一步提高了加工的精度和表面质量。
本文将对精密和超精密加工技术进行深入的探讨和分析。
二、精密加工技术的概念和应用精密加工技术是一种通过在加工过程中控制和调整各种工艺参数,使加工零件达到高精度要求的加工方法。
它主要包括数控加工、激光加工、电火花加工等多种技术手段。
精密加工技术在电子领域的应用尤为广泛,如半导体芯片加工、PCB板制造等。
三、精密加工技术的特点和优势1. 高精度:精密加工技术可以实现亚微米甚至纳米级别的加工精度,满足对零件精度要求极高的应用领域。
2. 高效率:精密加工技术采用自动化控制和高速切削等方法,加工效率高,能够大大提高生产效率和产品质量。
3. 灵活性:精密加工技术具有灵活性强的特点,可以根据不同产品的要求进行个性化加工,满足市场需求的多样化。
四、超精密加工技术的概念和原理超精密加工技术是在精密加工技术的基础上,通过进一步提高加工设备的精度和加工工艺的控制精度,实现更高精度加工的一种技术手段。
超精密加工技术主要包括超精密车削、超精密磨削、超精密拓扑等方法。
五、超精密加工技术的应用领域超精密加工技术在光学仪器、航空航天、精密仪器等领域具有广泛的应用。
例如,在光学仪器领域,超精密加工技术可以用于制造高精度的光学元件,提高光学系统的分辨率和成像质量。
六、精密和超精密加工技术的发展趋势随着科技的进步和工业制造的需求,精密和超精密加工技术也在不断发展和创新。
未来的发展趋势主要包括以下几个方面:1. 加工精度的提高:随着需求的增加,对加工精度的要求也越来越高,未来的精密和超精密加工技术将进一步提高加工的精度和表面质量。
2. 加工效率的提高:随着自动化技术和智能化技术的发展,精密和超精密加工技术将更加高效,加工速度更快,生产效率更高。
精密和超精密加工技术的新进展精密和超精密加工技术是指不断追求更高精度、更细粒度、更小误差和更高效率的加工方法和技术。
这些技术广泛应用于航空航天、医疗器械、微电子、光学仪器等领域,对于产品的性能和质量有着至关重要的影响。
近年来,精密和超精密加工技术取得了许多突破性进展,本文将就此展开讨论。
精密加工技术是在传统机械加工的基础上发展起来的,通过精细的切削、研磨和抛光等手段,实现高精度、高光洁度的加工目标。
近年来,精密加工技术的发展取得了长足的进步,主要表现在以下几个方面:新型加工设备的研发和应用不断取得突破。
例如,五轴联动数控机床、激光加工机、电子束加工机等新型设备的出现,使得复杂零件的精密加工变得更加高效和准确。
新型加工材料的应用也取得了重要进展。
例如,工程塑料、陶瓷、复合材料等高性能非金属材料的广泛应用,使得精密加工的领域得以进一步拓展。
精密加工技术的智能化和自动化水平不断提升。
智能化加工设备能够实现自适应加工、无人值守加工等功能,提高加工效率和质量稳定性。
超精密加工技术是指比精密加工技术更为精细、精确的加工方法和技术。
随着科技的不断进步,超精密加工技术的应用越来越广泛,主要包括以下几个方面:超精密加工技术广泛应用于微电子领域。
微电子产业对于芯片的精度和光洁度要求极高,超精密加工技术能够实现高精度、高效率的微米级加工,对于提升微电子产业的发展水平和竞争力具有重要意义。
超精密加工技术在光学仪器领域也有着广泛的应用。
光学仪器对于透镜、反射镜等光学元件的精度和表面质量要求极高,超精密加工技术能够实现高精度、高稳定性的光学元件加工,对于提高光学仪器的性能和精度具有重要作用。
再次,超精密加工技术在航空航天领域也有着重要的应用。
航空航天领域对于零件的精度和可靠性要求极为严格,超精密加工技术能够实现高精度、高稳定性的零件加工,对于提升航空航天领域的产品质量和性能具有重要意义。
近年来,精密和超精密加工技术的研究和应用不断取得新的进展,在新型加工设备、新型加工材料和智能化加工等方面都取得了重要突破。
2024年精密模具市场分析现状引言精密模具是制造工业中不可或缺的关键组件,广泛应用于汽车、电子、航空航天等行业。
本文旨在对精密模具市场的现状进行分析,并提出相应的发展策略。
市场规模及增长趋势过去几年,精密模具市场持续增长。
据市场研究机构报告,2019年全球精密模具市场规模达到500亿美元。
预计到2025年,这一数字将达到800亿美元以上。
市场增长的主要驱动因素包括工业自动化的提升、新兴行业的发展以及消费者对高精度产品的需求增长等。
市场竞争格局精密模具市场竞争激烈,主要厂商集中在亚洲地区,尤其是中国、日本、韩国等国家。
这些地区拥有先进的制造设备和技术,具备较高的生产效率和竞争优势。
同时,这些地区还形成了完整的供应链体系,在材料采购、加工和配送方面具备优势。
除亚洲地区外,欧洲和北美地区也有一些知名的精密模具制造商。
市场发展趋势1.自动化制造:随着工业智能化的推进,自动化制造将成为精密模具行业的发展趋势。
自动化制造能够提高生产效率、降低劳动成本,并且能够减少人为因素对产品质量的影响。
2.材料创新:精密模具的制造需要使用高质量的材料,因此材料的创新对市场发展至关重要。
新型材料的应用可以提高模具的使用寿命和生产效率,进一步推动市场增长。
3.数字化设计与制造:借助数字化技术,可以实现模具的精确设计和高效制造。
将CAD/CAM技术与3D打印技术结合,能够更好地满足客户需求,缩短产品开发周期,提高市场竞争力。
4.环保和可持续发展:精密模具制造过程中产生的废料和污染物对环境造成了一定的压力。
因此,推动环保和可持续发展将成为未来市场发展的重要方向。
市场挑战和问题尽管精密模具市场前景广阔,但仍面临一些挑战和问题。
1. 技术难题:精密模具的制造需要高超的技术水平和先进的设备。
技术难题可能导致生产周期延长和产品质量下降。
2. 人才短缺:精密模具行业需要具备精密加工技术的高素质人才。
然而,当前行业人才供需矛盾突出,人才短缺成为制约市场发展的一大问题。
精密和超精密加工现状与发展趋势核心提示:当前精密和超精密加工精度从微米到亚微米,乃至纳米,在汽车、家电、IT电子信息高技术领域和军用、民用工业有广泛应用。
同时,精密和超精密加工技术的发展也促进了机械、模具、液压、电子、半导体、光学、传感器和测量技术及金属加工工业的发展。
一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。
目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。
精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。
精密加工包括微细加工和超微细加工、光整加工等加工技术。
传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。
a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。
b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。
c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。
d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。
精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。
超精密加工技术的发展现状自从中国将“装备制造业”列为国家发展战略后,中国的装备制造业取得了突飞猛进的发展,很多大型装备的制造能力都已经跃居世界先进水平,甚至成为世界的顶级水平,但中国制造业总体还是落后的,其落后就在于精密制造的落后。
超精密加工技术是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础,是现代制造科学的发展方向。
现代科学技术的发展以试验为基础,所需试验仪器和设备几乎无一不需要超精密加工技术的支撑。
由宏观制造进入微观制造是未来制造业发展趋势之一,当前超精密加工已进入纳米尺度,纳米制造是超精密加工前沿的课题。
世界发达国家均予以高度重视。
超精密加工的发展阶段目前的超精密加工,以不改变工件材料物理特性为前提,以获得极限的形状精度、尺寸精度、表面粗糙度、表面完整性(无或极少的表面损伤,包括微裂纹等缺陷、残余应力、组织变化)为目标。
超精密加工的研究内容,即影响超精密加工精度的各种因素包括:超精密加工机理、被加工材料、超精密加工设备、超精密加工工具、超精密加工夹具、超精密加工的检测与误差补偿、超精密加工环境(包括恒温、隔振、洁净控制等)和超精密加工工艺等。
一直以来,国内外学者围绕这些内容展开了系统的研究。
超精密加工的发展经历了如下三个阶段。
1)20世纪50年代至80年代,美国率先发展了以单点金刚石切削为代表的超精密加工技术,用于航天、国防、天文等领域激光核聚变反射镜、球面、非球面大型零件的加工。
2)20世纪80年代至90年代,进入民间工业的应用初期。
美国的摩尔公司、普瑞泰克公司,日本的东芝和日立,以及欧洲的克兰菲尔德等公司在政府的支持下,将超精密加工设备的商品化,开始用于民用精密光学镜头的制造。
单超精密加工设备依然稀少而昂贵,主要以专用机的形式订制。
在这一时期还出现了可加工硬质金属和硬脆材料的超精密金刚石磨削技术及磨床,但其加工效率无法和金刚石车床相比。
3)20世纪90年代后,民用超精密加工技术逐渐成熟。
功能陶瓷超精密加工技术的现状与发展今天,功能陶瓷超精密加工技术已经成为世界关注的焦点。
它不仅是陶瓷加工业的一项新兴技术,而且还是现代高精尖制造业的重点。
随着经济全球化的发展,功能陶瓷超精密加工技术受到了各国政府的关注,并不断得到发展,其在国家经济发展及社会进步等方面发挥着重要作用。
一、功能陶瓷超精密加工技术的发展功能陶瓷超精密加工技术最早发源于日本,于20世纪60年代开始大量应用。
它是一种先进的加工技术,不仅可以用于加工复杂的精密零件,而且还能将多种材料的加工工艺合二为一,大大降低了生产成本。
近年来,随着经济的发展,功能陶瓷超精密加工技术也不断受到各国政府的关注,其应用领域也不断扩大。
如今,它已经广泛应用于航空航天、医疗、军事、能源等领域,大大提高了陶瓷加工行业的生产效率。
二、功能陶瓷超精密加工技术在现状及发展中应用1.现状近年来,功能陶瓷超精密加工技术在航空航天、医疗、军事、能源等领域得到了广泛应用,在提高加工效率、降低生产成本等方面发挥着重要作用。
比如,在航空航天行业,功能陶瓷超精密加工技术可以用来加工各种复杂的零件,大大提高了航天器的性能。
在医疗行业,功能陶瓷超精密加工技术可以用于制造微型及复杂的医疗器械,为患者提供健康的环境。
2.发展随着科技的不断进步,功能陶瓷超精密加工技术也在不断发展。
未来,将更多的技术加入到功能陶瓷超精密加工技术之中,以提高加工效率、降低生产成本、扩大应用领域等。
例如,将现代化自动化技术与功能陶瓷超精密加工技术相结合,可以进一步提高加工效率,有助于提高生产精度。
三、结论功能陶瓷超精密加工技术是现代精密制造业的重要组成部分,其在前景及发展方面具有广阔的前景。
未来,功能陶瓷超精密加工技术将继续受到政府和企业的重视和持续发展,将为社会经济发展和国家进步做出贡献。
国外超精密加工技术的现状和发展趋势1. 引言在当今世界,超精密加工技术已经成为了制造业的重要组成部分。
随着科技的不断发展,国外的超精密加工技术也取得了长足的进步。
本文将从多个角度对国外超精密加工技术的现状和发展趋势进行评估和探讨。
2. 现状分析超精密加工技术是指在微米或纳米级别进行加工的技术,其精度和表面质量要求非常高。
当前,国外一些先进制造业发达国家,如日本、德国和美国等,都在超精密加工技术领域具有举足轻重的地位。
这些国家的企业和研究机构不断推动着超精密加工技术的发展,不断推陈出新,取得了许多创新成果。
3. 技术发展趋势未来,国外超精密加工技术将朝着更高精度、更复杂形状、更多材料的加工方向发展。
随着人工智能、大数据和物联网等新一代信息技术的不断涌现,超精密加工技术将更加智能化、数字化和柔性化。
新型材料、纳米技术的应用,也将极大地拓展超精密加工技术的应用范围。
4. 我的观点我认为,国外超精密加工技术的快速发展将为全球制造业带来深远影响。
随着超精密加工技术在航空航天、医疗器械、电子器件等领域的广泛应用,将极大地推动相关产业的发展。
超精密加工技术的不断突破也将为人类社会带来更多便利和可能性。
5. 总结国外超精密加工技术的现状和发展趋势令人振奋。
技术不断创新,应用领域不断拓展,为制造业注入了新的活力。
我对超精密加工技术的未来充满信心,相信它将在全球范围内发挥越来越重要的作用。
通过本文的介绍和分析,相信您已经对国外超精密加工技术的现状和发展趋势有了更深入的了解。
希望本文能够为您带来一些启发和思考,并对您在相关领域的学习和工作有所帮助。
超精密加工技术在国外的发展已经取得了显著的进步,但仍有许多挑战和机遇。
在不断推动超精密加工技术的发展的国外也在积极探索新的技术路径和应用领域,以应对日益复杂的市场需求和竞争压力。
国外超精密加工技术在材料加工和表面处理方面取得了重大突破。
随着新型材料的广泛应用和纳米技术的发展,超精密加工技术已经能够处理更多种类的材料,包括金属、陶瓷、复合材料等。
超精密加工的发展和展望精密和超精密制造工程是适应前沿高技术发展需求而发展起来的。
它是一个国家重要经济和技术实力的体现,是其它高新技术实施的基础。
超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展超精密制造技术有极其重要的关系。
超精密制造技术是随着测量技术的发展而发展的。
Renishaw、Heidenhain及SONY等公司发展了分辨率均可以达到1nm的测量元件;美国HP公司、英国Taylor、美国zygo等公司的测量仪器均可以满足纳米测量的需求。
超精密制造技术在国际上已经得到广泛应用。
与国防工业有关的如人造卫星用的姿态轴承和遥测部件、被送入太空的哈勃望远镜(HST)、飞机发动机转子叶片等;与集成电路(IC)有关的硅片加工(要求硅片的加工表面粗糙度Ra一般小于2nm,精度要求达0.1nm);此外光刻设备和硅片加工设备的精度要求到亚微米和纳米级。
仪表的精度、激光陀螺仪的平面反射镜的精度、红外制导的反射镜等,其表面粗糙度均要求达到纳米级。
另外,光学非球曲面零件面形制造精度要求已达λ/(30—50),表面粗糙度要求≤0.5nm。
1、超精密制造技术的发展状况1962年美国Union Carbide公司研制出首台超精密车床。
在美国能源部支持下,LLI实验室和Y—12工厂合作,与1983年成功地研制出大型超精密金刚石车床(DTM—3型)。
该机床可加工直径¢2100mm,多路激光干涉测量系统分辨率为2.5nm。
1984年,LLL实验室成功地研制出LODTM大型金刚石车床。
该机床可加工的最大直径为¢1625mm x500mm,重量1360kg。
采用的双频激光测量系统分辨率为0.7nm,其主轴静态精度为:径向跳动≤25nm,轴向窜动≤51nm。
LLL实验室这两台机床是目前公认的国际上水平最高的超精密机床。
CUPE(Cranfield Unit for Precision Engineering)研制的Nanocenter超精密车床已批量生产,其主轴精度≤50nm,加工工件的面形精度≤0.1μm。
精密和超精密加工技术现状和发展趋势1.引言国际上在超精密加工技术方面处于领先地位的国家有美国、德国和日本发达国家中,美国、日本、德国等在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。
由于加工技术水平的发展,精密和超精密加工划分的界限逐渐向前推移,但在具体数值上没有确切的定义。
被加工零件的尺寸精度在 1.0~0.1μm,表面粗糙度Ra在0.1~0.03μm之间的加工方法称为精密加工。
超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展超精密加工技术主要包括:超精密加工的机理,超精密加工的设备制造技术,超精密加工工具及刃磨技术,超精密测量技术和误差补偿技术,超精密加工工作环境条件。
2.发展现状美国是开展研究最早的国家,也是迄今处于世界领先地位的国家。
早在50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件。
20世纪80年代后期,美国通过能源部“激光核聚变项目”和陆、海、空三军“先进制造技术开发计划”,对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。
如美国劳伦斯利弗莫尔国家实验室已经研制出一台大型光学金刚石车床(Large Op tics Diam ond Turn ing Machine, LODTM ), 是一台最大加工直径为1.63m的立式车床,定位精度可达28nm,借助在线误差补偿能力,它已实现了距离超过1m而直线度误差只有±25nm 的加工。
在美国能源部支持下,LLI实验室和Y-12工厂合作,与1983年成功地研制出大型超精密金刚石车床(DTM—3型)。
精密与超精密加工技术现状和发展展望精密加工技术是一种在当今制造业中非常重要的技术,它的发展与制造业的发展息息相关。
精密加工技术是通过对材料进行高精度的加工来制造出各种精密零部件,这些精密零部件被广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。
现阶段,精密加工技术已经取得了很大的进步,各种高精度的加工设备和加工工艺层出不穷。
在这些技术发展的基础上,超精密加工技术应运而生。
超精密加工技术是一种相对于精密加工技术更加高端、更加精密的加工技术,它可以实现对材料的超高精度加工,甚至可以达到纳米级的精度。
这种技术对于一些特殊材料的加工非常重要,比如硬质合金、钢、陶瓷等材料。
超精密加工技术的发展展望是非常乐观的。
随着科学技术的不断进步,各种先进的加工设备和工艺将不断涌现。
在这种趋势下,超精密加工技术将会得到更加广泛的应用。
在汽车工业中,超精密加工技术可以用于制造高压油泵的零部件,提高汽车发动机燃油的利用率;在医疗器械领域,超精密加工技术可以用于制造各种医疗器械的零部件,提高医疗器械的精度和安全性。
在未来的发展中,我们还可以看到超精密加工技术将会在航空航天领域得到更广泛的应用。
超精密加工技术可以制造出更加轻巧和高强度的航空零部件,提高航空器的性能和安全性。
超精密加工技术在电子产品领域也有很大的潜力,它可以制造出更小巧、更精密的电子元件,提高电子产品的性能和可靠性。
精密加工技术和超精密加工技术的发展是非常重要的。
它们直接关系到制造业的发展和产品的质量。
相信随着科学技术的不断进步,这些技术将会取得更大的突破,为各个领域带来更多的创新和发展。
精密与超精密加工技术的现状和发展展望精密加工技术是制造业中至关重要的一环,它的发展与制造业的发展密不可分。
精密加工技术通过对材料进行高精度的加工,制造出各种精密零部件,广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。
当前,精密加工技术已取得了长足的发展,各种高精度加工设备和工艺不断涌现。
发展精密和超精密加工技术的重要性精密和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般加工,精密加工,超精密加工三个阶段精密加工;加工精度在0.1 -1um,讲表面粗糙度在Ra 0.02-0.1um之间的加工方法称为精密加工超精密加工;加工精度高于0.1um,加工表面粗糙度小于Ra 0.01um的加工方法称为超精密加工。
(微细加工、超微细加工、光整加工、精整加工等)二提高加工精度的原因提高制造精度后可提高产品的性能和质量,提高产品稳定性和可靠性;促进产品小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。
三发展超精密加工的重要性1 超精密加工是国家制造工业水平的重要标志之一超精密加工所能达到的精度、表面粗糙度、加工尺寸范围和几何形状是一个国家制造技术水平的重要标志之一。
金刚石刀具切削刃钝圆半径的大小是金刚石刀具超精密切削的一个关键技术参数,日本声称已达到2nm,而我国尚处于亚微米水平,相差一个数量级(国际上公认0.1nm~100nm为纳米尺度空间,100nm~1000nm为亚微米体系,小于1个纳米为原子团簇);金刚石微粉砂轮超精密磨削在日本已用于生产,使制造水平有了大幅度提高,突出地解决了超精密磨削磨料加工效率低的问题。
2 精密和超精密加工是先进制造技术的基础和关键计算机工业的发展不仅要在软件上,还要在硬件上,即在集成电路芯片上有很强的能力,我国集成电路的制造水平约束了计算机工业的发展。
美国制造工程研究者提出的汽车制造业的“两毫米工程”(车身尺寸变动量控制在2mm以内)使汽车质量赶上欧、日水平,其中的举措都是实实在在的制造技术。
3 国防工业上的需求陀螺仪的加工涉及多项超精密加工,导弹系统的陀螺仪质量直接影响其命中率,1kg的陀螺转子,其质量中心偏离其对称轴0.0005μm,则会引起100m的射程误差和50m的轨道误差。
大型天体望远镜的透镜、直径达 2.4m,形状精度为0.01μm,如著名的哈勃太空望远镜,能观察140亿光年的天体(六轴CNC研磨抛光机)(图)。
精密和超精密加工现状与发展趋势核心提示:当前精密和超精密加工精度从微米到亚微米,乃至纳米,在汽车、家电、IT电子信息高技术领域和军用、民用工业有广泛应用。
同时,精密和超精密加工技术的发展也促进了机械、模具、液压、电子、半导体、光学、传感器和测量技术及金属加工工业的发展。
一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。
目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。
精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。
精密加工包括微细加工和超微细加工、光整加工等加工技术。
传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。
a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。
b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。
c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。
d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。
精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。
e. 抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。
手工或机械抛光加工后工件表面粗糙度Ra≤0.05μm,可用于平面、柱面、曲面及模具型腔的抛光加工。
超声波抛光加工精度0.01~0.02μm,表面粗糙度Ra0.1μm。
化学抛光加工的表面粗糙度一般为Ra≤0.2μm。
电化学抛光可提高到Ra0.1~0.08μm。
超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。
当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。
微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。
光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高加工精度,其典型加工方法有珩磨、研磨、超精加工及无屑加工等。
实际上,这些加工方法不仅能提高表面质量,而且可以提高加工精度。
精整加工是近年来提出的一个新的名词术语,它与光整加工是对应的,是指既要降低表面粗糙度和提高表面层力学机械性质,又要提高加工精度(包括尺寸、形状、位置精度)的加工方法。
二、精密加工的发展现状与应用1.精密成型加工的发展现状与应用精密铸造成形、精密模压成形、塑性加工、薄板精密成形技术在工业发达国家受到高度重视,并投入大量资金优先发展。
70年代美国空军主持制订“锻造工艺现代化计划”,目的是使锻造这一重要工艺实现现代化,更多地使用CAD/CAM,使新锻件的制造周期减少75%。
1992年,美国国防部提出了“军用关键技术清单”,其中包含了等压成型工艺、数控计算机控制旋压、塑变和剪切成形机械、超塑成型/扩散连接工艺、液压延伸成型工艺等精密塑性成型工艺。
国外近年来还发展了以航空航天产品为应用对象的“大型模锻件的锻造及叶片精锻工艺”、“快速凝固粉末层压工艺”、“大型复杂结构件强力旋压成型工艺”、“难变形材料超塑成形工艺”、“先进材料(如金属基复合材料、陶瓷基复合材料等)成形工艺”等。
我国的超塑成形技术在航天航空及机械行业也有应用,如航天工业中的卫星部件、导弹和火箭气瓶等,采用超塑成形法制造侦察卫星的钦合金回收舱。
与此同时,还基本上掌握了锌、铜、铝、钦合金的超塑成形工艺,最小成形厚度可达0.3mm,形状也较复杂。
此外,国外已广泛应用精密模压成形技术制造武器。
常用的精密模压成形技术,如闭塞式锻造、采用分流原理的精密成形及等温成形等国外已用于军工生产。
目前,精密模压技术在我国应用还较少,精度也较差,国外精度为±0.05—0.10mm,我国为±0.1—0.25mm。
2.孔加工技术的发展现状及应用近年来,汽车、模具零部件、金属加工大都采用以CNC机床为中心的生产形态,进行孔加工时,也大都采用加工中心、CNC电加工机床等先进设备,高速、高精度钻削加工已提上议事日程。
无论哪个领域的孔加工,实现高精度和高速化都是取得用户订单的重要竞争手段。
近年来,随着高速铣削的出现,以铣削刀具为中心的切削加工正在进入高速高精度化的加工时期。
在孔加工作业中,目前仍大量使用高速钢麻花钻,但各企业之间在孔加工精度和加工效率方面已逐渐拉开了差距。
高速切削钻头的材料以陶瓷涂层硬质合金为主,如MAZAK公司和森精机制作所在加工铸铁时,即采用了陶瓷涂层钻头。
在加工铝合金等有色材料时,可采用金刚石涂层硬质合金钻头、DLC涂层硬质合金钻头或带金刚石烧结体刀齿的钻头。
高速高精度孔加工除采用CNC切削方式对孔进行精密加工外,还可采用镗削和铰削等方式对孔进行高精度加工。
随着加工中心主轴的高速化,已可采用镗削工具对孔进行高速精密加工。
随着IT相关产业的发展,近年来,光学和电子工业所用装置的零部件产品的需求急速增长,这种增长刺激了微细形状及高精度加工技术的迅速发展。
其中,微细孔加工技术的开发应用尤其引人注目。
微细孔加工早已在印刷电路板等加工中加以应用,包括钢材在内的多种被加工材料,均可用钻头进行小直径加工。
目前,小直径孔加工中,利用钻头切削的直径最小可至φ50μm左右。
小于φ50μm的孔则多采用电加工来完成。
为了抑制毛刺的产生,许多研究者提出可采用超声波振动切削的方式。
目前,正在探索一种应用范围广而且工艺合理的超声波振动切削模式,其中包括研究机床的适应特性等内容。
随着这些问题的顺利解决,今后可望更好地实现直径更小的微小深孔加工,加工精度会更高。
3.特种热处理的发展现状与应用特种热处理工艺是国防工业系统关键制造技术之一。
真空热处理以其特有的无污梁、无氧化、工件变形小和适用范围广等优点,广泛用于航空航天结构件处理,如齿轮结构件表面渗碳或渗氮,导弹和航天器各种合金或钢件的去应力、增强或增韧处理等。
典型结构如:仪表零件、传动结构、燃料贮箱、发动机壳体等;美国热处理炉约有50%以上为真空热处理炉。
真空热处理炉已广泛采用了计算机控制,目前已发展到真空化学热处理和真空气淬热处理,包括高压真空气淬、高流率真空气淬和高压高流率真空气淬技术等。
另外,激光热处理技术在国外已广泛用于航空、航天、电子、仪表等领域,如各种复杂表面件、微型构件、需局部强化处理构件、微型电子器件、大规模集成电路的生产和修补、精密光学元件、精密测量元件等。
4.数控电火花加工新工艺的应用a.标准化夹具数控电火花加工为保证极高的重复定位精度且不降低加工效率,采用快速装夹的标准化夹具。
标准化夹具,是一种快速精密定位的工艺方法,它的使用大大减少了数控电火花加工过程中的装夹定位时间,有效地提升了企业的竞争力。
目前有瑞士的EROWA和瑞典的3R 装置可实现快速精密定位。
b.混粉加工方法在放电加工液内混入粉末添加剂,以高速获得光泽面的加工方法称之为混粉加工。
该方法主要应用于复杂模具型腔,尤其是不便于进行抛光作业的复杂曲面的精密加工。
可降低零件表面粗糙度值,省去手工抛光工序,提高零件的使用性能(如寿命、耐磨性、耐腐蚀性、脱模性等)。
混粉加工技术的发展,使精密型腔模具镜面加工成为现实。
c.摇动加工方法电火花加工复杂型腔时,可根据被加工部位的摇动图形、摇动量的形状及精度的要求,选用电极不断摇动的方法,获得侧面与底面更均匀的表面粗糙度,更容易控制加工尺寸,实现小间隙放电条件下的稳定加工。
d.多轴联动加工方法近年来,随着模具工业和IT技术的发展,多轴联动电火花加工技术取得了长足的进步。
模具企业采用多轴联动的方法来提高加工性能,如清角部位在加工可行的情况下采用X、Y、Z三轴联动的方法,即斜向加工,避免了因加工部位面积小而发生放电不稳定的现象。
模具潜伏式胶口的加工通过对电极斜度装夹定位的设计,也可进行斜向多轴联动加工。
采用多轴回转系统与多种直线运动协调组合成多种复合运动方式,可适应不同种类工件的加工要求,扩大数控电火花加工的加工范围,提高其在精密加工方面的比较优势和技术效益。
5.精密加工技术的发展趋势面向21世纪的精密加工技术的发展趋势体现在以下几个方面:a.精密化精密加工的核心主要体现在对尺寸精度、仿形精度、表面质量的要求。
当前精密电火花加工的精度已有全面提高,尺寸加工要求可达±2-3μm、底面拐角R值可小于0.03mm,最佳加工表面粗糙度可低于Ra0.3μm。
通过采用一系列先进加工技术和工艺方法,可达到镜面加工效果且能够成功地完成微型接插件、IC塑封、手机、CD盒等高精密模具部位的电火花加工。
b.智能化智能化是而向21世纪制造技术的发展趋势之一。
智能制造技术(IMT)是将人工智能融入制造过程的各个环节,通过模拟人类专家的智能活动,取代或延伸制造系统中的部分脑力劳动,在制造过程中系统能自动监测其运行状态,在受到外界干扰或内部激励能自动调整其参数,以达到最佳状态和具备自组织能力。
新型数控电火花机床采用了模糊控制技术和专家系统智能控制技术。
模糊控制技术是由计算机监测来判定电火花加工间隙的状态,在保持稳定电弧的范围内自动选择使加工效率达到最高的加工条件;自动监控加工过程,实现最稳定的加工过程的控制技术。