期末复习资料(信号与系统)
- 格式:doc
- 大小:580.00 KB
- 文档页数:14
重难点按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率〔或周期〕的比值是有理分数时才是周期的。
其周期为各个周期的最小公倍数。
① 连续正弦信号一定是周期信号。
② 两连续周期信号之和不一定是周期信号。
周期信号是功率信号。
除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。
1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1) 单位阶跃信号01()u t ={0t =是()u t 的跳变点。
(2) 单位冲激信号单位冲激信号的性质:〔1〕取样性11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰相乘性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=- 〔2〕是偶函数 ()()t t δδ=- 〔3〕比例性()1()at t aδδ=〔4〕微积分性质 d ()()d u t t tδ=; ()d ()tu t δττ-∞=⎰〔5〕冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ;(0)t <(0)t >()1t dt δ∞-∞=⎰()0t δ=〔当0t ≠时〕()()d (0)f t t t f δ∞-∞''=-⎰()d ()tt t t δδ-∞'=⎰;()()t t δδ''-=-()d 0t t δ∞-∞'=⎰带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。
在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。
一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。
2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。
(2)离散时间信号:只在一些特定时刻上有取值的信号。
(3)连续振幅信号:信号的幅度在一定范围内连续变化。
(4)离散振幅信号:信号的幅度只能取离散值。
二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。
(2)波形表示法:用图形表示信号。
2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。
(2)图形表示法:用折线图表示离散时间信号。
三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。
(2)齐次性:输入信号的倍数与输出信号的倍数相同。
2.时不变性:系统的输出不随输入信号在时间上的变化而变化。
3.扩展性:输入信号的时延会导致输出信号的时延。
4.稳定性:系统的输出有界,当输入信号有界时。
5.因果性:系统的输出只依赖于当前和过去的输入信号值。
6.可逆性:系统的输出可以唯一地反映输入信号的信息。
四、离散时间系统的性质1.线性性质:具有加性和齐次性。
2.时不变性:输入信号的时移会导致输出信号的相应时移。
3.稳定性:系统的输出有界,当输入信号有界时。
4.因果性:系统的输出只依赖于当前和过去的输入信号值。
五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。
2.线性时不变系统:具有加性和齐次性。
3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。
4.非线性系统:不具有加性和齐次性。
六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。
信号与系统期末重点总结一、信号与系统的基本概念1. 信号的定义:信号是表示信息的物理量或变量,可以是连续或离散的。
2. 基本信号:单位阶跃函数、冲激函数、正弦函数、复指数函数等。
3. 常见信号类型:连续时间信号、离散时间信号、周期信号、非周期信号。
4. 系统的定义:系统是将输入信号转换为输出信号的过程。
5. 系统的分类:线性系统、非线性系统、时不变系统、时变系统。
二、连续时间信号与系统1. 连续时间信号的表示与运算(1)复指数信号:具有指数项的连续时间信号。
(2)幅度谱与相位谱:复指数信号的频谱特性。
(3)周期信号:特点是在一个周期内重复。
(4)连续时间系统的线性时不变性(LTI):线性组合和时延等。
2. 连续时间系统的时域分析(1)冲激响应:单位冲激函数作为输入的响应。
(2)冲击响应与系统特性:系统的特性通过冲击响应得到。
(3)卷积积分:输入信号与系统冲激响应的积分运算。
3. 连续时间系统的频域分析(1)频率响应:输入信号频谱与输出信号频谱之间的关系。
(2)Fourier变换:将时域信号转换为频域信号。
(3)Laplace变换:用于解决微分方程。
三、离散时间信号与系统1. 离散时间信号的表示与运算(1)离散时间复指数信号:具有复指数项的离散时间信号。
(2)离散频谱:离散时间信号的频域特性。
(3)周期信号:在离散时间中周期性重复的信号。
(4)离散时间系统的线性时不变性:线性组合和时延等。
2. 离散时间系统的时域分析(1)单位冲激响应:单位冲激序列作为输入的响应。
(2)单位冲击响应与系统特性:通过单位冲激响应获取系统特性。
(3)线性卷积:输入信号和系统单位冲激响应的卷积运算。
3. 离散时间系统的频域分析(1)离散时间Fourier变换(DTFT):将离散时间信号转换为频域信号。
(2)离散时间Fourier级数(DTFS):将离散时间周期信号展开。
(3)Z变换:傅立叶变换在离散时间中的推广。
四、采样与重构1. 采样理论(1)奈奎斯特采样定理:采样频率必须大于信号频率的两倍。
第一章绪论1、选择题1.1、f(5—2t)是如下运算的结果 CA、f(-2t)右移5B、f(-2t)左移5C、f(-2t)右移D、f(-2t)左移1.2、f(t0-a t)是如下运算的结果 C .A、f(—a t)右移t0;B、f(—a t)左移t0;C、f(—a t)右移;D、f(—a t)左移1。
3、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 B 。
A、线性时不变系统;B、线性时变系统;C、非线性时不变系统;D、非线性时变系统1.4、已知系统的激励e(t)与响应r(t)的关系为: 则该系统为 C 。
A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。
5、已知系统的激励e(t)与响应r(t)的关系为:则该系统为B 。
A、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1。
6、已知系统的激励e(t)与响应r(t)的关系为:则该系统为 BA、线性时不变系统B、线性时变系统C、非线性时不变系统D、非线性时变系统1.7。
信号的周期为 C 。
A、B、C、D、1。
8、信号的周期为: B 。
A、B、C、D、1.9、等于 B 。
A。
0 B.-1 C.2 D。
-21。
10、若是己录制声音的磁带,则下列表述错误的是:BA. 表示将此磁带倒转播放产生的信号B。
表示将此磁带放音速度降低一半播放C. 表示将此磁带延迟时间播放D. 表示将磁带的音量放大一倍播放1.11。
AA.B。
C. D。
1。
12.信号的周期为 B . A B C D1.13.如果a〉0,b>0,则f(b—a t)是如下运算的结果 C 。
A f(-a t)右移bB f(-a t)左移bC f(—a t)右移b/aD f(-a t)左移b/a1.14.线性时不变系统的响应,下列说法错误的是 C 。
A 零状态响应是线性时不变的B 零输入响应是线性时不变的C全响应是线性时不变的 D 强迫响应是线性时不变的2、填空题与判断题2。
信号与系统期末复习资料(仅供参考)1、什么叫做LTIS ,它有什么特点?LTIS 是线性是不变系统,具有线性(齐次性、叠加性),时不变性,微分性,积分性。
1、傅氏变换、拉氏变换、Z 变换三者的关系是什么?拉氏变换是傅氏变换的升级版,Z 变换是离散的拉氏变换。
2、什么叫DTF 、FFT ,两者关系是什么?DTF 表示离散的傅里叶变换,FFT 表示快速傅里叶变换,FFT 是DTF 的一种快速变换。
3、消息、信号、信息三者关系? 4、时域抽样定理5、离散时间系统稳定性6、连续时间系统稳定性8、信号基本运算9、连续时间信号、离散时间信号、数字信号的图像判定 10、卷积(图像法)(),(),()()()f t h t g t f t h t =⊗例:已知求11、1、一线性时不变系统,在相同的初始条件下,若当激励为时,其全响应为,当激励为时,其全响应,求:(1)初始条件不变,当激励为时的全响应,为大于零的常数。
(2)初始条件增大一倍,当激励为时的全响应。
解:根据线性系统的性质则解得则小结:对于线性时不变系统,其全响应包括零状态响应和零输入响应,即,如果输入改变为原来的倍,对应的零状态响应变为原来的倍,即为。
如零状态改变为原来的倍,对应的零输入响应变为原来的倍,即为。
系统的响应变为。
12、画频谱图(可能已知单边画双边)已知周期电压()()()()22cos 45sin 245cos 360u t t t t =++-+++,试画出其单边、双边幅度谱和相位谱。
解:()()()()22cos 45sin 245cos 360u t t t t =++-+++()()()22cos 45cos 2135cos 360t t t =++++++所以令01ω=,即有 01121332,2,45,1,135,1,60,A A A A ϕϕϕ=======因此单边幅度谱和相位谱如下:根据单双边谱之间的关系得:3124513560001122331112,,0.5,0.5222j j j j j j F A F Ae e F A e e F A e e ϕϕϕ±±±±±±±±±========由此的双边谱如下:ω 0ω02ω03ω 2 1A n ω0ω 02ω03ω 3ππn ϕπ/4ωω3ω20.5nF2ωω-02ω-03ω-113、已知系统的微分方程为 ()()()()()323y t y t y t f t f t ''''++=+,求在下列两种情况下系统的全响应。
第一章绪论1、选择题、f (5-2t )是如下运算的结果 CA 、 f (-2t )右移5B 、 f (-2t )左移5C 、 f (-2t )右移25 D 、 f (-2t )左移25、f (t 0-a t )是如下运算的结果 C 。
A 、f (-a t )右移t 0;B 、f (-a t )左移t 0 ;C 、f (-a t )右移a t 0;D 、f (-a t )左移at0 、已知 系统的激励e(t)与响应r(t)的关系为:)()()(t u t e t r = 则该系统为 B 。
A 、线性时不变系统;B 、线性时变系统;C 、非线性时不变系统;D 、非线性时变系统 、已知 系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。
A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统 、已知 系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。
A 、线性时不变系统B 、线性时变系统C 、非线性时不变系统D 、非线性时变系统、已知 系统的激励e(t)与响应r(t)的关系为:)2()(t e t r = 则该系统为 B A 、线性时不变系统 B 、线性时变系统 C 、非线性时不变系统 D 、非线性时变系统 .信号)34cos(3)(π+=t t x 的周期为 C 。
A 、π2 B 、π C 、2π D 、π2、信号)30cos()10cos(2)(t t t f -=的周期为: B 。
A 、15π B 、5π C 、π D 、10π、dt t t )2(2cos 33+⎰-δπ等于 B 。
、 若)(t x 是己录制声音的磁带,则下列表述错误的是: BA. )(t x -表示将此磁带倒转播放产生的信号B. )2(t x 表示将此磁带放音速度降低一半播放C. )(0t t x -表示将此磁带延迟0t 时间播放D. )(2t x 表示将磁带的音量放大一倍播放 .=⋅)]([cos t u t dtdA A .)()(sin t t u t δ+⋅- B. t sin - C. )(t δ D.t cos.信号t t t x o 2cos 4)304cos(3)(++=的周期为 B 。
变为f (t -t)时,相应的输出响应y (t )是否变为y (t -t )。
‘ ᩴ -第一章信号与系统分析导论1.信号分类:确定信号与随机信号、连续时间信号与离散时间信号、周期信号和非周期信号、能量信号与功率信号。
2.系统分类:连续时间系统与离散时间系统、线性系统和非线性系统、非时变系统与时变系统、因果系统与非因果系统3.掌握信号周期的判断、线性系统的判断、时不变系统的判断(1)判断周期性 Ω0 /2π = m/N ,N 、m 是不可约的整数,则信号的周期为 N 。
例 f 1[k ] = sin(kpi /6)W0 /2pi = 1/12, 由于 1/12 是不可约的有理数, 故离散序列的周期 N=12。
习题 1-4(2)判断一个系统是否为线性系统,应从三个方面来判断:1)、具有可分解性y (t ) = y zi (t ) + y zs (t )2)、零输入线性,系统的零输入响应必须对所有的初始状态呈现线性特性。
3)、零状态线性,系统的零状态响应必须对所有的输入信号呈现线性特性。
例: y (t ) = 2 y (0) + 6 f2(t ) ,可分解但是 y zs (t ) 是非线性的,故不是线性系统习题 1-7(3)判断系统是否为时不变系统,只需判断当输入激励 f (t )0 0注意:时不变特性只考虑系统的零状态响应,因此在判断系统的时不变特性时,不涉及系统的初始状态。
例 y (t)=cos t ·f (t )y (t ) = cos(t ) f (t - t 0 ) 而 y (t - t 0 ) = cos(t - t 0 ) f (t - t 0 ) 故不相等,是时变系统。
习题 1-8第二章信号的时域分析1.掌握普通信号的定义(1) 指数信号——实指数信号 f (t ) = Ae αt(2) 虚指数信号 f (t ) = e jω0tEuler 公式:cos(ωt ) = 1 2(e j ωt + e - j ωt)sin(ωt ) =1 2 j(e j ωt - e - j ωt )(3) 指数信号——复指数信号 f (t ) = Ae sts = σ + j ω01f (t ) = Ae σt e j ω0t = Ae σtcos ω0t + jAe σtsin ω0t〰〰〰〰(4) 抽样函数 Sa(t ) = sin t / t抽样函数具有以下性质:- π π2π 〰ᩴSa(0) = 1Sa(k π ) = 0, k = ±1,±2∞⎰ -∞Sa(t )dt = πu (t ) = ⎨u (t - t 0 ) = ⎨⎰ ⎰δ (τ )d τ = ⎨⎧1 t >r (t ) = ⎨= ⎰ u (τ ) ⋅ d τ ⎰δ (t )dt = 0 ⎰δ (τ )d τ =δ (t ) f (t )δ (t ) = f (0)δ (t ) - f (0)δ (t )⎰f (t )δ (t )dt = - f ⎰sin(t ) ⋅δ (t - )dt = sin( ) = 2 / 2(2)⎰ e -5t ⋅δ (t -1)dt = e -5⨯1 = 1/ e 5(3)⎰ e -2t ⋅δ (t + 8)dt = 0 2.掌握奇异信号的定义 (1) 单位阶跃信号⎧1 ⎩0 t > 0 t < 0 t⎧1⎩0t > t 0 t < t 0t(2) 冲激信号δ(t )=0 , t ≠0+∞ -∞δ (t ) dt = 1δ (t - t 0 ) = 0t ≠ t 0∞ ⎰ -∞δ (t - t 0)dt = t 0 +∆ ⎰ t 0 -∆δ (t - t 0)dt = 1冲激信号的性质a)筛选特性 f (t )δ (t - t 0 ) = f (t 0 )δ (t - t 0 )b)取样特性 ∞⎰-∞f (t )δ (t - t 0 )dt = f (t 0 )c)展缩特性 δ (at ) = 1aδ (t ) , δ (t ) = δ (-t )推论:冲激信号是偶函数。
信 号 与 系 统 复 习 资 料一 填空1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。
2.如果一线性时不变系统的输入为f(t),零状态响应为)(2)(0t t f t y f -=,则该系统的单位冲激响应h(t)为_________________。
3.如果一线性时不变系统的单位冲激响应)()(t t h ε=,则当该系统的输入信号)()(t t t f ε=时,其零状态响应为_________________。
4.傅里叶变换的时移性质是:当f(t)↔F(j ω),则f(t ±t 0)↔____________。
5.=--)]([)1(2t e dtd t tδ___________ 6.根据线性时不变系统的微分特性,若:)()(t y t f f −−→−系统则有:f ′(t)−−→−系统______。
7.卷积(1-2t)ε(t)*ε(t)等于________________。
8.信号f(n)=δ(n)+(21)nε(n)的Z 变换等于____________。
9.单位序列响应 h(n) 是指离散系统的激励为δ (n) 时,系统的 ____________。
10.线性性质包含两个内容:________,__________ 。
11.余弦信号)cos(0t ω的傅里叶变换为___________。
12.若)()()(21t f t f t f *=,则=)()1(t f________)(2t f *。
13.已知)()]([ωj F t f F =,则=-)52(t f ________。
14.已知15.011)(--=z Z F ,则=)(k f __________。
15.=⋅-)()3(t t εε________________。
16.离散系统稳定的z 域充要条件是系统函数H (z )的所有极点位于z 平面的__________。
信号与系统复习资料一、信号与系统的基本概念信号在工程和科学领域中起着重要的作用,它们传输着信息和能量。
信号可以是连续的或离散的,并且可以是模拟的或数字的。
系统是用来处理信号的工具,它们可以是线性的或非线性的,并且可以是时不变的或时变的。
在信号与系统的学习中,我们需要了解信号的性质、系统的特性以及它们之间的相互关系。
二、连续时间信号与离散时间信号连续时间信号是在连续时间域上表示的信号,它们在每个时间点都有定义。
离散时间信号是在离散时间点上采样的信号,它们只在有限的时间点上有定义。
连续时间信号和离散时间信号可以通过采样和保持操作相互转换。
三、信号的分类根据信号的性质,信号可以被分类为周期信号和非周期信号。
周期信号具有重复的模式,并且在无穷远处也保持有界。
非周期信号则没有重复的模式,并且在无穷远处不保持有界。
另外,信号还可以是基带信号或带通信号,基带信号是直接由信息源产生的信号,而带通信号是通过调制技术从基带信号中得到的。
四、连续时间系统与离散时间系统连续时间系统是用连续时间输入信号产生连续时间输出信号的系统,离散时间系统是用离散时间输入信号产生离散时间输出信号的系统。
系统可以是线性的或非线性的。
线性系统遵循叠加原则,输出信号是输入信号的线性组合。
非线性系统则不遵循叠加原则。
五、信号的时域分析时域分析是通过观察信号在时间上的变化来研究信号的性质。
常用的时域分析技术包括时域图、自相关函数、互相关函数等。
时域图是信号在时间轴上的表示,可以直观地观察信号的振幅、频率和相位等特性。
自相关函数衡量信号与自身在不同时间点之间的相似度,互相关函数衡量两个信号之间的相似度。
六、信号的频域分析频域分析是通过观察信号在频率上的变化来分析信号的性质。
傅里叶变换是常用的频域分析工具,它将信号从时域转换到频域。
傅里叶变换可以将信号表示为一系列复指数函数的线性组合,其中每个复指数函数对应一个频率。
功率谱密度函数是衡量信号在不同频率上的能量分布情况和频率成分的重要工具。
信号与系统复习资料及答案2.设系统零状态响应与激励的关系是:"s (r )=∣∕α)∣,则以下表述不对的是(.A )。
B.系统是时不变的C.系统是因果的D.系统是稳定的4 .设一个矩形脉冲的面积为S,则矩形脉冲的FT (傅氏变换)在原点处的函数值等)o5 .信号(£(t )-£(t-2))的拉氏变换的收敛域为(C )。
6 .已知连续系统二阶微分方程的零输入响应κ,⑺的形式为A/+8",则其2个7 .函数£⑺是(8 .周期矩形脉冲序列的频谱的谱线包络线为()09 .能量信号其(B )010 .在工程上,从抽样信号恢复原始信号时需要通过的滤波器是(B )0A.高通滤波器C.带通滤波器D.带阻滤波器 二、填空题L 系统的激励是e(“,响应为若满足也乜,则该系统为线性、时不dt 变、因果。
一、选择题L 线性系统具有 D)o A.分解特性 B.零状态线性C.零输入线性D.ABC A.系统是线性的 3.零输入响应是( )0A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差A.S/2B.S/3C.S/4D.SA.Re[s]>OB.Re[s]>2C.全S 平面D.不存在特征根为(AA. -1,-2)o B. -1,2 C. 1,-2 D. 1,2 A.奇函数B.偶函数C.非奇非偶函数D.奇谐函数 A. δ函数B. Sa 函数C. £函数D.无法给出 A.能量E=OB.功率P=OC.能量E=8D.功率P=OOB.低通滤波器2.求积分Jjr2+∖)δ(t-2)dt的值为o3.当信号是脉冲信号/⑺时,其低频分量主要影响脉冲的顶部,其高频分量主要影响脉冲的跳变沿。
4.若信号/⑺的最高频率是2kHz,则"2。
的乃奎斯特抽样频率为8kHz。
5.信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为相频特性为o6.系统阶跃响应的上升时间和系统的截止频率成反比。
一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /s15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )16、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( ) A.)(t δ B.)2(t δ C. )(t f D.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae2--+,则其2个特征根为( ) A 。
《信号与系统》期末复习材料一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,清华大学出版社,北方交通大学出版社,2003年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
第6章系统的频域分析1.掌握连续系统频率响应的物理概念与计算。
2.掌握连续系统响应的频域分析,重点掌握虚指数信号通过系统的响应。
3.掌握无失真传输系统与理想模拟滤波器的特性。
4.掌握离散系统频率响应的物理概念。
5.掌握离散系统响应的频域分析,重点掌握虚指数序列通过系统的响应。
6.掌握理想数字低通滤波器的特性。
第7章连续时间信号与系统的复频域分析1.熟练掌握信号单边Laplace变换及其基本性质。
2.掌握利用单边Laplace变换求解连续系统的零输入响应和零状态响应。
3.重点掌握连续时间系统的系统函数与系统特性(时域特性、频率响应、稳定性)的关系。
4.掌握连续时间系统的直接型、级联型和并联型模拟框图。
第8章离散时间信号与系统的z域分析1.熟练掌握单边z变换及其性质。
2.掌握利用单边z变换求解离散系统的零输入响应和零状态响应.3.重点掌握系统的系统函数与系统特性(时域特性、频率响应、稳定性)的关系。
4.掌握离散系统的直接型、级联型和并联型模拟框图。
五、期末考试题型及典型例题题型:填空题(共10小题,每小题2分,共20分)、单项选择题(共10小题,每小题2分,共20分)、判断题(共5小题,每题2分,共10分)、计算题(共5小题,每题10分,共50分)。
典型例题见“练习题及答案”。
六、练习题及答案(一)填空题1.(2)(3)u t u t -*+=_ _ 。
2.如右图所示波形可用单位阶跃函数表示为__ _ 。
3.(cos )(()())t t t t dt πδδ∞-∞'++=⎰。
4.从信号频谱的连续性和离散性来考虑,周期信号的频谱是 。
5. 已知()x t 的傅里叶变换为()X j ω,那么0()x t t -的傅里叶变换为_________________。
6.已知一线性时不变系统,在激励信号为()f t 时的零状态响应为()f Y t ,则该系统的系统函数()H s 为_ ______ 。
7.一线性时不变连续时间系统是稳定系统的充分且必要条件是系统函数的极点位于s 平面的 。
8.()()f t t τδτ-*+= 。
9.sin(2)2t t dt πδ-∞'-=⎰ 。
10.信号的频谱包括两个部分,它们分别是 谱和 谱。
11.周期信号频谱的三个基本特点是:离散性、 、 。
12.连续系统模拟中常用的理想运算器有 和 等(请列举出任意两种)。
13. 已知10()()x t t t δ=-,2()x t 的频谱为[]00()()πδωωδωω++-,且12()()()y t x t x t =*,那么0()y t =_________________。
14.312()(),()()tf t e u t f t u t -==,则12()()()f t f t f t =*的拉氏变换为 。
15. 单位冲激函数是 的导数。
16. 系统微分方程特解的形式取决于 的形式。
17. 12()()f t t t t δ'-*-=__ _____。
18. 函数1t的频谱函数()F j ω= 。
19. 频谱函数()(2)(2)F j ωδωδω=-++的傅里叶逆变换()f t = 。
20. 常把0t =接入系统的信号(在0t <时函数值为0)称为 。
21. 已知信号的拉氏变换为111s s -+,则原函数()f t 为__ _____。
答案:1.(1)(1)t u t ++2.()(1)(2)3(1)u t u t u t u t +-+--- 3.0 4.离散的 5.0()j t X j e ωω-6.()()f Y s F s7.左半开平面 8. ()f t9.2π 10. 幅度、相位 11. 谐波性、收敛性12. 加法器、积分器/数乘器(或倍乘器) 13.1 14.113s s +15.单位阶跃函数 16.输入信号或激励信号 17. 12()f t t t '-- 18. sgn()j πω- 19.1cos 2t π20. 因果信号或有始信号 21. 1(1)()e u t --(二)单项选择题 1. 积分41(3)t e t dt δ--⎰等于( )A .3eB .3e -C .0D .12. 系统结构框图如图示,该系统的单位冲激响应()h t )满足的方程式为( )A .()()()dy t y t x t dt+= B .()()()h t x t y t =- C .()()()dh t h t t dtδ+=D .()()()h t t y t δ=-3.信号12(),()f t f t 波形如下图所示,设12()()()f t f t f t =*,则(0)f 为( )A .1B .2C .3D .44.信号(25)()j teu t -+的傅里叶变换为( )A.ωω+5j e j 21B. ω-ω+2j e j 51 C.)5(j 21+ω+ D. )5(j 21-ω+-5.已知信号f t ()如图所示,则其傅里叶变换为( )A .τωττωτ2422Sa Sa ()()+ B .τωττωτSa Sa ()()422+ C .τωττωτ242Sa Sa ()()+ D .τωττωτSa Sa ()()42+6.有一因果线性时不变系统,其频率响应1()2H j j ωω=+,对于某一输入()x t 所得输出信号的傅里叶变换为1()(2)(3)Y j j j ωωω=++,则该输入()x t 为( )A .)(3t u e t --B .)(3t u e t -C .)(3t u e t-D .)(3t u e t7.2()()tf t e u t =的拉氏变换及收敛域为( )A .{}1,Re 22s s >-+ B .{}1,Re 22s s <-+ C .{}1,Re 22s s >-D .{}1,Re 22s s <-8. 积分0(2)()tt t dt δ--⎰等于( )A.2()t δ-B. 2()u t -C. (2)u t -D. 2(2)t δ- 9. 已知系统微分方程为()2()2()dy t y t f t dt +=,若4(0),()()3y f t u t +==,解得全响应为21()1,03ty t e t -=+≥,则全响应中243t e -为( )A.零输入响应分量B.零状态响应分量C.自由响应分量D.强迫响应分量 10. 信号12(),()f t f t 波形如图所示,设12()()()f t f t f t =*,则(0)f 为( ) A. 0 B. 1 C. 2 D. 311. 已知信号()f t 如图所示,则其傅里叶变换为( )A.)4(422ωτωτSa jB.)4(422ωτωτSa j-C.)2(422ωτωτSa jD.)2(422ωτωτSa j-12. 已知 ),()]([ωj F t f =则信号f t ()25-的傅里叶变换为( )A.1225F j e j ()ωω- B.F j ej ()ωω25- C.F j e j ()ωω252-D.12252F j e j ()ωω- 13. 已知一线性时不变系统,当输入3()()()ttx t e eu t --=+时,其零状态响应是4()(22)()t t y t e e u t --=-,则该系统的频率响应为( )A.311()242j j ωω-+++ B. 311()242j j ωω+++ C. 311()242j j ωω-++ D.311()242j j ωω-+++ 14. 信号0()sin (2)(2)f t t u t ω=--的拉氏变换为( ) A.222s se s ω-+ B.2220ss e s ω+ C. 2022s e s ωω+ D.2022s e s ωω-+ 15. 积分()()f t t dt δ∞-∞⎰的结果为( )A.)0(fB.)(t fC.)()(t t f δD.)()0(t f δ 16.卷积()()()t f t t δδ**的结果为( )A.)(t δB.)(2t δC.)(t fD.)(2t f17. 将两个信号作卷积积分的计算步骤是( )A. 相乘—移位—积分B. 移位—相乘—积分C.反褶—移位—相乘—积分D. 反褶—相乘—移位—积分18. 信号()f t 的图形如下图所示,其频谱函数()F j ω为( ) A. 2()j Sa eωω-B. 2()j Sa e ωωC. 24(2)j Sa e ωω D. 24(2)j Sa eωω-19. 若如图所示信号()f t 的傅里叶变换()()()F j R jX ωωω=+,则信号()y t 的傅里叶变换()Y j ω为( ) A.1()2R ω B. 2()R ω C. ()jX ωtD. ()R ω20. 信号[]()(2)u t u t --的拉氏变换的收敛域为( ) A. Re[s]>0 B. Re[s]>2 C. 全S 平面 D. 不存在21. 已知信号()()f t u t 的拉氏变换为()F s ,则信号()()f at b u at b --(其中0,0a b >>)的拉氏变换为( )A.a b s e a s F a -)(1B. sb e a s F a -)(1C. a bs e a s F a )(1 D. sb e a s F a )(1答案:1.A2.C3.B4.C5.C6.B7.C8.B9.A 10.D 11.B 12.D 13.B14.D 15.A 16.C 17.C18.D 19.B 20.C 21.A三、判断题1. 信号是消息的表现形式,消息是信号的具体内容。