相互独立事件同时发生的概率1PPT课件
- 格式:ppt
- 大小:395.00 KB
- 文档页数:22
相互独立事件同时发生的概率知识要点:1.对于事件A、B,如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则称这样的两个事件为相互独立事件.2.相互独立事件的概率乘法公式:设事件A、B相互独立,把A、B同时发生的事件记为(A·B),则有P(A·B)=P(A)·P(B).上述公式可以推广如下:如果事件A1,A2,……,A n相互独立,那么这n个事件都发生的概率等于每个事件发生的概率的积.即P(A1·A2·……·A n)=P(A1)·P(A2)·……·P(A n).3.如果事件A在一次试验中发生的概率是P,那么它在n次独立重复试验中恰好发生k次的概率:P n(k)=P k(1-P)n-k.实际上,它就是二项展开式[(1-P)+P]n的第(k+1)项.要求:1.掌握相互独立事件的概率乘法公式,会用它计算一些事件的概率.2.掌握计算事件在n次独立重复试验中恰好发生k次的概率.典型题目例1.加工某种零件先后需经历三道工序,已知第一、二、三道工序的次品率分别为2%、3%、5%.假定各道工序互不影响,问加工出来的零件的次品率为多少?解:设A1、A2、A3分别表示三道工序得到次品的事件,由题设知,它们是相互独立的事件,而加工得到次品是指以上三个工序中至少有一个工序是次品,即次品事件A=.∴P(A)=0.02×0.97×0.95+0.98×0.03×0.95+0.98×0.97×0.05+0.02×0.03×0.95+0.02×0.97×0.05+0.98×0.03×0.05+0.02×0.03×0.05=0.09693.例2.某商人购进光盘甲、乙、丙三件,每件100盒,其中每件里面都有1盒盗版光盘.这个商人从这3件光盘里面各取出1盒光盘卖给了李四,求:(1)李四恰好买到1盒盗版光盘的概率;(2)李四至少买到1盒盗版光盘的概率.解:(1)记从甲、乙、丙三件光盘里面各取出1盒光盘,得到非盗版光盘的事件分别为A、B、C,则事件·B·C、A··C、A·B·是互斥的;事件、B、C,A 、、C,A、B、彼此之间又是相互独立的.所以P(·B·C+A··C+A·B·)=P(·B·C)+P(A··C)+P( A·B·)=P()·P(B)·P(C)+P(A)·P()·P(C)+P(A)·P(B)·P()=0.01×0.99×0.99+0.99×0.01×0.99+0.99×0.99×0.01≈0.03.(2)事件A、B、C的设法同第(1)小题.因为P(A·B·C)=P(A)·P(B)·P(C)=0.99×0.99×0.99=0.993,所以1-P(A·B·C)=1-0.993≈0.03.例3.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8. 计算:(1)两人都击中目标的概率;(2)其中恰有1人击中目标的概率;(3)至少有一人击中目标的概率.分析:此题有三问,要依层次来解.解:(1)记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B.显然,“两人各射击一次,都击中目标”就是事件:A·B,又由于事件A与B相互独立,∴P(A·B)=P(A)·P(B)=0.8×0.8=0.64.(2)“两人各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A·),另一种是甲未击中乙击中(即·B),根据题意这两种情况在各射击一次时不可能同时发生,即事件A·与·B是互斥的,所以所求概率为:P=P( A·)+P(·B)=P(A)·P()+P()·P(B)=0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32.(3)解法1:“两人各射击一次,至少有一人击中目标”的概率为:P=P(A·B)+[P(A·)+P(·B)]=0.64+0.32=0.96.解法2:“两人都未击中目标”的概率是:P(·)=P()·P()=(1-0.8)×(1-0.8)=0.2×0.2=0.04.∴至少有一人击中目标的概率为:P=1-P(·)=1-0.04=0.96.点评:由(3)可见,充分利用(1)、(2)两问的结果解题很简单.但是(3)的解法2也告诉我们,即使是不会求(1)、(2),也可独立来解(3).在考试中要特别注意这一点.例4.某种大炮击中目标的概率是0.3,最少以多少门这样的大炮同时射击一次,就可以使击中目标的概率超过95%?解:设需要n门大炮同时射击一次,才能使击中目标的概率超过95%,n门大炮都击不中目标的概率为×0.30×0.7n=0.7n.至少有一门大炮击中目标的概率为1-0.7n.根据题意,得1-0.7n>0.95,即0.7n<0.05, nlg0.7<lg0.05,n>≈8.4.答:最少以9门这样的大炮同时射击一次,就可使击中目标的概率超过95%.例5.要制造一种机器零件,甲机床的废品率是0.04,乙机床的废品率是0.05,从它们制造的产品中,各任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中恰有一件废品的概率;(3)其中至多有一件废品的概率;(4)其中没有废品的概率;(5)其中都是废品的概率.分析:应先确定所应用的每一事件的概率,以便求解.解:依题意可知:显然,这两个机床的生产应当看作是相互独立的.设A=“从甲机床抽得的一件是废品”,B=“从乙机床抽得的一件是废品”.则P(A)=0.04, P()=0.96, P(B)=0.05, P()=0.95.由题意可知,A与B,与B,A与,与都是相互独立的.(1)“至少有一件废品”=A·B +·B+A·P(A·B +·B+A·)=1-P(·)=1-P()·P()=1-0.96×0.95=0.088.(2)“恰有一件废品”=·B+A·.P(·B+A·)=P(·B)+P(A·)=P()·P(B)+P(A)·P()=0.96×0.05+0.04×0.95=0.048+0.038=0.086.(3)“至多有一件废品”=A·+·B+·P(A·+·B+·)=P(A·)+P(·B)+P(·)=P(A)·P()+P()·P(B)+P()·P()=0.04×0.95+0.96×0.05+0.96×0.95=0.998.另外的解法是:“至多有一件废品不发生”=“两件都是废品”=A·BP(A·+·B+·)=1-P(A·B)=1-P(A)·P(B)=1-0.04×0.05=0.998.(4)“其中无废品”=“两件都是成品”=·P(·)=P()·P()=0.96×0.95=0.912.(5)“其中全是废品”=A·BP(A·B)=P(A)·P(B)=0.04×0.05=0.002.点评:本例有很强的综合性,学习中要注意认真体会加以理解掌握之.例6.已知射手甲命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.问三人同时射击目标,目标被击中的概率是多少?解:设甲命中目标为事件A,乙命中目标为事件B,丙命中目标为事件C,则击中目标表示事件A、B、C中至少有一个发生.但应注意,A、B、C这三个事件并不是互斥的,因为目标可能同时被两人或三人击中,因此,可视目标被击中的事件的对立事件是目标未被击中,即三人都未击中目标,它可以表示为,而三人射击结果相互独立.所以P()=P()·P()·P()=[1-P(A)]·[1-P(B)]·[1-P(C)]=(1-)(1-)(1-)=.所以,目标被击中的概率是1-P()=1-.。