七年级数学下册21整式的乘法单项式乘多项式典型例题素材湘教版
- 格式:doc
- 大小:31.05 KB
- 文档页数:2
七年级数学下册21整式的乘法《多项式乘多项式》典型例题素材湘教版.-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《多项式乘多项式》典型例题例1 计算)2)(133(2424-++-x x x x例2 计算:)3(2)2(3)1)(12()1)(13(x x x x x x x x -------++例3 利用ab x b a x b x a x +++=++)())((2,写出下列各式的结果;(1))6)(5(-+x x(2))53)(23(+-+-x x例4 计算)1)(1)(1(2++-x x x例5 已知012=-+x x ,求423+-x x 的值。
例6 计算题:(1))43)(52(y x y x -+; (2)))((22y x y x ++;(3))43)(32(y x y x --; (4))321)(421(-+x x .例7 已知计算)35)((23+-++x x n mx x 的结果不含3x 和2x 项,求m ,n 的值。
例8 计算(1))9)(7(++x x ; (2))20)(10(+-x x ;(3))5)(2(--x x ; (3)))((b x a x ++。
参考答案例1 解:原式263363324246468-+++---+=x x x x x x x x2783248-+-=x x x说明:多项式乘法在展开后合并同类项前,要检查积的项数是否等于相乘的两项式项数的积,防止“重”、“漏”。
例2 解:原式2222663)122(133x x x x x x x x x ++-+----++=2222663122133x x x x x x x x x ++--++-+++=x x 1342+=说明:本题中)1)(12(--x x 前面有“-”号,进行多项式乘法运算时,应把结果写在括号里,再去括号,以防出错。
例3 解:(1))6)(5(-+x x)6(5)65(2-⋅+-+=x x302--=x x(2))53)(23(+-+-x x1021952)3)(52()3(22+-=⨯+--+-=x x x x说明:(2)题中的)3(x -即相当于公式中x例4 解:)1)(1)(1(2++-x x x11)1()11()()1)(1()1](1)1()11([42222222-=⋅-++-+=+-=+⋅-++-+=x x x x x x x x说明:三个多项式相乘,可先把两个多项式相乘,再把积与剩下的一个多项式相乘。
《整式的乘法》典型例题
例1 计算:
(1)
(2)
(3)
解:(1)原式
(2)原式
(3)原式
说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
例2计算题:
(1);(2).
分析:(1)中单项式为,多项式里含有,,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.
解:(1)原式
(2)
说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
例3化简
(1);
(2).
分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号和,再去中括号.
解:(1)原式
(2)原式
例4求值:,其中.
解:原式
当时,
说明:求值问题,应先化简,再代入求值.
例5设,求的值.
分析:由已知条件,显然,再将所求代数式化为的形式,整体代入求解.
解:
说明:整体换元的数学方法,关键是识别转化整体换元的形式.。
七年级下册总复习第一章二元一次方程【知识点归纳】1.含有个未知数,并且项的次数都是的方程叫做二元一次方程。
2.把个含有未知数的二元一次方程(或者一个二元一次方程,一个一元一次方程)联立起来组成的方程组,叫做二元一次方程组。
3.在一个二元一次方程组中,使每一个方程两边的值都的一组未知数的值,叫做这个二元一次方程组的解。
4.由二元一次方程组中的一个方程的某一个未知数用含有的代数式表示,再代入另一方程,便得到一个一元一次方程。
这种解方程组的方法叫做消元法,简称代入法。
5.两个二元一次方程中同一未知数的系数或时,把这两个方程相减或相加,就能消去这个未知数,从而得到一个一元一次方程。
这种解方程组的方法叫做消元法,简称加减法。
6.列二元一次方程组解决实际问题的关键是寻找。
【典型例题】1.已知方程组,甲同学正确解得,而乙同学粗心,把c给看错了,解得,求abc的值.2.已知关于x,y的方程组的解是,求关于x,y的方程组的解.3.先阅读,然后解方程组.解方程组时,可由①得x﹣y=1③,然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得这种方法被称为“整体代入法”.请用这样的方法解方程组.4.阅读下列解方程组的方法,然后回答问题. 解方程组解:由①﹣②得2x +2y=2即x +y=1③ ③×16得16x +16y=16④ ②﹣④得x=﹣1,从而可得y=2 ∴方程组的解是.(1) 请你仿上面的解法解方程组.(2)猜测关于x 、y 的方程组的解是什么,并利用方程组的解加以验证.5.南山植物园以其优美独特的自然植物景观,现已成为重庆市民春游踏青、赏四季花卉、观山城夜景的重要旅游景区.若该植物园中现有A 、B 两个园区,已知A 园区为矩形,长为(x +y )米,宽为(x ﹣y )米;B 园区为正方形,边长为(x +3y )米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11x ﹣y )米,宽减少(x ﹣2y )米,整改后A 区的长比宽多350米,C D 投入(元/平方米) 13 16 收益(元/平方米)1826且整改后两园区的周长之和为980米.若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如下表:求整改后A、B两园区旅游的净收益之和.(净收益=收益﹣投入)6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?7.小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?第二章整式的乘法【知识点归纳】1.同底数幂相乘,不变,相加。
初中数学试卷 金戈铁骑整理制作期末复习(二) 整式的乘法各个击破命题点1 幂的运算【例1】 若a m +n ·a m +1=a 6,且m +2n =4,求m ,n 的值.【思路点拨】 已知m +2n =4,只要再找到一个关于m ,n 的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a 的指数相等即可得到.【解答】 由已知得a 2m +n +1=a 6,所以2m +n +1=6,即2m +n =5.又因为m +2n =4,所以m =2,n =1.【方法归纳】 对于乘方结果相等的两个数,如果底数相等,那么指数也相等.1.(徐州中考)下列运算正确的是(C)A .3a 2-2a 2=1B .(a 2)3=a 5C .a 2·a 4=a 6D .(3a)2=6a 22.若2x =3,4y =2,则2x +2y 的值为6.3.计算:(1)(-2x 3y)2;解:原式=(-2)2(x 3)2y 2=4x 6y 2.(2)(-x 2)3·(-x 3)5;解:原式=(-x 6)·(-x 15)=x 21.(3)2(x 3)3·x 3-x 2·(x 5)2-(-x)3·(-x 2)4·(-x).解:原式=2x 9·x 3-x 2·x 10-x 3·x 8·x=2x 12-x 12-x 12=0.命题点2 多项式的乘法【例2】 化简:2(x -1)(x +2)-3(3x -2)(2x -3).【解答】 原式=2(x 2+2x -x -2)-3(6x 2-9x -4x +6)=-16x 2+41x -22.【方法归纳】 在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.4.如果(x +1)(2x +m)的乘积中不含x 一次项,则m 为(A)A .-2B .2 C.12 D .-125.下列各式中,正确的是(B)A .(-x +y)(-x -y)=-x 2-y 2B .(x 2-1)(x -2y 2)=x 3-2x 2y 2-x +2y 2C .(x +3)(x -7)=x 2-4x -4D.(x-3y)(x+3y)=x2-6xy-9y2命题点3 适用乘法公式运算的式子的特点【例3】下列多项式乘法中,可用平方差公式计算的是(C)A.(2a+b)(2a-3b) B.(x+1)(1+x)C.(x-2y)(x+2y) D.(-x-y)(x+y)【方法归纳】能用平方差公式进行计算的两个多项式,其中一定有完全相同的项,剩下的是互为相反数的项,其结果是相同项的平方减去相反项的平方.6.下列多项式相乘,不能用平方差公式的是(A)A.(-2y-x)(x+2y)B.(x-2y)(-x-2y)C.(x-2y)(2y+x)D.(2y-x)(-x-2y)7.下列各式:①(3a-b)2;②(-3a-b)2;③(-3a+b)2;④(3a+b)2,能用两数和的完全平方公式计算的有②④(填序号).命题点4 利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【思路点拨】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】原式=(4a2-b2)-(a2-4ab+4b2)+5b2=3a2+4ab.当a=-1,b=2时,原式=3×(-1)2+4×(-1)×2=-5.【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.8.下列等式成立的是(D)A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a29.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是4.10.计算:(1)(a+b)2-(a-b)2-4ab;解:原式=a2+2ab+b2-a2+2ab-b2-4ab=0.(2)[(x+2)(x-2)]2;解:原式=(x2-4)2=x4-8x2+16.(3)(a+3)(a-3)(a2-9).解:原式=(a2-9)(a2-9)=a4-18a2+81.命题点5 利用乘法公式计算【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【思路点拨】根据图形可以得到:图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】(1)方法一:(a+b)2.方法二:a2+2ab+b2.(2)(a+b)2=a2+2ab+b2.(3)1022=(100+2)2=1002+2×100×2+22=10 404.【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.11.(枣庄中考)图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是(C)A.2ab B.(a+b)2C.(a-b)2 D.a2-b2整合集训一、选择题(每小题3分,共24分)1.计算b2·(-b3)的结果是(B)A.-b6 B.-b5C.b6 D.b52.(恩施中考)下列计算正确的是(D)A.2a3+3a3=5a6B.(x3)2=x5C.-2m(m-3)=-2m2-6mD.(-3a-2)(-3a+2)=9a2-43.如果a2n-1·a n+5=a16,那么n的值为(B)A.3 B.4C.5 D.64.如果(x-2)(x+3)=x2+px+q,那么p、q的值为(C)A.p=5,q=6 B.p=-1,q=6C.p=1,q=-6 D.p=5,q=-65.一个长方体的长、宽、高分别是3a-4、2a、a,它的体积等于(D)A.3a3-4a2 B.a2C.6a3-8a D.6a3-8a26.如果(a3)6=86,则a等于(C)A.2 B.-2C.±2 D.以上都不对7.已知a=814,b=275,c=97,则a,b,c的大小关系是(A)A .a >b >cB .a >c >bC .a <b <cD .b >c >a8.(日照中考)观察下列各式及其展开式:(a +b)2=a 2+2ab +b 2;(a +b)3=a 3+3a 2b +3ab 2+b 3;(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4;(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5;…请你猜想(a +b)10的展开式第三项的系数是(B)A .36B .45C .55D .66二、填空题(每小题3分,共18分)9.计算:x 5·x 7=x 12,(-a 2)3·(-a 3)2=-a 12.10.计算:3m 2·(-2mn 2)2=12m 4n 4.11.(福州中考)已知有理数a ,b 满足a +b =2,a -b =5,则(a +b)3·(a -b)3的值是1_000.12.计算(-212)2 017×0.42 018=-0.4. 13.若(a m +1b n +2)·(a 2m b 2n -1)=a 4b 7,则m +n =3.14.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为±4x 或4x 4.三、解答题(共58分)15.(12分)计算:(1)(-2a 2b)3+8(a 2)2·(-a)2·(-b)3;解:原式=-8a 6b 3-8a 6b 3=-16a 6b 3.(2)a(a +4b)-(a +2b)(a -2b)-4ab ;解:原式=a 2+4ab -(a 2-4b 2)-4ab=a 2+4ab -a 2+4b 2-4ab=4b 2.(3)(2x -3y +1)(2x +3y -1).解:原式=[2x -(3y -1)][2x +(3y -1)]=4x 2-(3y -1)2=4x 2-(9y 2-6y +1)=4x 2-9y 2+6y -1.16.(8分)已知a +b =1,ab =-6,求下列各式的值.(1)a 2+b 2;(2)a 2-ab +b 2.解:(1)原式=(a +b)2-2ab=1+12=13.(2)原式=(a +b)2-3ab=12-3×(-6)=1+18=19.17.(8分)先化简,再求值:(1)(常州中考)(x +1)2-x(2-x),其中x =2;解:原式=x 2+2x +1-2x +x 2=2x 2+1.当x =2时,原式=8+1=9.(2)(南宁中考)(1+x)(1-x)+x(x +2)-1,其中x =12. 解:原式=1-x 2+x 2+2x -1=2x.当x =12时,原式=2×12=1.18.(10分)四个数a 、b 、c 、d 排成2行、2列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪a b c d ,定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,这个记号就叫做2阶行列式.例如:⎪⎪⎪⎪⎪⎪1 23 4=1×4-2×3=-2.若⎪⎪⎪⎪⎪⎪x +1 x +2x -2 x +1=10,求x 的值. 解:⎪⎪⎪⎪⎪⎪x +1 x +2x -2 x +1=(x +1)2-(x -2)(x +2)=2x +5=10, 解得x =2.5.19.(10分)如图,某校有一块长为(3a +b)米,宽为(2a +b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a 、b 的代数式表示绿化面积并化简;(2)求出当a =5米,b =2米时的绿化面积.解:(1)S 阴影=(3a +b)(2a +b)-(a +b)2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2=5a 2+3ab(平方米).(2)当a =5,b =2时,5a 2+3ab =5×25+3×5×2=125+30=155(平方米).20.(10分)小华和小明同时计算一道整式乘法题(2x +a)(3x +b).小华把第一个多项式中的“a ”抄成了-a ,得到结果为6x 2+11x -10;小明把第二个多项式中的3x 抄成了x ,得到结果为2x 2-9x +10.(1)你知道式子中a ,b 的值各是多少吗?(2)请你计算出这道题的正确结果.解:(1)根据题意,得(2x -a)(3x +b)=6x 2+(2b -3a)x -ab=6x 2+11x -10;(2x +a)(x +b)=2x 2+(a +2b)x +ab=2x 2-9x +10,所以⎩⎪⎨⎪⎧2b -3a =11,a +2b =-9.解得⎩⎪⎨⎪⎧a =-5,b =-2.(2)正确的算式为:(2x -5)(3x -2)=6x 2-19x +10.。
《单项式乘多项式》典型例题例1计算:(1)(4^)-(3X2+2^-1)(2)(—x) • (8兀‘ —7兀+4)2(3)2ci(cr — cib—少)—3ab(4a — 2b) + 2b(7— 4ab + )例2计算题:4 3 ?(1) (-3X2)(4X2一一兀+1);(2) +3a m'l b + l)~ab ・5 3例3 求值:y n(y n +9y-12)-3(3/+1 -4/),其中y = -3,n = 2. 例4化简(1)一5兀")严2 .(3兀”+3)一2兀")严+3/);(2)2ab[(2ab)2 -3b(ab + 22/?) —ab2].例5 设m2 + 加一1 = 0,求m3 + 2m2 + 2000 的值.例6计算:(1)(4xy) • (3兀2 + 2xy一1)(2)(——x) - (8x3— 7x + 4)(3)2a(/ — ab — b~) — 3ab(4a —2b) + 2Z?(7^z2—4ab + b?)例7计算题:4 3 9 (1)(―3兀2)(4兀_—兀+1); (2) (—cih"、+3Q" % + 1) —ab。
例8 求值:/(/ +9y-12)-3(3/+, -4/),其中y = -3,n = 2. 例9化简(1)-5x n y,t+2-(3x n+3y-2x n y n-{ +3/);(2)2ab[(2ab)2— 3b(ab + 21b) — ab2]o例10 设m2 + m-1 = 0,求/?23 + 2m2 + 2000 的值。
参考答案例1解:(1)原式二4兀)八3尢2+4兀y Jxy + dxyX-l)= l2x3y + 8x2y2 -4xy(2)原式=(—x)• 8兀'+ (—x) • (—7x) + (—x)• 42 2 2=—4x4 H—x2— 2兀2(3)原式= 2a3- 2a2b — 2ab22a2b + 6ab2 +14a2b一Sab2 + 2b3=2/—4〃+2戾说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2分析:(1)中单项式为-3兀2,多项式里含有4*, -i Xf 1,乘积结果为三项,特9别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幕相乘底数不变指数相加.解:(1)原式=—3兀2 • 4疋 + (―3兀$ ).(—兀)+ (—3 兀2).]9=—12x4 H—x4— 3x233 9 ?(2)(-ab m'1 +3a m-x b + V)--ab^--ab5 3 33 9 9 9=-ab m-{ x-ab + 3严bx-ab + -ab5 3 3 3= -a2b m-^-2a,n b2+-ab.5 3说明:单项式与多项式的笫一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式=y2n +9/+I -12/ -9/+1 4-12/=r w当y = -3, n = 2时,y2”=(_3)2x2=(_3)4=81说明:求值问题,应先化简,再代入求值.例4分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号(2ab)2和3炮+讪,再去中括号.解:(1)原式二-5x>,,+2• 3兀Wy + (-5x n y H+2)(一2兀) + (-5x n y n+2 -3/)=-15严严+i0x2n y2n+i-15x n y2n+2(2)原式=2ab[4a2b2 + (-3b)ab + (~3b)a2b一ab2]=2ab[4a2b2 -3ab2 -3a2b1 - ab2]=2ab[a2b2 - 4ab2 ]=2ab -a2b2 + 2ab(-4ab2) = 2a'b' - Sa2b y例5分析:由已知条件,显然/7?2+m = l,再将所求代数式化为m2的形式,整体代入求解.解:m3 + 2m2 + 2000=m3,+ m2 + 2000=m" xm + m • m + m~ + 2000=m(m2 + m) + m2 + 2000 = m + m2 + 2000= 1 + 2000 = 2001说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式=4兀y+4兀y・2与+ 4xy•(-1)=12x3y + 8x2y2 - 4xy(2)原式=(—■ x)• 8兀'+ (—x) - (—7 x) + (—x) • 44^=-4x4 + —x2 -2x2(3)原式=2/ -2a2b一2ab2 -\2crb + 6ab2 +1S —Sab2 + 2b3=2Q3_4Q,+2戾说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
《单项式乘多项式》典型例题
例1 计算:
2)?1x?2xy?(4xy)(3)(113?7xx??4)x)?(8(2)(222222a(a?ab?b)?3ab(4a?2b)?2b(7a?4ab?b))(3例2 计算题:
432m?1m22?1b?1?)?3ax?1)(ab?ab(?3x)(4x.;(2)(1)
953n?nn1n)yy?412)?3(3y(y?9y?y??3,n?2.,其中例3 求值:例4 化简
n?3nn?nn?21n)xy?(3?5xyxy?3y?2;(1)2222ab[(2ab)?3b(ab?2b)?ab].)(2
2322000?m?2mm?m?1?0的值.例5 设,求计算:例6
2)1xy?xy)?(3x?24(1)(13?7xx?4)x)(??(82)(222222a(a?ab?b)?3ab(4a?2b)?2b(7a?4ab?b))(3例7 计算题:
432m?21m?12b?1(?1)ab)??(3x)(4x?ab?3ax。
);1()(2
953n?nn1n)y?3y4y?12)?3(?y(y9y??3,n?2。
,其中求值:例8
9 化简例n?3nn??nn21n)3yy?2x?5yx?y3?(x;) 1(2222ab[(2ab)?3b(ab?2b)?ab]。
2)(23220002m01mm????m?的值。
,求设10 例
参考答案
2)1?(?2xy?4xy4?4xy?3x?xy?)原式例1 解:(1223xy4?8xy??12xy
1113?(?x)?(?7xx)?(??(?x)?4x)?8)原式(2222724??4x?x?2x
232222223?2a?2ab?2ab?12ab?6ab?14ab?8ab?2b 3()原式323bab?22?a?4
要注意积说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.
422x?3x4x?,1,)中单项式为,多项式里含有,乘积结果为三项,特例2 分析:(19别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.422221?3x)3?x)?(x)?(?3??x?4x?( 1)原式解:(94424?x?3x?12x?
32321m1m??abab?1(ab?3a)?b?)(23353222m?1m?1b?aab?ab?ab??ab3
533322mm22?abb.2?ab?a53说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.
2nn?1nn?1n yy?y?9y?12?9?y12解:原式3 例
2n y?
2??3,ny?当时,2n2?24?)81)(?3(?y3??
说明:求值问题,应先化简,再代入求值.
2)2ab(和先去小括号例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,
2ba)(ab?3b,再去中括号.
nn?2n?3nn?2nn?1nn?2n)5x?2x??5xyyyy?3x?3(y??5x)y?(?)(解:(1)原式2n?3n?32n2n?1n2n?2y?yx15x?10xy??15 2222]?ab3b)ab?(?3b)ab?(??2ab[4ab 2)原式(222222]ab3aab??3abb??2ab[4222]abab?4?2ab[ 2223323bbaab?)?2a?2ab?a8bab?2(?422m??1mm?m的形式,整体代,再将所求代数式化为5 分析:由已知条件,显然例入求解.232000m?m?2解:
322?2000?m?m?m
22?2000m?m?m?m??m222?2000?m?2000?m?m(m)?m?m
?1?2000?2001说明:整体换元的数学方法,关键是识别转化整体换元的形式.
2)?14xy?(x?4xy?2xy?3?4xy?)原式(1解:例6
223xy?412xy?8xy?
1113?(?x)?(?7xx)?(??(?x)?4?x)8 2)原式(222724??4x?x?2x
232222223?2a?2ab?2ab?12ab?6ab?14ab?8ab?2b)原式3(.
323b2?4ab??2a
要注意积单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,说明:的各项符号的确定。
若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简。
422x4?3x x?,1,多项式里含有例7 分析:(1)中单项式为,乘积结果为三项,特,9别是1这项不要漏乘。
(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加。
422221x?(?3)?4x?x?(?3x)?(x)??3(1)原式解:9
4442x3??12x?x?3
322m?1m?1b?1)?ab?(ab3a?ab(2)353
3222m?1m?1b?ab???ab3a?abab5333222mm2?abbb.?2a?a53说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负。
2nn?1nn?1n y12?12y???yy?99y 8 例解:原式2n y?
2?,??3ny时,当
2n2?24?)381)?y?(3??(
说明:求值问题,应先化简,再代入求值。
2)ab(2和先去小括号分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,例9
2b)?a3b(ab,再去中括号。
nn?2n?3nn?2nn?1nn?2n)5xy)(?2xyy?3?3??5xyx?xy?(?5)y(?解:(1)原式
n?32n2n?132n?n2n?2y??15x?y15x?10xy
2222]b)3ab)?(?ba?abb?a[2?ab4b?(3(2)原式222222]ab3a4a?b?3abb??2ab[222]b?4ab?2ab[a 2223323b?2)?a8ab?2?abbab?2(?4aba22mm??mm?1整体代例10 分析:由已知条件,显然的形式,,再将所求代数式化为入求解。
232000??2mm解:
322?2000mm?m??
22?m?2000m?m?m?m?222?2000m2000??m??m(?mm?)m?1?2000?2001
说明:整体换元的数学方法,关键是识别转化整体换元的形式。
.。