拉曼光谱.
- 格式:doc
- 大小:194.50 KB
- 文档页数:5
拉曼光谱定义
拉曼光谱(Raman Spectroscopy)是一种非破坏性的分子特征检测手段。
它通过对激发后的分子进行检测,来识别分子中的原子或分子组成部分。
它具有高灵敏度、高准确性和非破坏性,广泛应用于有机/无机化学、生物化学、物理化学等多个学科领域。
拉曼散射是一种被激发光分子而发生的光谱效应,它是物理学家里昂·拉曼在1928年发现的,以他的名字命名。
它的本质是,当一个物体的原子或分子被外界电磁波的能量激发时,会发出符合该物体原子或分子特征的散射光,这种光谱效应就是拉曼散射效应。
拉曼光谱就是拉曼散射效应的可视化图形表示,它可以显示出物体内不同原子或分子的激发状态,从而反映出物体的结构和性质。
拉曼光谱的基本原理是,当一个物体的原子或分子被外界电磁波的能量激发时,会发出符合该物体原子或分子特征的散射光,这种光谱效应就是拉曼散射效应。
拉曼光谱的基本原理是根据物质的不同结构,被激发的分子状态不同,由此产生出不同的散射光谱来反映它们的特性。
拉曼光谱是一种高灵敏度、高准确性的分子特征检测手段,它可以直接检测分子中的原子或分子组成部分,从而反映物体的结构和性质。
由于它的非破坏性、精确性和
高灵敏度,拉曼光谱已经广泛应用于有机/无机化学、生物化学、物理化学、食品分析、环境分析等诸多领域。
拉曼光谱定义,就是表示一种利用拉曼散射原理来检测物质结构特征的方法,即通过测量拉曼散射光谱,来鉴定和识别物体中不同原子或分子组成部分的特性。
它可以提供客观准确的数据,为研究者提供重要的参考信息,从而更好的了解物质的结构、性质和功能。
1第六章拉曼光谱2第一节:引言第二节:拉曼光谱的基本原理 2.1 光散射2.2 拉曼光谱的经典解释 2.3 拉曼光谱的选择定则3第三节:拉曼光谱仪简介第四节:拉曼光谱的应用4.1 在有机化学中的应用 4.2 在无机与材料化学中的应用 4.3 在分析化学中的应用 4.4 在高分子材料中的应用 4.5 在生物学中的应用 4.6 在物理学中的应用 4.7 在催化研究中的应用4第一节引言什么是拉曼散射?假定有一束频率为ν0的单色入射光照射到样品上,除了吸收和透射外,有一部分光将受到样品的散射。
对散射光的频率进行分析,发现部分散射光的频率仍为ν0,而其余散射光的频率分布在ν0两侧,即ν0 ±∆ν, 这种频率发生改变的散射,叫做拉曼散射(Raman Scattering)。
5CCl4的拉曼谱图6拉曼光谱是以印度科学家V. Raman 的名字命名的,因为他和另一个科学家K. S.Krishnan 于1928年最先发现这一散射现象的。
在拉曼散射中,频率的改变是光子与物质相互作用时发生了能量的转移引起的,频率变化的大小以及观察到的拉曼光谱的形式等与散射样品的结构、能级有关,当然用于测定散射的仪器也有一定的影响。
7拉曼光谱的用途:主要用于分子内部转动和振动跃迁的研究。
拉曼散射频率的变化值±∆ν与分子内部的转动和振动能级密切相关。
分子转动能级和几乎所有振动能级的拉曼波数都在0~3500 cm -1之间,当采用400~600 nm 范围任一波长的光作为辐射源,拉曼光谱都处于可见光区域。
用拉曼光谱研究分子的转动和振动,只需一种色散系统和一种探测器。
8在红外光谱中,有些振动模是红外非活性的,如CO 2的对称振动模,这些振动频率可以用拉曼光谱测得,拉曼光谱和红外光谱具有互补性,它们是研究振动和转动的最有效方法,两者缺一不可。
9拉曼光谱的特点:波长位移在中红外区。
有红外及拉曼活性的分子,其红外光谱和拉曼光谱近似。
拉曼光谱拉曼谱是以印度物理学家拉曼(C.V.Raman)命名的一种散射光谱.1928年拉曼和克利希南(K.S.Krishnan)在研究单色光在液体中散射时,不仅观察到与入射光频率相同的瑞利散射,而且还发现有强度很弱,与入射光频率不同的散射光谱.同年,前苏联的曼迭利斯塔姆和兰兹贝尔格在石英的散射中也观察到了这一现象.这种新谱线对应于散射分子中能级的跃迁,为研究分子结构提供了一种重要手段,引起学术界极大兴趣,拉曼也因此荣获1930年的诺贝尔物理学奖.但由于拉曼光谱很弱,受当时光源和检测手段的限制,它的发展曾停滞了一段时期.19世纪60年代激光技术的出现使拉曼光谱得以迅速发展,再加上近年来发展的高分辨率的单色仪和高灵敏度的光电检测系统,使拉曼光谱学进入崭新的阶段,应用领域遍及物理、化学、生物、医学等.利用各种类型的材料作为散射物质,几乎都可能得到相应的拉曼谱.这种新型的实验技术正日益显示其重要意义。
通过实验了解激光拉曼光谱仪的基本结构与工作原理;了解拉曼散射的原理及其在现代科学研究中的作用;测量典型的CCl4拉曼散射谱。
一、实验原理当一束单色光入射在固、液或气态介质上时,从介质中有散射光向四面八方射出.散射光中较强的是瑞利散射,其频率与入射光频率ν0相同,其强度和数量级约为入射光强的10-4~10-3.除瑞利散射外还有拉曼散射,拉曼散射的散射光频率ν与入射光频率相比有明显的变化,即ν=ν0±|Δν|,其强度数量级约为瑞利散射的10-8-10-6,最强的也只是瑞利散射的10-3.瑞利线ν0长波一侧出现的散射线ν=ν0-|Δν|称为斯托克斯(Stokes)线,又称为红伴线;把短波一侧出现的ν=ν0+|Δν|称为反斯托克斯(anti-Stokes)线,又称紫伴线.斯托克斯线比反斯托克斯线通常要强一些.散射光频率ν相对于入射光频率ν0的偏移,即拉曼光谱的频移Δν,是拉曼谱的一个重要特征量.散射线的±|Δν|相对于瑞利线是对称的,而且这些谱线的频移Δν不随入射光频率而变化,只决定于散射物质的性质.换句话说,在不同频率单色光的入射下都能得到类似的拉曼谱.拉曼散射是由分子振动,固体中的光学声子等元激发与激发光相互作用产生的非弹性散射。
拉曼光谱1.1 引言拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。
红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。
拉曼光谱的突出优点是可以很容易地测量含水的样品,而且拉曼散射光可以在紫外和可见光波段量测。
由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。
拉曼光谱得名于印度物理学家拉曼(Raman)。
1928年,拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。
以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。
拉曼因此获得诺贝尔奖。
当一束入射光通过样品时,在各个方向上都发生散射。
拉曼光谱仪收集和检测与入射光成直角的散射光。
由于收集和检测的散射光强度非常低,因此拉曼光谱的应用和发展受到很大限制。
六十年代激光开始广泛应用,拉曼光谱仪以激光作光源,光的单色性和强度都大大提高,拉曼散射仪的信号强度因而大大提高,拉曼光谱技术得以迅速发展,应用领域遍及物理,材料,化学,生物等学科,并已成为光谱学的一个分支−拉曼光谱学。
2.1拉曼光谱原理2.1.1光的散射入射光通过样品后,除了被吸收的光之外,大部分沿入射方向穿过样品,一小部分光则改变方向,发生散射。
一部分散射光的波长与入射光波长相同,这种散射称为瑞利散射(Rayleigh scattering)。
1899年,瑞利从实验中得出结论:晴天时天空呈兰色的原因是大气分子对阳光的散射。
瑞利还证实:散射光的强度与波长的四次方成反比。
这就是瑞利散射定律。
由于组成白光的各种颜色的光中,兰光的波长最短,因而散射光强度最大。
天空因而呈现兰色。
瑞利当时并没有考虑到散射光的频率变化。
他认为散射光与入射光的频率是相同的。
所以后来把与入射光波长相同的散射称为瑞利散射,而把波长与入射光不同的散射称为拉曼散射。
引言概述:拉曼光谱是一种非侵入性的光谱分析技术,可以用来研究物质的化学成分、结构和分子间相互作用等信息。
通过测量样品与激发光相互作用后反散射光的频移,可以得到样品的拉曼光谱图谱。
拉曼光谱具有快速、灵敏和无需样品处理等优势,因此在化学、材料科学、生物医学和环境科学等领域被广泛应用。
正文内容:一、理论基础1. 拉曼散射原理:介绍拉曼光谱的基本原理,包括应力引起的拉曼散射和分子振动引起的拉曼散射。
2. 基本理论模型:介绍拉曼光谱的基本理论模型,包括简谐振动模型和谐振子模型等。
二、仪器设备1. 激发光源:介绍常用的激发光源,如激光器和光纤激光器等,以及它们的特点和选择。
2. 光谱仪:介绍常用的拉曼光谱仪,包括激光外差光谱仪和光纤光谱仪等,以及它们的原理和优缺点。
3. 采样系统:介绍拉曼光谱的采样系统,包括反射式、透射式和光纤探头等,以及它们的适用范围和操作注意事项。
三、数据处理与分析1. 光谱预处理:介绍光谱预处理的方法,包括光谱平滑、噪声抑制和基线校正等,以提高数据质量和减少干扰。
2. 谱图解析:介绍拉曼光谱谱图的解析方法,包括峰拟合、峰识别和谱图比较等,以确定样品的化学成分和结构信息。
3. 定量分析:介绍拉曼光谱的定量分析方法,包括多元线性回归和主成分分析等,以快速准确地测量样品的含量和浓度。
四、应用领域1. 化学分析:介绍拉曼光谱在化学分析中的应用,包括有机物和无机物的定性和定量分析,以及催化剂和原位反应研究等。
2. 材料科学:介绍拉曼光谱在材料科学中的应用,包括纳米材料、多晶材料和聚合物等的表征和结构分析。
3. 生物医学:介绍拉曼光谱在生物医学中的应用,包括体液中代谢产物和蛋白质的检测,以及癌症和药物代谢研究等。
4. 环境科学:介绍拉曼光谱在环境科学中的应用,包括土壤和水体中有机物和无机物的检测,以及大气污染和环境污染物的监测等。
五、发展前景与挑战1. 发展前景:介绍拉曼光谱在未来的发展前景,包括高灵敏度和高分辨率的光谱仪、纳米尺度的光学探针和超快激光技术等。
拉曼散射拉曼散射(Raman scattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。
又称拉曼效应。
1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。
1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。
拉曼散射遵守如下规律:散射光中在每条原始入射谱线(频率为v0)两侧对称地伴有频率为v0±vi(i=1,2,3,…)的谱线,长波一侧的谱线称红伴线或斯托克斯线,短波一侧的谱线称紫伴线或反斯托克斯线;频率差vi 与入射光频率v0无关,由散射物质的性质决定,每种散射物质都有自己特定的频率差,其中有些与介质的红外吸收频率相一致。
拉曼散射的强度比瑞利散射(可见光的散射)要弱得多。
以经典理论解释拉曼散射时,认为分子以固有频率vi振动,极化率(见电极化率)也以vi为频率作周期性变化,在频率为v0的入射光作用下,v0与vi两种频率的耦合产生了v0、v0+vi和v0-vi3种频率。
频率为v0的光即瑞利散射光,后两种频率对应拉曼散射谱线。
拉曼散射的完善解释需用量子力学理论,不仅可解释散射光的频率差,还可解决强度和偏振等一类问题。
拉曼散射为研究晶体或分子的结构提供了重要手段,在光谱学中形成了拉曼光谱学的一分支。
用拉曼散射的方法可迅速定出分子振动的固有频率,并可决定分子的对称性、分子内部的作用力等。
自激光问世以后,关于激光的拉曼散射的研究得到了迅速发展,强激光引起的非线性效应导致了新的拉曼散射现象[1]。
拉曼散射共分为两类型:1、共振拉曼散射(resonance Raman scattering):当一个化合物被入射光激发,激发线的频率处于该化合物的电子吸收谱带以内时,由于电子跃迁和分子振动的耦合,使某些拉曼谱线的强度陡然增加,这个效应被成为共振拉曼散射。
共振拉曼光谱是激发拉曼光谱中较活跃的一个领域,原因在于:(1)拉曼谱线强度显著增加,提高了检测的灵敏度,适合于稀溶液的研究,这对于浓度小的自由基和生物材料的考察特别有用;(2)可用于研究生物大分子中的某一部分,因为共振拉曼增强了那些拉曼谱线是属于产生电子吸收的集团,其他部分可能因为激光的吸收而被减弱;(3)从共振拉曼的退偏振度的测量中,可以得到正常拉曼光谱中得不到的分子对称性的信息。
拉曼光谱拉曼谱是以印度物理学家拉曼(C.V.Raman)命名的一种散射光谱.1928年拉曼和克利希南(K.S.Krishnan)在研究单色光在液体中散射时,不仅观察到与入射光频率相同的瑞利散射,而且还发现有强度很弱,与入射光频率不同的散射光谱.同年,前苏联的曼迭利斯塔姆和兰兹贝尔格在石英的散射中也观察到了这一现象.这种新谱线对应于散射分子中能级的跃迁,为研究分子结构提供了一种重要手段,引起学术界极大兴趣,拉曼也因此荣获1930年的诺贝尔物理学奖.但由于拉曼光谱很弱,受当时光源和检测手段的限制,它的发展曾停滞了一段时期.19世纪60年代激光技术的出现使拉曼光谱得以迅速发展,再加上近年来发展的高分辨率的单色仪和高灵敏度的光电检测系统,使拉曼光谱学进入崭新的阶段,应用领域遍及物理、化学、生物、医学等.利用各种类型的材料作为散射物质,几乎都可能得到相应的拉曼谱.这种新型的实验技术正日益显示其重要意义。
通过实验了解激光拉曼光谱仪的基本结构与工作原理;了解拉曼散射的原理及其在现代科学研究中的作用;测量典型的CCl4拉曼散射谱。
一、实验原理当一束单色光入射在固、液或气态介质上时,从介质中有散射光向四面八方射出.散射光中较强的是瑞利散射,其频率与入射光频率ν相同,其强度和数量级约为入射光强的10-4~10-3.除瑞利散射外还有拉曼散射,拉曼散射的散射光频率ν与入射光频率相比有明显的变化,即ν=ν±|Δν|,其强度数量级约为瑞利散射的10-8-10-6,最强的也只是瑞利散射的10-3.瑞利线ν长波一侧出现的散射线ν=ν0-|Δν|称为斯托克斯(Stokes)线,又称为红伴线;把短波一侧出现的ν=ν+|Δν|称为反斯托克斯(anti-Stokes)线,又称紫伴线.斯托克斯线比反斯托克斯线通常要强一些.散射光频率ν相对于入射光频率ν的偏移,即拉曼光谱的频移Δν,是拉曼谱的一个重要特征量.散射线的±|Δν|相对于瑞利线是对称的,而且这些谱线的频移Δν不随入射光频率而变化,只决定于散射物质的性质.换句话说,在不同频率单色光的入射下都能得到类似的拉曼谱.拉曼散射是由分子振动,固体中的光学声子等元激发与激发光相互作用产生的非弹性散射。
由液体或固体的声学声子产生非弹性散射称为布里渊散射。
用拉曼光谱可以研究固体中的各种元激发的状态,当改变外部条件(如温度和压力等)时,可以研究固体内部状态的变化。
拉曼谱的这个特征是拉曼光谱技术的一大优点,它使得有可能在可见光区研究分子的振动和转动等状态,因此在很多情况下它已成为分子谱中红外吸收方法的一个重要补充。
拉曼光谱的应用范围很广,这里主要介绍应用较多的晶格振动的一级拉曼光谱。
图2-3-1是四氯化碳的拉曼谱,图中央瑞利线的上部已截去,两侧为拉曼线.频率差Δν也可以通过波数差Δv~来表示,二者之比为光速c,即Δν=cΔv~。
图2-3-1 四氯化碳的拉曼谱(一)、激光拉曼散射的经典理论在外加电场E 作用下,分子被极化,产生偶极矩PP=αE (2-3-1) α是极化率张量。
当分子中的原子在平衡位置附近振动时,分子中的电子壳层会发生变形,其极化率也会随之改变,因此极化率可表述为分子简正坐标r 的函数:α=α(r) (2-3-2)上式在平衡位置附近(r=r 0)展开,电谐近似考虑前两项得,α(r)= α(r 0)+()0r r∂∂α(r-r 0) (2-3-3) 设分子的振动是频率为ν得简正振动(简谐近似),振幅为A ,则r=r 0+Acos2πνt (2-3-4)α(r)= α(r 0)+()0r r ∂∂α Acos2πνt (2-3-5) 设入射光是频率为ν0,振幅为E 0得交变电场E=E 0cos2πν0t (2-3-6)由以上几式得P=α(r 0) E 0cos2πν0t +A ()0r r∂∂αE 0cos2πν0t cos2πνt =α(r 0) E 0cos2πν0t, 对应于频率为ν0的瑞利散射; +21 A ()0r r ∂∂αE 0cos2π(ν0+ν)t 对应于频率为ν0+ν的反stocks 散射 +21 A ()0r r∂∂αE 0cos2π(ν0-ν)t ,对应于频率为ν0-ν的stocks 散射; (2-3-7) 即在简正近似和电谐近似条件下,以ν为频率作简谐振动的偶极子被频率为ν0的低强度入射电场调制后引发的散射由瑞利线、stocks 红移线和反stocks 蓝移线三部分构成。
(二)激光拉曼散射的量子理论根据量子理论,当频率为ν0的单色入射光子与物质分子相互作用而散射时,有以下两种情况.一种是弹性散射.散射后光子的能量和频率没有改变,这就是瑞利散射.另一种是非弹性散射.这时入射光子与物质分子之间的相互作用导致能量交换,这个过程又可以看作是入射光子的湮没和另一个能量不同的散射光子的产生,与此同时分子状态发生了跃迁.这种非弹性散射正是本实验中感兴趣的.设E 1和E 2分别代表分子的较低和较高能级,能级差为ΔE =E 2-E 1,如果分子处于能级E 1,它与能量为h ν0的入射光子相互作用导致的结果,分子将被激发到较高的能级E 2,于是散射光子能量为h ν’=h ν0-ΔE (斯托克斯线).另一方面分子处于能级E 2,通过光子的散射,它向下跃迁到较低能级E 1,则散射光子能量为h ν”=h ν0-ΔE (反斯托克斯线).在实际情形中分子不止有两个定态,也就可以有一些不同的值.由以上可知,斯托克斯和反斯托克斯线的频率,ν’和ν”分别为||0ννν∆-='; ||0ννν∆+=''.上述过程中的能量关系可以用图2-3-2来表示,斯托克斯拉曼散射瑞利散射反斯托克斯h(v 0-v)h(v 0+v)hv 0 图2-3-2 拉曼散射的量子解释示意图值得注意的是,图中用虚线表示的能级并不对应于散射分子(或散射系统)的任何许可能级(或状态).它仅仅给出各光子的能量比分子的有关能级高出多少.另外,以上所述的元过程与荧光中的明显不同.在荧光过程中,入射光子被系统所吸收,后者将跃迁到一相应的许可的激发态,经过一定时间后跃迁到某一较低能量的状态并且发射一光子.只有频率合适的入射光子才能引起荧光.而在拉曼散射中入射光子的频率不受限制.这使我们在实验中可选择较强的激光源作入射光.还可以看出,散射光频率的改变取决于物质分子的能级差,所以拉曼散射的频移是一定的,不随入射光频率而变化,只与散射物质本身性质有关.按照统计分布率,分子数在热平衡下按能量的分布为玻耳兹曼分布)(e E N βω-∝,其中ω为能级E 的简并度,β=1/ kT ,k 是玻耳兹常数.因此布居在较高能级上的分子数要少于较低能级上的,这就使频率增加的散射谱线(反斯托克斯线)的强度要比频率减少的散射谱线(斯托克斯线)弱些.二、实验配置(一)拉曼光谱仪结构北大产的RBD-III Raman 光谱仪的主要组成部分有光源、样品、外光路系统、色散系统及信息检测系统.如图2-3-3所示:1、光源.用单色性好、功率强的气体激光器作光源,He-Ne 激光器或Ar+激光器均可。
激光器在低气压和大电流(约为0.4Torr和15A)的弧光放电条件下工作,较强的正离子流将导致严重的气体泵浦效应,使气体集中到放电管的一端,破坏了原来的气压平衡,这对激光的产生很不利.为此,一般在放电管边上加一个回气管,使气体可从压强较高的一端通过回气管扩散到较低的一端,从而减小了气2、外光路系统及样品装置激光器之后到单色仪之前为外光路系统和试样装置,它的作用是为了要在试样上得到最有效的照射,最大限度地收集散射光,还要适合于作不同状态的试样在各种不同条件(如高,低温等)下的测试。
由于拉曼散射的效率很低,试样装置要能以最有效的方式照射样品和聚集散射光,它的光学设计是非常重要的。
通常采用聚焦激光束照射到试样上,以提高试样上的辐照度,产生拉曼散射。
一般用透镜L1聚焦激光束,使其最集中的区域(束腰处直径可达10μm)照射到试样上,试样上的辐照度大约可增大一千倍。
如功率密度太高会损坏样品时,则不用透镜。
透镜L2把样品上被激光束照明的焦柱部分准确地成象在单色仪的入射狭缝上,以最佳的立体角聚集散射光,并使之与单色仪的集光立体角相匹配。
试样室内的凹面镜M2是用以提高散射强度的,M2把反方向的散射光收集起来反射回去,可将进入单色仪的散射光的立体角增加一倍。
(注意:在做单晶体的拉曼散射实验时,由于M2改变了散射的几何配置,所以不用这反射镜。
)3、分光系统分光系统是拉曼谱仪的核心部分,它的主要作用是把散射光分光并减弱杂散光。
分光系统要求有高的分辨率和低的杂散光,一般用双联单色仪。
两个单色仪耦合起来,色散是相加的,可以得到较高的分辨率(约1cm-1)。
双联单色仪的杂散光(在50cm-1处)可以达到10-11。
为了进一步降低杂散光,有时再加一个联动的第三单色仪,此时分辨率提高了,但谱线强度也相应减弱。
4、探测,放大和记录系统拉曼光谱仪的探测器为光电倍增管。
用不同波长的激发光,散射光在不同的光谱区,要选用合适的光谱响应的光电倍增管。
为了减少其暗电流降低噪声,以提高信噪比,需用致冷器冷却光电倍增管。
处理光电倍增管输出的电子脉冲的方法有直流放大法,交流放大法和光子计数法。
当输出电流大于10-9A时用直流放大器,小于10-10A时用光子计数器。
交流放大法目前已较少采用。
在直流测量法中,增大光电倍增管的响应时间,使其倒数大于光子到达速率,则与各个光子对应的脉冲不可分辨,流向光电倍增管的负载电阻的电流是连续的,电流的大小与射到光电阴极的光强成正比,经过直流放大后,可用笔式记录仪记录。
光子计数器适合于探测微弱信号。
它的计数范围为每秒101~105个脉冲,相邻的两个脉冲的时间间隔为0.1s~10μS,而光电倍增管内光电子脉冲形成的时间为0.1~10μS,因此光电倍增管中所产生的电脉冲信号是分立的。
光子计数器就是要算出这些脉冲数目。
光电子脉冲和噪声脉冲在幅度大小和分布上都不相同,可以利用幅度甄别器或脉冲高度分析器部分地将二者分开,再通过脉冲成形电路产生等幅等脉宽的脉冲,用电子计数器计数,送入计算机。
光子计数法不适用于强光信号。
(二)实验样品本次实验中使用的样品是液体CCl4。
三、实验内容与步骤(一)实验步骤1、打开拉曼光谱仪各种设备电源开关,调节好光路(具体操作见说明书),将CCl4样放入样品架。
2、打开操作软件,设置实验参数,测定CCl4拉曼图谱。
3、样品测试完毕之后,,退出拉曼设置。
(二)实验内容1. 进行基线校正及适当的平滑处理,标定峰值,储存数据并打印图谱。
2. 对测定的图谱进行数据检索,作出归属。
思考题1、拉曼图谱的峰强度与那些因素相关?2、依据拉曼光谱的实验方法原理,分析拉曼光谱应用特点。