第四章激光光谱学中的光源
- 格式:ppt
- 大小:961.50 KB
- 文档页数:40
激光光散射谱学
激光光散射谱学(Laser Light Scattering Spectroscopy)是一种用于研究物质的结构和性质的分析技术。
它利用激光光源与样品相互作用产生的散射光来获取有关样品的信息。
在激光光散射谱学中,激光光束照射到样品上,并与样品中的分子或粒子发生散射作用。
根据散射光的特性,可以获得有关样品的结构、粒径、分布以及运动状态等信息。
激光光散射谱学常用的两种技术是动态光散射(Dynamic Light Scattering,DLS)和静态光散射(Static Light Scattering,SLS)。
动态光散射通过测量散射光的强度变化来获取样品中微小颗粒的尺寸和扩散系数。
该技术适用于纳米颗粒、蛋白质、聚合物等溶液中微观粒子的尺寸分析。
静态光散射则通过测量散射光的强度来获得样品中大颗粒的粒径和分布信息。
这种技术适用于粒子团簇、胶体颗粒等较大尺寸的样品。
激光光散射谱学在物理、化学、生物学等领域具有广泛应用。
它可以用于研究纳米材料、胶体分散体、蛋白质聚集状态、聚合物溶液的分子量和分子量分布等。
此外,激光光散射谱学还被应用于药物研发、生物医学工程、环境监测等领域,为科学研究和工业生产提供了重要的分析手段。
1。
第4章激光的基本技术激光器发明以来各种新型激光器一直是研究的重点。
为将激光器发出的高亮度、高相干性、方向性好的辐射转化为可供实用的光能,激光技术也得到了极大的发展。
这些技术可以改变激光辐射的特性,以满足各种实际应用的需要。
其中有的技术直接对激光器谐振腔的输出特性产生作用,如选模技术、稳频技术、调Q技术和锁模技术等;有的则独立应用于谐振腔外,如光束变换技术、调制技术和偏转技术等。
在使用激光作为光源时,这些技术必不可少,至少要使用其中一项,常常是诸项并用。
本章讨论激光工程中一些主要的单元技术。
因为激光技术涉及的内容十分广泛,这里只给出基本概念和基本方法。
4.1激光器输出的选模激光器输出的选模技术就是激光器选频技术。
前几章中已经讨论过激光谐振腔的谐振频率。
大多数激光器为了得到较大的输出能量使用较长的激光谐振腔,这就使得激光器的输出TEM模)与高阶模相比,具有亮度高、发散角小、径向光强分布是多模的。
然而,基横模(00均匀、振荡频率单一等特点,具有最佳的时间和空间相干性。
因此,单一基横模运转的激光器是一种理想的相干光源,对于激光干涉计量、激光测距、激光加工、光谱分析、全息摄影和激光在信息技术中的应用等都十分重要。
为了满足这些使用要求,必须采用种种限制激光振荡模的措施,抑制多模激光器中大多数谐振频率的工作,利用所谓模式选择技术,获得单模单频激光输出。
激光器输出的选模(选频)技术分为两个部分,一部分是对于激光纵模的选取,另一部分是对激光横模的选取。
前者对激光的输出频率影响较大,能够大大提高激光的相干性,常常也叫做激光的选频技术;而后者主要影响激光输出的光强均匀性,提高激光的亮度,一般称为选模技术。
4.1.1 激光单纵模的选取1.均匀增宽型谱线的纵模竞争前面已经指出,对于均匀增宽型的介质来说,每个发光粒子对形成整个光谱线型都有相同的贡献。
当强度很大的光通过均匀增宽型增益介质时,由于受激辐射,使粒子数密度反转分布值下降,于是光增益系数也相应下降,但是光谱的线型并不会改变。
光谱激发光源
光谱激发光源是用于原子发射光谱分析、原子吸收光谱分析、荧光光谱分析等光谱学领域的一种关键设备。
它的作用是提供足够的能量以激发样品中的原子或分子,使其从基态跃迁到激发态。
当这些原子或分子返回到基态时,会发射出特定波长的光,这些光线的强度和波长与样品中的元素种类和浓度有关,通过分析这些光谱信息,可以实现对样品的定性和定量分析。
光谱激发光源的种类繁多,包括但不限于以下几种:
1. 火焰光源:如酒精灯、煤气灯等,适用于火焰原子发射光谱分析。
2. 电弧光源:如直流电弧、交流电弧等,适用于电弧原子发射光谱分析。
3. 火花光源:如电火花、火花塞等,适用于火花原子发射光谱分析。
4. 等离子体光源:如电感耦合等离子体(ICP)、射频等离子体(RFP)、微波等离子体(MIP)等,适用于等离子体原子发射光谱分析。
5. 辉光放电光源:如辉光放电管等,适用于辉光放电光谱分析。
6. 激光光源:如固体激光器、气体激光器等,适用于激光光谱分析,包括激光原子吸收光谱和激光荧光光谱。
7. LED光源:用于荧光显微镜、荧光光谱分析等,具有单色性好、稳定性高、寿命长等特点。
光谱激发光源的选择取决于光谱分析的类型、所需的分析性能以及样品的特性。
每种光源都有其特定的优点和应用范围,因此在实际应用中,需要根据具体的需求来选择合适的光源。
分子光谱学实验中的光源选择与调节技巧分子光谱学实验是化学和物理学领域中的重要研究手段,它通过研究物质吸收、发射光的特性,来了解分子结构和化学反应机理。
在这些实验中,光源选择和调节技巧是非常关键的。
本文将讨论分子光谱学实验中的光源选择和调节技巧,并提供一些实用的建议。
一、光源选择在分子光谱学实验中,光源的选择是非常重要的。
不同的光源有着不同的特点和应用范围。
常见的光源包括连续光源、激光光源和X射线光源等。
1. 连续光源连续光源是指能连续发射一定波长范围内的光线的光源,如白炽灯、钨丝灯等。
这类光源通常具有较宽的光谱范围,适用于对光谱的整体特性进行研究。
在分子光谱学实验中,连续光源常用于吸收光谱和荧光光谱实验。
2. 激光光源激光光源是指通过激发物质产生高度聚集和单色性极高的激光光束的光源。
激光的单色性和方向性非常好,适用于高分辨率的光谱研究和激发态的研究。
在分子光谱学实验中,激光光源常用于拉曼光谱、原子吸收光谱等的研究。
3. X射线光源X射线光源是利用X射线产生装置产生的一种特殊光源。
X射线具有很高的穿透力,适用于对物质内部结构进行研究。
在分子光谱学实验中,X射线光源主要用于X射线衍射、X射线光电子能谱等的研究。
二、调节技巧光源的调节是为了获取合适的光谱信号,提高实验的准确性和可靠性。
下面将介绍一些常见的光源调节技巧。
1. 光强调节光强的调节是指调整光源的强度以适应实验的需要。
一般来说,光谱实验中需要保证光线的稳定性和一定的强度范围。
可以通过调整光源的电流和电压来实现光强的调节。
初始实验中,可以尝试不同的电流和电压组合,选择适合实验需求的光强。
2. 光谱范围选择不同的实验需要不同波长范围的光源。
在实验中,可以通过选择不同的滤光片或调整反射镜的角度来实现波长范围的选择。
此外,还可以利用干涉滤波器等光学元件来实现具有特定波长范围的光源。
3. 光线均匀性调节在分子光谱学实验中,均匀的光线分布对于获得准确的实验结果非常重要。
第一张基本概念:1.能级寿命是指自发辐射能级寿命,能级寿命与自发辐射系数互为倒数关系。
2.自发辐射与受激辐射的区别:(1)受激跃迁与自发辐射,前者与外场揉(谬)有关,而后者则只取决于原子、分子系统本身,与外场揉(谬)无关。
理论和实验证明受激辐射光子与入射光子具有四同(同频率、同位相、同波矢、同偏振),即受激辐射光子与入射光子属于同一光子态(光波模式),受激辐射光是相干光,而自发辐射是非相干的随机过程。
(3)自发辐射系数A21与受激跃迁系数的关系:在热平衡条件下,能级E1、E2的粒子数N1、N2应保持平衡,则有: 3. 光子简并度n 为受激辐射几率与自发辐射几率之比,前者产生相干光子,后者产生非相干光子。
4. 激光器的三要素:(1)工作物质(气体、固体、液体、半导体等);(2)泵浦源:二者可实现粒子数反转,实现光放大。
(3)激光谐振腔 ---实现选模和光学正反馈。
5.线宽:分布函数半最大值所对应的频率宽度叫线宽—半最大值全宽,线宽内部分叫谱线的核,外部部分叫翼。
6.光谱学中常见的谱线展宽有:自然展宽、碰撞展宽、 Doppler 展宽。
自然加宽:由于自发辐射的存在,导致处于激发态的粒子具有一定的寿命,使得所发射的光谱具有一定的线宽称为自然加宽。
7.碰撞又分为弹性碰撞和非弹性碰撞:弹性碰撞,碰撞对之间没有通过无辐射跃迁所进行的内能交换时,称为弹性碰撞。
非弹性碰撞,碰撞对A 、B 在碰撞期间,A 的内能完全的或部分的转移给了B(或成为B 的内能或转变为A 、B 的平动动能),有内能变化,称为非弹性碰撞,也叫淬灭碰撞。
小距离弹性碰撞主要引起谱线加宽,而大距离弹性碰撞主要引起频移。
8.Doppler 加宽:由于气体原子、分子的热运动而具有一定的速度分布,一定速度的粒子相对于探测器来讲,都会产生Doppler 频移,这样具有一定速度的粒子只对谱线的某一频率范围有贡献,总体效果使得谱线加宽,Doppler 加宽的谱线线型为高斯线型。