第7章 超音速翼型和机翼的气动特性(高等教学)
- 格式:ppt
- 大小:3.02 MB
- 文档页数:12
超音速翼型气动力特性研究摘要:本文研究方程为0.3(1)zx x =±-的轴对称超音速翼形在马赫数为2,攻角分别为0°,2°情形下的气动力特性,基于对翼型进行离散化处理得到该翼型的物理参数及气动力的近似解,并逐步减小空间步长x ∆来提高解的精度。
在步长数分别为5、20、50及攻角为0°、2°的条件下,计算求得翼型头部斜激波后的流动参数,并由此求解各分区相应参数,列出:表面压力Cp 分布曲线Cp -x ,及表面密度、温度分布曲线ρ/ρ∞-x 、T/T ∞-x 。
在不同条件下得出的轴向力Ca 、法向力Cn 、升力Cl 、阻力Cd 及绕头部顶点俯仰力矩Cm 的表格。
最终分析了编程计算的准确性与精度,分析了压力系数、温度、密度沿该翼型的分布特性,并分析了不同攻角对该翼型气动特性的影响。
问题描述已知方程为0.3(1)zx x =±- 的薄翼形,求该翼型在来流马赫数为2,攻角分别为0°,2°情形下的受力情况。
对x 范围(0,1)内分别按5等份、20等份和50等份进行离散计算,得到表面压力Cp 分布曲线Cp -x ,表面密度、温度分别曲线ρ/ρ∞、T/T ∞ 。
计算得出出轴向力Ca 、法向力Cn 、绕头部顶点俯仰力矩Cm 及升力Cl 、阻力Cd 。
计算方案:(一)计算思路:超音速来流以一定攻角遇到类似于楔形体的机翼前缘,在上下面都有可能产生附体斜激波,要是攻角过大也有可能不产生附体斜激波,这里首先需要根据斜激波的θβ-关系曲线图来作出判断。
经判断,如果顶点处产生斜激波,即使用斜激波前后的马赫数、密度、温度、压强计算公式计算出顶点斜激波后的各项物理参数。
接着,根据翼型的形状可知,气流在通过膨胀波之后会经过一系列的向外的转折角,根据普朗特-迈耶膨胀波理论,超音速气流经过每一个折角都会产生膨胀波。
根据数值计算的基本原理,计算机不能处理连续曲线上随x值变化而连续变化的折角,所以在计算之前必须对翼型的几何结构进行离散化处理。
超声速翼型和亚声速翼型的气动特性总负责:祝恺辰(071450704)组员:辛宏宇(071450703)超声速和亚声速翼型不同的主要原因是超声速翼型需承受激波阻力。
激波超声速气体中的强压缩波。
微扰动(如弱压缩波)的叠加而形成的强间断,带有很强的非线性效应。
经过激波,气体的压强、密度、温度都会突然升高,流速则突然下降。
压强的跃升产生可闻的爆响。
如飞机在较低的空域中作超音速飞行时,地面上的人可以听见这种响声,即所谓音爆。
理想气体的激波没有厚度,是数学意义的不连续面。
实际气体有粘性和传热性,这种物理性质使激波成为连续式的,不过其过程仍十分急骤。
因此,实际激波是有厚度的,但数值十分微小,只有气体分子自由程的某个倍数,波前的相对超音速马赫数越大,厚度值越小。
一、超音速薄翼型翼型作亚声速运动和超声速运动时,对气流的扰动有很大不同根据动量定律,向前流出的气体将给翼型一个像后的反作用力,它有一个阻力分量;而从控制面向后流出的气流对翼型有一个推力分量;同理,向前流入控制面的气流将给翼型一个阻力分量。
而向后流入控制面的气流将给翼型一个阻力分量。
从控制面垂直进出的流动不会是翼使翼型承受阻力或是推力。
这样,在无粘性流体中作亚胜诉流亚声速扰动无界原子弹爆炸形成的蘑菇云也是一种激波超声速扰动限于前马赫锥后,前半部压缩,后半部膨胀,扰动均沿着波德传播方向即垂直于马赫波动的翼型不承受阻力(推力与阻力相消),而超声速翼型将承受阻力,这种与马赫波传播有关的阻力称为波阻。
超声速流动中,绕流物体产生的激波阻力大小与物体头波钝度有着密切的关系。
由于钝物的绕流将产生离体激波,激波阻力大;而尖头体的绕流将产生附体激波,激波阻力小。
因此,对于超声速翼型,前缘最好作成尖的,如菱形、四边形、双弧形。
但是对于超声速飞机,总是要经历起飞和着陆的低速阶段,尖头翼型在低速绕流时,较小迎角下气流就要发生给力,是翼型的气动特性能变坏。
为此,为了兼顾超声速飞机的低速特性,目前低超声速的翼型,其形状都采用小圆头的对称薄翼。
飞机机翼的气动特性研究与优化设计在航空工程领域,飞机机翼的气动特性研究与优化设计是一项重要的工作。
机翼的气动特性直接影响着飞机的飞行性能和安全性。
本文将对飞机机翼的气动特性进行研究,并提出优化设计方案,以期提高飞机的性能和安全性。
一、气动力学基础在开始研究飞机机翼的气动特性之前,我们首先需要了解一些气动力学基础知识。
气动力学是研究空气与物体运动相互作用的科学,而飞机机翼则是在飞行中扮演着至关重要的角色。
机翼产生升力和阻力是其最基本的气动特性。
升力使飞机能够克服重力并维持在空中飞行,而阻力则是抵抗飞机前进的力量。
除此之外,机翼的升阻比、失速特性、气动操纵特性等也是需要研究与优化的关键要素。
二、机翼气动特性研究方法为了研究飞机机翼的气动特性,科学家和工程师们采用了多种研究方法。
其中,数值模拟、风洞试验和实际飞行测试是最常见的方法。
1. 数值模拟数值模拟是通过计算机模拟飞机在各种飞行状态下与空气之间的相互作用,从而得出机翼的气动特性。
数值模拟方法可以节省时间和成本,并且可以对各种参数进行敏感性分析,提供了许多有价值的信息。
2. 风洞试验风洞试验是通过在实验室里建立一个人工流体环境,模拟飞机在真实空气中的飞行情况。
利用风洞试验可以获得具体的数据和图像,并验证数值模拟的准确性。
3. 实际飞行测试实际飞行测试是验证数值模拟和风洞试验结果的最终步骤。
通过在真实飞行中对机翼的气动特性进行观测和测量,可以对研究结果进行验证和修正。
三、飞机机翼气动特性的优化设计了解了机翼的气动特性研究方法后,我们可以开始讨论如何进行机翼的优化设计。
机翼的优化设计旨在减小阻力、提高升力,并尽量降低飞机的空气阻力。
1. 翼型设计翼型的选择对机翼的气动特性有着重要的影响。
不同的翼型具有不同的升阻比、失速速度和气动操纵特性。
通过翼型的优化设计,可以在提高升力的同时减小阻力,提高整体飞行性能。
2. 翼展与梢加载荷分布翼展和梢加载荷分布也是影响机翼气动特性的关键因素。