等差数列求和公式(1)
- 格式:ppt
- 大小:580.00 KB
- 文档页数:17
常用的一些求和公式在数学中,求和公式是指通过特定的公式或者规律来表示一系列数的和。
求和公式在数学证明、数列运算、级数计算等方面有着广泛的应用。
下面是一些常用的求和公式:1.等差数列求和公式:对于一个等差数列,其前n项和可以通过以下公式求得:Sn = (a1 + an) * n / 2其中,Sn表示前n项和,a1表示首项,an表示第n项。
2.等差数列通项公式:等差数列的通项公式为:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
3.等比数列求和公式:对于一个等比数列,其前n项和可以通过以下公式求得(当公比r不等于1时):Sn=a1*(1-r^n)/(1-r)其中,Sn表示前n项和,a1表示首项,r表示公比。
4.等比数列通项公式:等比数列的通项公式为:an = a1 * r^(n-1)其中,an表示第n项,a1表示首项,r表示公比。
5.二项式定理:二项式定理是一个关于幂的展开公式,它可以用来求解任意整数幂的展开式。
二项式定理的公式如下:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n 其中,C(n,k)表示从n个元素中选择k个元素的组合数。
6.等差数列前n项和的立方:对于一个等差数列的前n项和的立方,可以利用以下公式进行求解:(Sn)^3 = (n^2 * (a1 + an)^2) / 47.平方数和公式:平方数和公式用来求解1到n的所有平方数的和。
平方数和公式为:1^2+2^2+3^2+...+n^2=(n*(n+1)*(2n+1))/68.立方数和公式:立方数和公式用来求解1到n的所有立方数的和。
立方数和公式为:1^3+2^3+3^3+...+n^3=((n*(n+1))/2)^29.等差数列平方和公式:等差数列平方和公式用来求解一个等差数列的前n项平方的和。
等差数列平方和公式为:1^2+2^2+3^2+...+n^2=(n*(n+1)*(2n+1))/610.等差数列立方和公式:等差数列立方和公式用来求解一个等差数列的前n项立方的和。
初二数学知识点:等差数列求和公式八年级数学知识点:等差数列求和公式公式Sn=(a1+an)n/2(首项+末项)X项数2Sn=na1+n(n-1)d/2; (d为公差)Sn=An2+Bn; A=d/2,B=a1-(d/2)Sn=[2a1+(n-1)d] n/2和为Sn首项a1末项an公差d项数n等差数列公式an=a1+(n-1)d前n项和公式为:Sn=(a1+an)n/2=na1+n(n-1)d/2若m+n=p+q则:存在am+an=ap+aq若m+n=2p则:am+an=2ap以上n均为正整数文字翻译第n项的值an=首项+(项数-1)公差前n项的和Sn=首项+末项项数(项数-1)公差/2公差d=(an-a1)(n-1)项数=(末项-首项)公差+1数列为奇数项时,前n项的和=中间项项数数列为偶数项,求首尾项相加,用它的和除以2等差中项公式2an+1=an+an+2其中{an}是等差数列通项首项=2和项数-末项末项=2和项数-首项末项=首项+(项数-1)公差:a1+(n-1)d项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1公差= d=(an-a1)/(n-1)如:1+3+5+7+99 公差确实是3-1将a1推广到am,则为:d=(an-am)/(n-m)性质:若m、n、p、qN①若m+n=p+q,则am+an=ap+aq要练说,先练胆。
说话胆小是幼儿语言进展的障碍。
许多幼儿当众说话时显得可怕:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆那个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,排除幼儿恐惧心理,让他能主动的、自由自在地和我交谈。
二是注重培养幼儿敢于当众说话的适应。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的爱好,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地关心和鼓舞他把话说完、说好,增强其说话的勇气和把话说好的信心。
数列求和公式的几种方法数列求和公式是数学中十分重要的内容之一,它是指由一系列的数按照一定规律排列而成的序列的和的计算方法。
在数列求和公式中,常见的有等差数列求和公式和等比数列求和公式等。
下面将介绍几种数列求和公式的计算方法。
1.等差数列求和公式:等差数列是指数列中每一项与它的前一项之间的差值都相等的数列。
设等差数列的首项为a₁,公差为d,第n项为aₙ,则等差数列的求和公式为:Sn=(n/2)[2a₁+(n-1)d]其中n表示数列的项数。
例如,我们求等差数列2,5,8,11,14的和。
首项a₁=2,公差d=5-2=3,项数n=5代入公式Sn=(n/2)[2a₁+(n-1)d]可得:S₅=(5/2)[2*2+(5-1)*3]=(5/2)(4+12)=(5/2)*16=40所以,等差数列2,5,8,11,14的和为40。
2.等比数列求和公式:等比数列是指数列中每一项与它的前一项之间的比值都相等的数列。
设等比数列的首项为a₁,公比为q,第n项为aₙ,则等比数列的求和公式为:Sn=a₁(1-qⁿ)/(1-q)其中n表示数列的项数。
例如,我们求等比数列3,6,12,24,48的和。
首项a₁=3,公比q=6/3=2,项数n=5代入公式Sn=a₁(1-qⁿ)/(1-q)可得:S₅=3(1-2⁵)/(1-2)=3(1-32)/(-1)=3(-31)/(-1)=93所以,等比数列3,6,12,24,48的和为933.平方和公式:平方和公式是指求1²+2²+3²+...+n²的和的公式。
平方和公式为:Sn=n(n+1)(2n+1)/6其中n表示数列的项数。
例如,我们求和1²+2²+3²+4²+5²的和。
项数n=5代入平方和公式Sn=n(n+1)(2n+1)/6可得:S₅=5(5+1)(2*5+1)/6=5(6)(11)/6=11*5=55所以,1²+2²+3²+4²+5²的和为554.等差数列差分求和法:等差数列差分求和法是一种利用等差数列的性质进行求和的方法。
求数列前n 项和的8种常用方法一.公式法(定义法):i.等差数列求和公式:特别地,当前〃项的个数为奇数时,S2灯|=(2&+1).%1,即前〃项和为中间项乘以项数。
这个公 式在很多时候可以简化运算;2.等比数列求和公式:(1) q = 1, S n =叫:。
1(1-矿)(2)S n =—~,特别要注意对公比的讨论:3. 可转化为等差、等比数列的数列;4. 常用公式:(2)1» = l + 2 + 3+L +〃=_〃(〃+1):22 = ]2 + 22 + 32 +L + / =项〃 +1 )(2〃 +1 )=项〃 + '(〃 +1 ):4-1 63 2(3)£(2Sl)=l + 3+5+L +(2〃-1)=片.▲■I例 1 已知 log3X= T ,求x+x 2+x 3 + ...+x n 的前〃项和.log? 3解:由 log3 x = —zl_ => log 3 x = -log 3 2 n x = 5= x + x 2 + x 3 +L +y*n J = 1(1-1)A2(4)log 2 3由等比数列求和公式得x(l —x 1-X1&例 2 设S “=l + 2+3+ • +〃,解:易知 S =]_〃(〃+1), "2S..2",求_/•(〃)=— 的最大值.(〃 + 32)S tS . =!(〃+1)(〃+2)jt+i 2n .・'(〃)-(〃 + 32)s* — / + 34〃+ 64= ]_________1_______ 1〃 +34+丝 一(V ;-_L)2+50 - 50n JnQ1・•・当而-如即〃 =8时,f(n) =_.V82 50二.倒序相加法:如果一个数列{%},与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前〃项和即可用倒序相加法。
如:等差数列的前〃项和即是用此法推导的,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到〃个(0+4).例3求sii?1°+sin22°+sin23° +-+sin288°+sin289°的值解:设S=sin2l°+sin22°+sin23°+•••+sin288°+sin289°........①将①式右边反序得S=sin289°+sin288°+…+sin23°+sin22°+sin21°........②(反序)又因为sinx=cos(90°-x),sin2x+cos2x=1①得(反序相加)2S=(sin21°+cos2l°)+(sin22°+cos22。
等差求和的计算公式
等差数列是数学中的一种基本数列,它的每一项与前一项之差相等,这个差值称为公差。
等差数列的求和公式是数学中的一个重要公式,它可以用来计算等差数列的和。
等差数列的求和公式为:Sn = n(a1 + an) / 2,其中Sn表示等差数列的前n项和,a1表示等差数列的首项,an表示等差数列的第n 项,n表示等差数列的项数。
这个公式的推导过程比较简单,我们可以通过数学归纳法来证明它的正确性。
首先,当n=1时,Sn=a1,显然成立。
接着,假设当n=k时公式成立,即Sk = k(a1 + ak) / 2,那么当n=k+1时,我们可以将等差数列的前k+1项分成两部分,前k项的和为Sk,第k+1项为ak+1,那么前k+1项的和为Sk+ak+1,根据等差数列的性质,ak+1 = a1 + k*d,其中d为等差数列的公差,代入公式得到Sk+ak+1 = k(a1 + ak) / 2 + (a1 + k*d),化简得到Sk+ak+1 = (k+1)(a1 + ak+1) / 2,即公式在n=k+1时也成立。
通过这个公式,我们可以很方便地计算等差数列的和。
例如,对于等差数列1, 3, 5, 7, 9,它的首项a1=1,公差d=2,项数n=5,那么它的和为S5 = 5(1+9) / 2 = 25。
这个公式在数学中有着广泛的应用,例如在物理学中,可以用它来计算匀加速直线运动的位移;在经济学中,可以用它来计算等比数列的复利和等等。
等差数列的求和公式是数学中的一个重要公式,它可以用来计算等差数列的和,具有广泛的应用价值。
我们可以通过数学归纳法来证明它的正确性,掌握这个公式可以帮助我们更好地理解和应用等差数列的知识。
小学奥数等差数列公式公式1:求和公式:等差数列求和=(首项+末项)×项数÷2,即:Sn=(a1+an)×n÷2;公式2:通项公式:第n项=首项+(n-1)×公差,即:an=a1+(n-1)×d;公式3:项数公式:项数=(末项-首项)÷公差+1,即n=(an-a1)÷d+1。
上述三个公式必须掌握此外,还有一个中项定理,也掌握:中项定理:对于作意一个项数为奇数的等差数列来说,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。
例1:建筑工地有一批砖,码成如右图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层2106块砖,问中间一层多少块砖?这堆砖共有多少块?解:如果我们把每层砖的块数依次记下来,2,6,10,14,…容易知道,这是一个等差数列.方法1:a1=2,d=4,利用公式求出an=2106,则:n=(an-a1)÷d+1=527这堆砖共有则中间一项为a264=a1+(264-1)×4=1054.方法2:(a1+an)×n÷2=(2+2106)×527÷2=555458(块).则中间一项为(a1+an)÷2=1054a1=2,d=4,an=2106,这堆砖共有1054×527=555458(块).此题利用中项定理和等差数列公式均可解!例2:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.解:根据题意可列出算式:(2+4+6+8+...+2000)-(1+3+5+ (1999)解法1:能够看出,2,4,6,…,2000是一个公差为2的等差数列,1,3,5,…,1999也是一个公差为2的等差数列,且项数均为1000,所以:原式=(2+2000)×1000÷2-(1+1999)×1000÷2=1000.解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式=1000×1=1000.例3:100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?解:方法1:要求和,我们能够先把这50个数算出来.100个连续自然数构成等差数列,且和为8450,则:由题可知:(首项+末项)×100÷2=8450,求出:(首项+末项)=169。
等差数列的前n项和学习目标:(1)使学生掌握求等差数列前n项和的公式及其推导过程;(2)使学生初步掌握公式的应用,培养学生的解题能力.学习过程探索:已知等差数列的首项a1,项数n,第n项an,求它的前n项和Sn的计算公式.为了得出Sn的计算公式,我们先看一个具体例子.下图表示堆放的钢管,共堆放了8层,自上而下各层的钢管数组成等差数列:4,5,6,7,8,9,10,11.求钢管的总数,即求和:S8=4+5+6+7+8+9+10+11.当然,我们可以用连加法把它算出来,但是,根据等差数列的性质,同学们能发现更有趣的算法吗?每层的钢管数都相等,都为15.用数学式子表示这一过程是:S8=4+5+6+7+8+9+10+11,S8=11+10+9+8+7+6+5+4,两式相加,得2S8=(4+11)+(5+10)+(6+9)+(7+8)+(8+7)+(9+6)+(10+5)+(11+4) =8×(4+11),刚才求和的方法不仅对于项数是偶数的等差数列适用,同时对于项数是奇数的等差数列也适用.例如,通过这个具体例子的讨论,再来解决一开始提出的问题:寻求Sn的计算公式就不难了.请同学们自己推导Sn的计算公式.S n =a1+a2+…+an-1+an,Sn=an+an-1+…+a2+a1,两式相加,得2Sn=(a1+an)+(a2+an-1)+…+(an-1+a2)+(an+a1).∵a1+an=a2+an-1=…,(Ⅰ)如果已知等差数列的首项为a1,公差为d,项数为n,由an=a1+(n-1)d,就得到等差数列的前n项和的另一个公式:(Ⅱ)※典型例题例1:求下列数列前n项和:(1)1+2+3+…+99+100=?(3)求自然数列中前n个奇数的和.(4)求自然数列中前n个偶数的和.变式训练:求下列数列前n 项和:1、184188a a n =-=-=,,; 2、114.50.715a d n ===,,.例2:等差数列{}n a 中,已知1030a =,2050a =,242n S =,求n.变式训练: 在等差数列{}n a 中,10120S =,求110a a +.例3 在等差数列{a n }中,(1)已知a 2+a 5+a 12+a 15=36,求S 16; (2)已知a 6=20,求S 11.当堂检测:1. 在等差数列{}n a 中,12a =,1d =-,则8S = .2. 在等差数列{}n a 中,125a =,533a =,则6S = .3.一个凸多边形内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 为( ).A. 12B. 16C. 9D. 16或94. 在50和350之间,所有末位数字是1的整数之和是().A.5880B.5684C.4877D.45665. 数列{a}是等差数列,公差为3,n a=11,前n和n S=14,求n和3a.n6. 在小于100的正整数中共有多少个数被3除余2? 这些数的和是多少?7、数列{a n}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n。
等差公式求和公式等差数列是数列的一种形式,其中每一项与前一项之差保持相等。
求和公式是用于计算等差数列所有项的和的公式。
本文将介绍等差数列和求和公式,并提供详细的推导和示例。
1.等差数列等差数列的一般形式为:a,a+d,a+2d,a+3d,...,a+(n-1)d其中,a是首项,d是公差(每一项与前一项之差),n是项数。
例如,2,5,8,11,14就是一个等差数列,其首项a=2,公差d=3,项数n=52.求和公式等差数列的求和公式为:Sn=(n/2)(2a+(n-1)d)其中,Sn是等差数列的前n项和。
3.推导过程要理解等差数列的求和公式,我们需要对其进行推导。
下面是一个基本的推导过程:首先,我们将等差数列从左向右和从右向左对齐,如下所示:a,a+d,a+2d,...,a+(n-2)d,a+(n-1)da+(n-1)d,a+(n-2)d,...,a+2d,a+d,a接下来,我们将这两行的每一列相加,得到:2a+(n-1)d,2a+(n-1)d,...,2a+(n-1)d上述结果中的每一项都相等,其个数为n个。
因此,我们可以将这n 个项的和表示为:Sn=n(2a+(n-1)d)但我们会发现,上面的和多算了一遍。
我们通过除以2的方式消除重复项,即:Sn/2=(n/2)(2a+(n-1)d)最终,我们得到了等差数列的求和公式:Sn=(n/2)(2a+(n-1)d)4.示例让我们通过一个实际的示例来演示如何使用等差数列求和公式。
假设有一个等差数列,首项a=3,公差d=2,项数n=8首先,我们可以使用求和公式计算出该等差数列的前8项和:Sn=(n/2)(2a+(n-1)d)=(8/2)(2*3+(8-1)*2)=4(6+7*2)=4(6+14)=4(20)=80因此,该等差数列的前8项和为80。
5.结论等差数列的和求和公式是非常有用的工具,在计算等差数列的和时提供了一个简单且快速的方法。
通过理解等差数列的定义和推导过程,我们可以更好地理解求和公式的原理。
数列求和公式七个方法求和公式是数列中常用的一个工具,用于计算数列中一定数量的项的和。
在数学中,有七种不同的方法可以使用求和公式。
1.求等差数列的和:等差数列的求和公式是:Sn = (a1 + an) * n / 2,其中Sn是数列前n项和,a1是数列的首项,an是数列的末项,n是数列的项数。
这个公式的核心思想是将数列分成两部分,每部分的和都是数列的首项和末项之和的一半。
2.求等比数列的和:等比数列的求和公式是:Sn=a1*(1-r^n)/(1-r),其中Sn是数列前n 项和,a1是数列的首项,r是数列的公比,n是数列的项数。
这个公式利用了等比数列的特性,即每一项都是前一项乘以公比。
3.求等差数列的和差:等差数列的和差公式是:Sa=Sn-S(n-1),其中Sa是数列从第n-1项到第n项的和差,Sn是数列前n项和,S(n-1)是数列前n-1项和。
这个公式的思想是将数列分成两部分,分别计算它们的和,然后将后一部分的和减去前一部分的和,即可得到和差。
4.求等比数列的和差:等比数列的和差公式是:Sa=Sn/S(n-1),其中Sa是数列从第n-1项到第n项的和差,Sn是数列前n项和,S(n-1)是数列前n-1项和。
这个公式利用了等比数列的特性,即每一项都是前一项乘以公比。
5.求调和数列的和:调和数列的求和公式是:Sn = n / (1/a1 + 1/a2 + ... + 1/an),其中Sn是数列前n项和,a1,a2,...,an是数列的各项。
这个公式的思想是将数列的各项的倒数相加,然后再取它们的倒数。
6.求幂和数列的和:幂和数列的求和公式是:Sn=(a^(n+1)-1)/(a-1),其中Sn是数列前n项和,a是数列的公比,n是数列的项数。
这个公式利用了幂和数列的特性,即每一项都是公比的幂次。
7.求有限项数列的和:有限项数列的求和公式是:Sn = (n / 2) * (a1 + an),其中Sn是数列前n项和,a1是数列的首项,an是数列的末项,n是数列的项数。
等差数列求和公式的性质
1 等差数列求和公式
等差数列求和公式是解决等差数列的和问题的重要工具。
本文主要针对等差数列求和公式的性质展开讨论。
1.1 公式形式
等差数列求和公式的形式是:
Sn=n/2[a1+an]
其中,S是求和的结果,n是数列的项数,a1是数列的首项,an 是数列的末项。
1.2 性质
等差数列求和公式有以下几个特性:
(1)当a1和an都是正数时,Sn一定大于0;
(2)当a1和an都是负数时,Sn一定小于0;
(3)当an-a1能够被n整除时,Sn一定能得出整数的结果;
(4)当an-a1不能够被n整除时,Sn一定能得出小数的结果。
1.3 应用
等差数列求和公式广泛应用于数学中,可以从中心位置判断等差数列的全部项与等差数列的和,可以有效地把等差数列减少为两个数
字相加。
它对于求数列的前n项和和后n项和十分有用。
此外,它也可以被用来解决其他数学问题。
2 结论
等差数列求和公式是解决等差数列和问题的重要工具,具有特定的性质,并且在数学的解决问题中有广泛的应用。
等差数列的和的公式
《等差数列的和的公式》
等差数列是数学中常见的概念,它指的是一系列等差的数字。
它们之间的关系可以用一个公式来表示:求等差数列的和公式为:Sn=n(a1+an)/2,其中,n表示数列中项的个数,a1表示数列的第一项,an表示数列的最后一项。
以1、2、3、4、5为例,项数n=5,a1=1,an=5,则等差数列的和为:
Sn=5(1+5)/2=15
可以看出,求出等差数列的和只需要知道数列的项数和第一项和最后一项的值,就可以用公式来计算出来。
此外,如果数列中的项数较多,可以用求和公式来快速求出等差数列的和。
例如,1、2、3、4、……、100,项数n=100,a1=1,an=100,则等差数列的和为:
Sn=100(1+100)/2=5050
求等差数列的和的公式十分简单,只要知道数列的项数和第一项和最后一项的值,就可以用公式来计算出来,这对于解决数学问题是非常有用的。
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。