纳米限域研究取得新进展
- 格式:doc
- 大小:11.50 KB
- 文档页数:2
皿睁旦岬g譬三∞OE0>0[O《科研进展,lc量子计算研究获重大突破中国科大微尺度物质科学国家实验室杜江峰研究组与香港中文大学刘仁保教授合作,通过电子自旋共振实验技术.在国际E首次通过固态体系实验实现了最优动力学解耦,极大地提高了电子自旋相十时间。
该成果发表于10月29日出版的Nature上。
审稿人认为“该工作有效地保持了同态自旋比特的量子相十性。
对固态自旋量子计算的真正实现具有极其重要的意义”。
删期“新闻与展单”栏目还发表的评述文章指出:“量子系统不可避免的信息流失局限其现实的应用。
然而杜江峰与其同事的研究表明,通过精巧的脉冲控制,使得同态体系环境对电了量子比特的不利影响被降到最小,从而大大减少r量子体系中量子信息的流失。
他们所使用的量子相干调控技术被证明是一种可以帮助人们理解并且有效对抗量子信息流失的一个重要资源,取得的研究进展的重要性在于极大提升了现实物理体系的性能.从而朝实现量子计算迈出了重要的一步。
”退相干对量子自旋霍尔效应的影响研究取得新进展物理所凝聚态理论与材料计算实验室研究员谢心澄、孙庆丰和博士生江华、成淑光在前期的工作基础上二.进一步研究了退相干对量子自旋霍尔效应的影响。
他们把退相干分成两类来考虑:一类是普通退相干,即载流子仅仅丢失位相记忆,但保留自旋记忆;另一类是自旋退相十。
即载流子既丢失位相记忆也丢失自旋记忆:普通退相干对量子自旋霍尔效应几乎没有影响,但自旋退相干急剧影响量子自旋霍尔效应。
破坏纵向电导的量子化。
他们还发现纵向电阻随样品长度线性增加而基本上不依赖于样品宽度的变化,这些特性也与实验结果很好符合。
另外,他们进一步引入一个新的物理量,即一个新的自旋霍尔电阻,并发现该自旋霍尔电阻也能表现出量子化平台的特性。
研究结果表明,该自旋霍尔电阻的量子化平台对两种类型的退相干都不敏感。
也就是说,该量子化平台在宏观样品中也能被观测到,所以它能伞面反应量子自旋霍尔效应的拓扑特性。
该工作发表在Phys.Rev.Lett.上。
纳米结构限域的配位不饱和金属原子是众多酶催化和均相催化反应的活性中心。
在负载型多相催化体系中,实现可控制备具有类似酶结构特征的高效、稳定的活性中心,对多相催化的发展具有十分重要意义,也是对催化基础理论研究的一个巨大挑战。
我所催化基础国家重点实验室纳米和界面研究组包信和、傅强和马丁,与理论催化研究组李微雪等研究人员合作,借助贵金属表面与单层氧化亚铁薄膜中铁原子的强相互作用所产生的界面限域效应,结合表面科学实验和密度泛函理论计算的研究结果,成功地构建了表面配位不饱和亚铁结构(Coordinatively Unsaturated Ferrous,CUF)。
这种界面限域的CUF中心与金属载体协同作用,在分子氧的低温活化过程显示出非常独特的催化活性,应用于富氢气氛下一氧化碳选择氧化(CO PROX),在质子膜燃料电池(PEMFC)实际工作条件下(80-100度,水蒸气和CO2存在),成功地实现了燃料氢气中微量CO的高效去除。
这一工作以研究报告(Report)形式发表在5月28日出版的《Science》杂志上(Science 2010, 328, 1141) ,美国《C&E News》和英国《Chemistry World》同时对这一工作进行了报道。
选择氧化是化工过程中非常重要的一类催化过程,在采用空气中氧气作氧化剂时,往往需要较高反应温度,才能使稳定的氧分子在催化剂作用下解离成具有高活性的原子氧物种。
但是,这种活性氧物种在高温下往往具有较差的选择性,在反应中不仅可以将反应物氧化成目标产物,而且还极易导致深度氧化,释放出大量的温室气体CO2,降低了资源的利用效率。
因此,设计和调控催化剂以实现温和条件下分子氧的高效活化,是对催化基础理论和催化剂创制的一大挑战。
我所催化基础国家重点实验室包信和院士领导的研究组,在理解和认识自然界中高效加氧酶作用原理的基础上,采用多种先进的表面和纳米实验研究手段,并与理论研究密切合作,经过八年多的艰苦努力,在贵金属铂表面创造性地构建了具有配位不饱和的亚铁纳米结构,成功地实现了室温条件下分子氧的高效活化,用于催化CO的低温脱除和甲醇的选择氧化等反应,取得了重要突破。
mof纳米限域催化
MOF纳米限域催化是指将纳米氧化物限域在金属有机框架(MOF)材料中,以实现高效催化过程。
这一技术的核心在于限域微环境对催化体系的物理和化学状态产生强烈的限制作用,从而可以有效调控催化性能。
长期以来,包信和院士团队一直在探索限域催化过程,并在一维碳管纳米反应器和两维层间纳米反应器中发现了这些限域微环境对催化反应的有效调控作用。
最近,剑桥大学的材料科学家利用无机化学中的普尔贝图,发展出了一个在纳米孔内合成客体材料的有效方法,实现了在MOF孔内填充氧化钌纳米结构。
利用这一材料,研究人员发现在零维纳米孔反应器中的限域效应可以弱化CO和O在氧化物表面上的吸附,使得该氧化物结构表现出独特的低温催化CO氧化性能,说明零维纳米空间中微环境限域可以弱化表面吸附并增强催化性能。
这一结果与一维和两维纳米空间中发现的限域催化效应一致。
MOF纳米限域催化为多相催化领域提供了一个新的研究方向,有望在化学工业和能源转换等领域得到广泛应用。
精心整理纳米载体的限域效应对催化性能影响机制的研究进展自上世纪末以来,纳米科学和技术有了长足的进展,其中纳米材料的一个重要特性是,将体系的尺寸减小到一个特定的范围(如1~100nm)时,在不添加任何其他组分的情况下,纳米体系的电子结构会发生变化。
量子力学已经证明,大量原子组成的固图1两种金属催化体系的结构示意图(A)传统的氧化物作为载体的金属催化体系(Oxidesupportedmetalsystem)和(B)过渡金属纳米氧化物倒载型催化体系(oxide-on-metalsystem)如图1所示为传统过渡金属氧化物作为载体的催化体系和过渡金属纳米氧化物倒载型催化体系的结构示意图。
纳米氧化物倒载型催化体系相比传统非均相催化剂,具有更多的TMO/Pt界面(如示意图B中氧化物边缘的黄色虚线所示)。
由于TMO与Pt的表面张力的不同,倒载型催化体系中氧化物(FeO)趋向于在Pt金属表面形成均有双层结构的层状纳米岛结构(由于Fe与Pt具有较强的作用力,双层结构底层与Pt金属结合的为Fe原子,上层为氧原子),而传统催化体系中的Pt金属易于在氧化物颗粒形成较大的颗粒状结构,如下图2所示。
基于上述的界面结构特点,倒载型催化体系具有更多的TMO/Pt界面,并且过渡金属中阳离子(Fe)与贵金属(Pt)间的之间可程造成了石墨结构中大π键的畸变,电子由碳纳米管的凹面向凸面转移,在碳纳米管内外形成一个表观电势差、导致碳纳米管呈现出有别于其他传统碳材料的独特的物理化学特性。
日本富山大学的NoritatsuTsubaki团队在碳纳米管负载铜纳米颗粒催化剂对乙酸甲酯加氢催化过程的研究中,发现了碳纳米管对铜纳米颗粒催化剂的限域效应[3]。
对碳纳米管外壁负载铜纳米颗粒和内壁负载铜纳米颗粒的催化效果进行了对比,由于内壁对于铜纳米颗粒的限域效应非常显着,发现内壁负载的催化剂催化效果明显优于外壁负载的催化剂。
这一限域效应主要表现在:碳纳米管内负载的铜纳米颗粒由于碳纳米管内部的空间限域作用,催化过程中的催化剂颗粒的团聚生长得到有效抑制,从而会防止铜催化剂失活的现象。
mofs 纳米限域催化
MOFs(金属有机框架)是一类具有高度有序孔道结构的晶体材料,由金属离子和有机配体组成。
它们具有高度可调的孔径和表面积,因此被广泛用于催化领域。
纳米限域催化是指在纳米尺度下利用MOFs的孔道结构和表面活性位点来进行催化反应的过程。
从催化角度来看,MOFs的孔径大小和表面积可以提供理想的反应环境,有利于催化剂与反应物之间的相互作用。
此外,MOFs的结构可以被设计和调控,以实现特定催化反应的要求,例如选择性催化和催化剂稳定性等。
纳米尺度下的限域效应也可以提高催化活性和选择性,因为反应物分子在孔道内的扩散受到限制,从而促进了特定反应的进行。
此外,MOFs还可以通过调控孔道结构和表面功能基团来实现对反应物的吸附和分子识别,从而提高催化剂的选择性和特异性。
这种特性使得MOFs在催化领域中具有广泛的应用前景,例如在氧化、加氢、氢转移、氧还原等反应中发挥重要作用。
总的来说,MOFs纳米限域催化具有独特的优势,可以通过调控
孔道结构和表面性质来实现对催化反应的精准控制,因此在催化领域具有广阔的应用前景。
纳米限域研究取得新进展
分子在纳米孔道限域环境中扩散和反应显示了非常独特的物理化学特性,理论工作者已经进行了大量的计算和模拟。
最近,我所包信和研究员带领的“界面和纳米催化”研究组(502组)在自行研制的一套与固体核磁共振仪耦合的动态催化反应系统中,采用激光诱导超极化129Xe技术,首次在模拟催化反应条件下直接观察到了甲醇分子在孔径为0.8nm的CHA分子筛孔道扩散和脱水过程,并精确获得了分子扩散和反应的动力学参数。
相关方法和实验结果以研究论文形式(Article)发表在最近一期的《美国化学会志》(J.Am.Chem.Soc.,131(2009)13722-13727),被认为是“一种对纳米孔催化反应研究具有重要意义”的发明。
纳米限域效应在光学、电子器件以及催化反应等领域具有很大的应用前景,分子在纳米限域空间中的吸附和反应动力学一直受到理论和实验研究者的广泛关注。
理论研究已经预示,限域在纳米空间中物质将会显示出与自由状态下明显不同的物理化学特性,但是,由于在真实条件下分子的扩散速度很快,而且纳米孔道中分子浓度极低,实验研究需要发展原位-动态和高灵敏的检测手段。
该研究组张维萍、包信和研究员和博士研究生徐舒涛等对商用核磁共振“魔角旋转”(Magic Angle)的探头进行改进,自行研制了一套与固体核磁共振仪器相耦合、适合于分子扩散和催化研究的高
温原位-动态研究系统,并将国际上已广泛采用的激光诱导超极化129Xe技术引入动态反应过程的研究,使NMR的检测灵敏度提高了1万多倍,从而使固体核磁采谱时间缩短到10秒以内。
将该技术成功用于研究甲醇在CHA纳米分子筛笼内的吸附、扩散和脱水反应过程,首次获得了接近真实反应条件下纳米孔道中活性位在反应过程中的动力学参数,大大加深了对甲醇在分子筛孔道中酸助脱水和转化过程机理的理解和认识。
近年来,该研究组系统地将高灵敏核磁共振技术用于催化反应过程和材料合成过程的原位-动态研究,不断取得重要进展。
相关信息:
纳米收音机
纳米科学技术
"纳米"饭,香不?
纳米污染:看不见的子弹。