陶瓷薄片的流延成型工艺概述_宋占永
- 格式:pdf
- 大小:754.95 KB
- 文档页数:4
流延成型工艺及添加助剂作用摘要:流延成型是目前生产电子陶瓷基片常用的方法之一。
本文简要介绍了流延成型工艺过程中浆料组成对陶瓷粉体及各种添加助剂要求及研究现状。
流延成型(ape-casting, 亦称 Doctor-blading 或 Knife-coating)是薄片陶瓷材料的一种重要成型工艺。
最早被 Glenn N. Howatt应用于陶瓷成型领域,自1952年获得专利以来,流延成型一直应用于生产单层或多层薄板陶瓷材料[1]。
流延成型法由于具有设备简单、可连续操作、生产效率高、坯体性能均一等特点,已成为制备大面积、超薄陶瓷基片的重要方法,被广泛应用在电子工业、能源工业等领域,如制备Al2O3、AlN电路基板,BaTiO3基多层电容器及ZrO2固体燃料电池等[1]。
流延成型是在陶瓷粉料中加入溶剂、分散剂、粘结剂、增塑剂等,得到分散均匀的稳定浆料,在流延机上制得所需厚度薄膜的一种成型方法。
粉料、溶剂、分散剂、粘结剂以及塑性剂的选择对流延成型工艺非常重要,直接影响流延浆料的性能,从而对素坯性能产生影响,最终影响烧结制品的性能。
传统的流延成型工艺不足之处在于所使用的有机溶剂(如甲苯、二甲苯等)具有一定的毒性,使生产条件恶化并造成环境污染,且生产成本高。
此外,由于浆料中有机物含量较高,生坯密度低,脱脂过程中坯体易变形开裂,影响产品质量。
近年来在材料学科工作者的不懈努力下,在原有流延成型方法的基础上,开发出了新的水基流延成型方法,如凝胶流延成型工艺、紫外引发聚合成型工艺和等静压流延成型工艺等[2]。
流延成型的关键是粉体,陶瓷粉体的化学组成和特性能够影响甚至控制最终烧结材料的收缩和显微结构,所以要严格控制粉体的杂质含量。
陶瓷粉体的颗粒尺寸对颗粒堆积以及浆料的流变性能会产生重要影响。
为了使成型的素坯膜中陶瓷粉体颗粒堆积致密,粉体的尺寸必须尽可能小。
但另一方面,颗粒尺寸越小比表面积越大致素坯膜的排胶困难,干燥和烧结后收缩率增加,降低最终烧结陶瓷的体密度。
陶瓷基板流延工艺陶瓷基板流延工艺是一种先进的制造工艺,广泛应用于电子、光电、航空航天等领域。
它的优点是制造成本低、生产效率高、质量稳定可靠。
本文将从流延工艺的基本原理、工艺流程、应用领域等方面进行介绍。
一、流延工艺的基本原理流延工艺是一种在基板表面上涂覆陶瓷粉末,然后通过轧制、压制等方式加工成片的工艺。
其基本原理是将陶瓷粉末悬浮在流体介质中,通过涂覆、压制等方式将其均匀地覆盖在基板表面上,然后通过加热、烘干等方式使其固化形成稳定的基板片。
在流延工艺中,陶瓷粉末的成分和粒径、流体介质的性质、加工温度和压力等因素都会影响到最终的基板质量。
因此,流延工艺需要精密的工艺控制和检测手段来确保产品的质量稳定可靠。
二、流延工艺的工艺流程流延工艺的基本流程包括:陶瓷粉末制备、流体介质的配制、基板的准备、涂覆、压制、烘干、烧结等步骤。
其中,陶瓷粉末制备是整个工艺的关键,它的成分和粒径决定了最终产品的性能。
在流延工艺中,流体介质的选择也非常重要。
通常使用的流体介质有水、有机溶剂、乳化液等,不同的介质会影响到陶瓷粉末的分散性和涂覆性能。
涂覆和压制是流延工艺中最关键的步骤,它决定了基板的厚度和表面质量。
涂覆和压制的方式有很多种,如手工涂覆、机械涂覆、压延、滚压等。
不同的涂覆和压制方式会影响到基板的均匀度和表面质量。
烘干和烧结是流延工艺中最后的步骤,它们决定了基板的致密度和强度。
在烘干和烧结过程中,需要控制温度和时间等参数,以确保基板的质量符合要求。
三、流延工艺的应用领域陶瓷基板是电子、光电、航空航天等领域中重要的材料之一,广泛应用于电路板、电容器、传感器、电磁炉、高温热解炉等领域。
在这些应用中,陶瓷基板具有耐高温、耐腐蚀、低介电常数等优点,可以大大提高产品的性能和稳定性。
陶瓷基板流延工艺是一种先进的制造工艺,它的优点是制造成本低、生产效率高、质量稳定可靠。
随着科技的不断发展,它在电子、光电、航空航天等领域中的应用前景将更加广阔。
陶瓷流延成型工艺
近年来,陶瓷制造业发展迅速,随之而来的是对于陶瓷流延成型工
艺的不断完善和应用。
这种工艺可以有效地提高陶瓷制品的质量和稳
定性,在工业领域中广泛应用。
下面,我们将对这种工艺进行详细的
介绍和分析。
一、工艺流程
陶瓷流延成型工艺是一种连续制造工艺,大体分为材料制备、搅拌、
过滤、成型、干燥、硬化、烧结等多个环节。
首先,制造人员需要选
取合适的陶瓷原料,并进行粉碎、混合、搅拌等工作,制成均匀的浆料。
接着,将浆料倒入流延机中,依照预设的模具尺寸和几何形状进
行成型。
此时,陶瓷坯体从模具中不间断推出,经过干燥后再进行硬化、烧结,最终制成成品陶瓷。
二、工艺优点
相比于传统陶瓷成型工艺,陶瓷流延成型具有如下优点:
1. 陶瓷坯体的形状稳定性好,表面光整,不会出现开裂、变形等现象。
2. 成品陶瓷具有高强度、高密度、高韧性等优良物理性能。
3. 浆料处理和成型过程中不需要使用高压,无需消耗大量人力物力,
具有较高的成型效率。
4. 可以制造出细致度小、形状异样的不规则陶瓷制品,且可以控制制品的尺寸精度和表面质量。
三、工艺应用
陶瓷流延成型工艺的应用广泛,涉及到陶瓷制造的各个领域。
例如,在航空航天领域中,流延成型可以用于制造高温陶瓷热结构件、超声速飞行器传感器等高性能要求的陶瓷部件,具有重要的应用价值。
另外,该工艺还可以用于制造陶瓷基合成材料、陶瓷感应器件等。
总之,随着陶瓷流延成型技术逐渐成熟,它的应用将会得到更广泛的推广和应用。
陶瓷薄片的流延成型工艺概述/宋占永等·43·陶瓷薄片的流延成型工艺概述宋占永,董桂霞,杨志民,马舒旺(北京有色金属研究总院先进电子材料研究所,北京100088)摘要概述了流延成型工艺的特点及发展历程,比较了水基流延成型与传统流延成型技术的优缺点。
针对特定的流延成型工艺过程进行了详细的介绍和理论分析,同时介绍了几种新型的流延工艺。
最后对流延成型技术的研究和应用进行了展望,并提出了自己的见解。
关键词陶瓷传统流延成型水基流延成型SummaryofCeramicSliceProcessedbyTape-castingSONGZhanyong,DONGGuixia,YANGZhimin,MAShuwang(AdvancedElectronicMaterialInstituteGeneralResearchIn_stituteforNonferrousMetals,Beijing100088)AbstractInthispaper,thecharactersandthedevelopmenthistoryoftape-castingprocessingareintroduced,andacomparisonismadebetweenaqueoustape-castingandtraditionaItape-casting.Somespecificstepsintape-castingprocessareexactlydescribedandalsoanalyzedintheory,andnoveltape-castingtechnologiesageintroduced.Finally,anexpectationforthestudyandapplicationoftape-castingtechnology,andsomeownopinionsoftheauthoragep3证‘tedouLKeywordsceramic,traditionaltape-casting,aqueoustape-casting流延成型是指在陶瓷粉料中加入溶剂、分散剂、粘结剂、增塑剂等成分,得到分散均匀的稳定浆料,在流延机上制得所需厚度薄膜的一种成型方法。
陶瓷薄板生产工艺过程探讨陶瓷薄板是陶瓷材料的一种新型材料,由于其具有高温抗性、耐磨性、耐腐蚀性等优良性能,被广泛应用于航空航天、电子、医疗等领域。
其生产工艺过程是非常关键的,下面我们将对其进行探讨。
一、原料准备陶瓷薄板的生产主要采用氧化铝、氧化锆、氧化硅等高纯度陶瓷粉体作为原料。
这些粉体需要进行混合、研磨、干燥等处理,以获得均匀的颗粒分布和适当的干燥度,从而保证产品品质的稳定性和生产效率。
二、成型工序陶瓷薄板的成型主要有手工压制、注塑成型、等离子喷涂等多种方法。
其中注塑成型是一种比较常用的工艺,其基本步骤包括:将经过混合和干燥的陶瓷粉体装入注塑机的料斗中;通过加热和挤压将粉体挤出成型膜;在成型膜表面添加涂层或贴附陶瓷帮膜。
三、烧结工序烧结是陶瓷薄板生产必不可少的步骤,其目的是将原料粉体在高温下烧结成为坚硬、致密的薄板。
烧结温度和时间由原料、成型方式、烧结设备等多种因素决定。
一般情况下,烧结温度在1400-1700℃之间,烧结时间为数小时至几十小时不等。
四、加工处理烧结后的陶瓷薄板需要进行进一步的加工处理,包括研磨、切割、表面修整等。
其中研磨是一道重要的工序,目的是将薄板表面磨平,去除表面缺陷,并提高产品的光泽度和平整度。
切割和修整则是为了满足客户的不同需求,如产品大小、形状、表面质量等。
总之,陶瓷薄板的生产工艺需要经历原料准备、成型工序、烧结工序和加工处理等多个环节。
在每个环节中,都需要严格控制工艺参数,保证产品质量和生产效率。
此外,我们还需要持续改进工艺,提高工艺的可靠性、稳定性和自动化水平,为客户提供更加优质、实用的产品。
流延成型技术制备片状氮化硅陶瓷研究进展目录1. 内容综述 (2)1.1 研究背景 (3)1.2 流延成型技术在陶瓷制备中的应用 (4)1.3 氮化硅陶瓷的特点与应用 (5)2. 流延成型技术原理 (6)2.1 流延成型技术概述 (7)2.2 流延成型工艺流程 (9)2.3 流延成型过程中的关键参数 (10)3. 片状氮化硅陶瓷材料特性 (11)3.1 氮化硅的晶体结构与性能 (12)3.2 片状氮化硅陶瓷的微观结构 (13)3.3 片状氮化硅陶瓷的性能特点 (14)4. 流延成型制备片状氮化硅陶瓷的工艺优化 (16)4.1 湿法流延成型 (17)4.1.1 湿法流延成型原理 (18)4.1.2 湿法流延成型工艺参数优化 (20)4.2 干法流延成型 (21)4.2.1 干法流延成型原理 (22)4.2.2 干法流延成型工艺参数优化 (24)5. 片状氮化硅陶瓷的制备与性能研究 (25)5.1 片状氮化硅陶瓷的制备过程 (27)5.2 片状氮化硅陶瓷的力学性能 (28)5.3 片状氮化硅陶瓷的热性能 (28)5.4 片状氮化硅陶瓷的抗氧化性能 (29)6. 流延成型制备片状氮化硅陶瓷的应用前景 (31)6.1 高性能陶瓷基复合材料 (32)6.2 航空航天领域应用 (34)6.3 电子封装材料 (35)6.4 其他潜在应用 (36)7. 存在的问题与挑战 (37)7.1 成型过程中存在的问题 (38)7.2 性能提升的瓶颈 (39)7.3 环境与经济影响 (40)8. 总结与展望 (42)8.1 研究成果总结 (43)8.2 未来研究方向 (44)8.3 技术发展趋势 (45)1. 内容综述首先,介绍流延成型技术的原理及特点,阐述其在陶瓷制备领域的应用优势。
流延成型技术通过将陶瓷浆料均匀涂覆在基板上,通过溶剂挥发或热处理形成连续、均匀的薄膜,具有制备成本低、效率高、可控性好等特点。
其次,讨论流延成型技术在氮化硅陶瓷浆料制备方面的研究进展。
专利名称:电子陶瓷基板及薄片陶瓷器件的快速凝固流延成型方法
专利类型:发明专利
发明人:黄勇,向军辉,谢志鹏
申请号:CN99119237.0
申请日:19990827
公开号:CN1246465A
公开日:
20000308
专利内容由知识产权出版社提供
摘要:本发明涉及一种电子陶瓷基板及薄片陶瓷器件的快速凝固流延成型方法,该方法首先将有机单体和交联剂混合后与水溶解,制备成预配液;然后将陶瓷粉末与分散剂加入预配液,将配制好的浆料球磨混合,抽真空除泡;在除泡后的浆料中加入引发剂和催化剂,在流延机上流延成型,流延后固化成型;烧结0得到成品。
使用本发明的方法,成型的坯膜强度高,柔韧性好,便于后加工。
申请人:清华大学
地址:100084 北京市海淀区清华园
国籍:CN
代理机构:清华大学专利事务所
代理人:罗文群
更多信息请下载全文后查看。