地化 第一章_自然体系中元素丰度(1)
- 格式:ppt
- 大小:9.94 MB
- 文档页数:76
考试题型1、名词解释(共30分,10个,每个3分)2、简答题(共20分,4个,每个5分)3、分析题(共20分,2个,每个10分)4、作图计算题(共30分,2个,每个15分)复习总方向A:基本概念、观点或理论→名词解释、简答题B:基本现象(地球化学现象)→分析题C:基本方法(主要是地球化学数据处理)→作图计算题绪论1、基本概念:地球化学;2、地球化学研究的基本问题;(知识点考查:A类)第一章太阳系的元素丰度1、基本概念:地球化学体系、元素的丰度;2、元素的丰度研究意义;3、陨石的分类及研究意义;4、太阳系元素丰度规律;(知识点考查:A类)第二章地球的化学组成1、基本概念:元素克拉克值、浓度克拉克值、元素的浓集系数、原始地幔、亏损地幔、富集地幔;2、地球的圈层结构及其主要元素组成;3、元素克拉克值研究地球化学意义;4、大陆地壳化学组成研究方法;5、地壳的化学组成特征;(知识点考查:A类)第三章元素的晶体化学性质与结合规律1、基本概念:类质同象、元素的地球化学亲和性、八面体择位能;2、元素的地球化学分类;3、元素结合的基本规律及控制因素;4、类质同象置换条件、法则及研究意义;(知识点考查:A类、B类)第四章元素的地球化学迁移1、基本概念:元素地球化学迁移、活度积、共同离子效应、盐效应、标准氧化-还原电位、地球化学梯度、地球化学障、矽卡岩化;2、水-岩化学作用的基本类型;3、活度积原理及其应用;4、体系物理化学环境对水-岩化学作用的影响;5、风化过程中的水-岩化学作用(知识点考查:A类、B类)第五章微量元素地球化学1、基本概念:微量元素、相容元素、不相容元素、高场强元素、低场强元素/称大离子亲石元素、能斯特分配系数、δEu、δCe;2、亨利定律- 稀溶液定律;3、分配系数的影响因素及应用;4、结晶分异和部分熔融过程定量模型;5、稀土元素分类、组成数据的表示、表征REE组成的参数、REE模式的解释;6、微量元素的示踪;(知识点考查:A类、B类、C类)第六章放射性同位素地球化学1、基本概念:半衰期、等时线年龄、模式年龄、内部等时线、封闭温度、εSr(t) ;2、同位素地球化学研究领域;3、放射性衰变定律及同位素定年原理;4、同位素定年的基本假设;5、Rb-Sr测年及Sr同位素示踪、Sm-Nd测年及Nd同位素示踪、U-Th-Pb同位素测年及Pb同位素示踪;(知识点考查:A类、B类、C类)第七章稳定同位素地球化学1、基本概念:同位素丰度、δ值(D、18O、13C、34S)、同位素分馏;2、自然界存在三种类型的同位素分馏;3、同位素地质温度计;4、大气降水同位素组成表现为四种效应;5、H、O、C、S同位素的示踪应用;(知识点考查:A类、B类、C类)绪论1.地球化学是研究地球及子系统(含部分宇宙体)的化学组成、化学机制(作用)和化学演化的科学。
1.克拉克值?浓度克拉克值?地壳元素丰度值(克拉克值)有何研究意义?答题要点:1)确定了地壳体系的总特征:2)为研究地球的形成、化学分异及地球、地壳元素的成因等重大问题提供信息,如大陆的地壳化学组成对地幔分异的指示:地壳元素的克拉克值在某种程度上影响元素参加许多化学过程的浓度,从而支配元素的地球化学行为:限定了自然界的矿物种类及物属:限制了自然体系的状态;对元素亲氧性和秦硫性的限定: 3)元素克拉克值可作为衡量元素相对富集或贫化的标尺,如可以为阐明地球化学省(场)特征提供标准:4)根据地壳元素克拉克值可获得地壳中不同元素平均比值,可以提供重要的地球化学信息,如某些元素克拉克比值是相对稳定的,一旦某地区\某地质体中的这些元素比值偏高了地壳正常比值,示踪着某种地球化学过程的发生。
2.地壳元素丰度特征与太阳系\地球对比说明什么问题?答案要点:1)元素丰度对元素原子序数作图,可以看出地壳元素丰度分布规律与太阳系的基本相同,说明其形成具有同一性;2)地壳元素丰度值最大的10个元素与太阳系、地球的相比,其组成及排列顺序有差别。
地壳元素分布规律与太阳系存在差异是由于在地球形成的过程中轻元素的挥发产生;而与地球元素分布规律相比存在差异,则为地球演化过程中轻元素的挥发产生;而与地球元素分布规律相比存在差异,则为地球演化过程中元素的重新分配造成,具体表现为较轻易熔的碱金属铝硅酸盐在地球表层富集,而较重的难熔镁、铁硅酸盐和金属铁则向深部集中。
3.概述区域地壳元素丰度的研究意义。
答题要点:1)它是决定区域地壳(岩石圈)体系的物源、物理化学特征的重要基础数据;2)为研究各类地质、地球化学作用、分析区域构造演化历史及区域成矿规律提供重要的基础资料;3)为研究区域生态环境,为工业、农业、畜牧业、医疗保健等事业提供重要信息。
4.简述用放射性同位素测定矿物和岩石年龄的原理,并列出目前常用的四种同位素年龄体系。
测定同位素地质年龄的基本原理:通过测定放射性衰变所经历的时间间隔来记时。
第一章太阳系元素丰度和元素起源1)类地行星Terrestrial Planets(地球,水星,金星,火星)质量小、密度大体积小、卫星少,以岩石为主,富含Mg, Si, Fe等,亲气元素低2)类木行星Jovian Planets:(木星,土星,天王星,海王星)质量大、密度小体积大、卫星多H,He。
3)行星的化学成分特征随与太阳距离增加1.Fe,Co,Ni,Cr等行星核的元素减少。
2.REE,Ti,V,Th,U,Zr,Hf,Nb,Ta,W,Mo,Re,Pt增多(相对于核)。
3.形成壳-幔的元素Si,Mg,Al,Ca增多。
4.亲铜和碱金属元素Cu,Zn,Pb,Tl,Bi,Ga,Ge,Se,Te,As,Sb,In,Cd,Ag在1.5AU范围内有增多趋势,后减少。
5.氧有向外增多趋势,铁的价态有Fe o=>Fe2+=>Fe3+4)月海无水5)月海——玄武岩或显微辉长岩、钙质斜长石、单斜辉石和钛铁矿---大洋拉斑玄武,但是钛铁的含量高6)月球高地——高地斜长石富铝斜长石高地玄武岩基性斜长石、单斜辉石和钛铁矿石;铁和不透明矿物含量偏低7)克里普岩KREEP: a rock rich in P,REE and K.8)陨石是从星际空间降落到地球表面上来的行星物体的碎片。
9)陨石是空间化学研究的重要对象,具有重要的研究意义:①它是认识宇宙天体、行星的成分、性质及其演化的最易获取、数量最大的地外物质;②也是认识地球的组成、内部构造和起源的主要资料来源;③陨石中的60多种有机化合物是非生物合成的“前生物物质”,对探索生命前期的化学演化开拓了新的途径;④可作为某些元素和同位素的标准样品(稀土元素,铅、硫同位素)。
10)陨石主要是由镍-铁合金、结晶硅酸盐或两者的混合物所组成,按成份分为三类:1)铁陨石(siderite)主要由金属Ni, Fe(占98%)和少量其他元素组成(Co, S, P, Cu, Cr, C 等)。
地球化学复习要点1太阳系的元素丰度特征答:①原子序数较低的元素区间,元素丰度随原子序数增大呈指数递减,而在原子序数较大的区间(Z>45)各元素丰度值很相近;②原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。
具有偶数质子数(P)或偶数中子数(N)的核素丰度总是高于具有奇数P或N的核素,这一规律称为Oddo-Harkins(奥多--哈根斯)法则,亦即奇偶规律;③H和He是丰度最高的两种元素,这两种元素几乎占了太阳中全部原子数目的98%;④与He相邻近的Li、Be和B具有很低的丰度,属于强亏损的元素,而O和Fe呈现明显的峰,为过剩元素;⑤质量数为4的倍数(即α粒子质量的倍数)的核素或同位素具有较高丰度。
此外还有人指出,原子序数(Z)或中子数(N)为“幻数”(2、8、20、50、82和126等)的核素或同位素丰度最大。
例如,4He(Z=2,N=2)、16O(Z=8,N=8)、40Ca(Z=20,N=20)和140Ce(Z=58,N=82)等都具有较高的丰度。
2为什么碳质球粒陨石可以作为太阳系的初始物质的代表答:因为阿伦德(Allende)碳质球粒陨石(1969年陨落于墨西哥,CⅢ型)以及其他碳质球粒陨石(尤其是CⅠ型)中的非挥发性元素丰度几乎与太阳气中观察到的非挥发性元素丰度完全一致。
3地壳元素丰度的研究方法都有哪些答:目前应用比较广泛的有:①陨石类比法;②地球模型和陨石的类比法;③地球物理类比法等。
4地球体系中元素的赋存形式都有哪些答:(1)独立矿物。
指形成能够用肉眼或显微镜下进行矿物学研究的颗粒,粒径大于0.001mm,并且可以用机械的或物理的方法分离出单矿物。
(2)类质同象形式。
也称结构混入物,由于参加主要元素矿物晶格,用机械的或化学的方法不易使二者分离,欲使其分离,只有破坏原矿物的晶格。
(3)超显微非结构混入物。
也称超显微包体或机械混入物等,颗粒小于0.001mm,其主要物征是不占据矿物的晶位置,因此是独立化合物,但又不形成可以进行矿物学研究的颗粒。
《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。
它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。
2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。
3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。
二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。
2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。
三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。
地球化学考试题绪论1.概述地球化学学科的特点。
答题要点:1) 地球化学是地球科学中的⼀个⼆级学科;2) 地球化学是地质学和化学、物理化学和现代科学技术相结合的产物; 3) 地球化学既是地球学科中研究物质成分的主⼲学科,⼜是地球学科中研究物质运动形式的学科;地球化学既需要地质构造学、矿物学、岩⽯学作基础,⼜能更深刻地揭⽰地质作⽤过程的形成和发展历史,使地球科学由定性向定量化发展; 4) 地球化学已形成⼀个较完整的学科体系,仍不断与相关学科结合产⽣新的分⽀学科; 5) 地球化学作为地球科学的⽀柱学科,既肩负着解决当代地球科学⾯临的基本理论问题—天体、地球、⽣命、⼈类和元素的起源和演化的重⼤使命,⼜有责任为⼈类社会提供充⾜的矿产资源和良好的⽣存环境。
2. 简要说明地球化学研究的基本问题。
答题要点: 1)地球系统中元素及同位素的组成问题; 2)地球系统中元素的组合和元素的赋存形式; 3)地球系统各类⾃然过程中元素的⾏为(地球的化学作⽤)、迁移规律和机理; 4)地球的化学演化,即地球历史中元素及同位素的演化历史。
3. 简述地球化学学科的研究思路和研究⽅法。
答题要点:研究思路 1)由于地球化学本质上是属于地球科学,所以其⼯作⽅法应遵循地球科学的思维途径;2)要求每个地球化学⼯作者有⼀个敏锐的地球化学思维,也就是要善于识别隐藏在各种现象中的地球化学信息,从⽽揭⽰地质现象的奥秘;3)具备有定性和定量测定元素含量及鉴别物相的技术和装置。
研究⽅法:⼀)野外阶段:1)宏观地质调研。
明确研究⽬标和任务,制定计划; 2)运⽤地球化学思维观察认识地质现象;3)采集各种类型的地球化学样品。
⼆)室内阶段:1)“量”的研究,应⽤精密灵敏的分析测试⽅法,以取得元素在各种地质体中的分配量。
元素量的研究是地球化学的基础和起点,为此,对分析⽅法的研究的要求:⾸先是准确;其次是⾼灵敏度;第三是快速、成本低。
2)“质”的研究,即元素的结合形式和赋存状态的鉴定和研究。
地球化学绪论1、地球化学的定义:地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学2、地球化学的基本问题:【填空】(1)质:地球系统中元素的组成(2)量:元素的共生组合和赋存形式(3)动:元素的迁移和循环(4)史:地球的历史和演化3、地球化学研究思路:【简答】在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。
即“见微而知著”。
第一章地球和太阳系的化学组成第一节地球的结构和组成1、地球的圈层结构、主要界面名称:(1)地震波(P波和S波)在地球内部传播速度的变化,反映出地球内部物质的密度和弹性是不均一的。
这种不均一性在地球的一定深度表现为突变性质。
由此得出,地球内部具有壳层结构的概念,即认为地球由表及里分为地壳、地幔和地核三个部分。
界面分别为:莫霍面和古登堡面。
(2)上地壳和下地壳分界面为康拉德面。
上地壳又叫做硅铝层,下地壳又叫做硅镁层。
大陆地壳由上、下地壳,而大洋地壳只有下地壳。
【填空】2、固体地球各圈层的化学成分特点:(分布顺序)地壳:O、Si、Al、Fe、Ca地幔:O、Mg、Si、Fe、Ca地核:Fe-Ni地球:Fe、O、Mg、Si、Ni第二节元素和核素的地壳丰度1、基本概念:【名词解释】(1)地球化学体系:我们把所要研究的对象看作是一个地球化学体系,有一定的空间,处于特定的物理-化学状态,并且有一定时间的连续(2)丰度:研究体系中被研究元素的相对含量(3)克拉克值:地壳中元素的平均含量(4)质量克拉克值:以质量计算表示的克拉克值(5)原子克拉克值:以原子数之比表示的元素相对含量。
它是指某元素在某地质体全部元素的原子总数中所占原子个数的百分数。
(6)浓度克拉克值:某一元素在地质体中的平均含量与克拉克值的比值2、克拉克值的变化规律:(1)递减:元素的克拉克值大体上随原子序数的增大而减小。
地球化学丰度值地球化学丰度值是指地球上各种元素在地壳、海洋和大气中的丰度。
地球化学丰度值反映了地球上各种元素的分布情况,对于研究地球的物质组成和演化具有重要意义。
本文将介绍一些地球化学丰度值高的元素及其在地球上的分布情况。
我们来看一下地壳中丰度较高的元素。
地壳是地球最外层的固体外壳,主要由氧、硅、铝和铁等元素组成。
其中,氧是地壳中最丰富的元素,约占地壳质量的46.6%,主要以氧化物的形式存在。
硅是地壳中第二丰富的元素,约占地壳质量的27.7%,主要以硅酸盐的形式存在。
铝是地壳中第三丰富的元素,约占地壳质量的8.13%,主要以氧化铝的形式存在。
铁是地壳中第四丰富的元素,约占地壳质量的5%,主要以氧化铁的形式存在。
除了地壳,海洋也是地球上元素丰度的重要储库。
海洋中丰度较高的元素主要有氯、钠、镁和硫等。
氯是海水中最丰富的元素,约占海水质量的55.3%,主要以氯化物的形式存在。
钠是海水中第二丰富的元素,约占海水质量的30.6%,主要以氯化钠的形式存在。
镁是海水中第三丰富的元素,约占海水质量的3.7%,主要以氯化镁的形式存在。
硫是海水中第四丰富的元素,约占海水质量的0.088%,主要以硫酸盐的形式存在。
大气是地球上元素丰度的另一个重要储库。
大气中丰度较高的元素主要有氮、氧、氩和二氧化碳等。
氮是大气中最丰富的元素,约占大气质量的78%,主要以氮气的形式存在。
氧是大气中第二丰富的元素,约占大气质量的21%,主要以氧气的形式存在。
氩是大气中第三丰富的元素,约占大气质量的0.93%,主要以氩气的形式存在。
二氧化碳是大气中丰度较高的温室气体,其含量约占大气质量的0.04%,主要由人类活动和自然过程产生。
除了地壳、海洋和大气,地球内部也存在丰富的元素。
地球内部丰度较高的元素主要有铁、镍、硫和镁等。
地球内核主要由铁和镍组成,约占地球质量的35%。
地球外核主要由铁和镍组成,约占地球质量的30%。
地球地幔主要由硅、镁和铁等元素组成,约占地球质量的65%。
一.名称解释克拉克值:元素在地壳中的丰度。
浓度克拉克值:元素在某一地质体中的平均含量与其克拉克值之比,反映元素在地质体中的浓集程度。
类质同像:某些物质在一定的外界条件下结晶时,晶体中的部分构造位置随机地被介质中的其他质点所占据,结果只引起晶格常数的微小改变,晶体的构造类型、化学键类型等保持不变。
地球化学:地球化学是研究地球(包括部分天体)的化学组成,化学作用和化学演化的科学。
元素的赋存形式:元素在一定自然过程或其演化历史中的某个阶段所处的状态及与共生元素间的结合关系。
地球化学障:在元素迁移途中,如果环境的物理化学条件发生了急剧变化,导致介质中原来稳定迁移的元素其迁移能力下降,元素因形成大量化合物而沉淀,则这些引起元素沉淀的条件或因素就称为地球化学障。
(不)相容元素:在岩浆结晶作用过程中,那些(不)容易以类质同像的形式进入固相的微量元素,称为(不)相容元素。
同位素分馏:是指在一系统中,某元素的同位素以不同的比值分配到两种物质或两相中的现象。
元素地球化学亲和性:在自然体系中元素形成阳离子的能力和所显示出的有选着地与某种阴离子结合的特性。
能斯特分配系数:在温度、压力恒定的条件下,微量元素i(溶质)在两相分配达平衡时其浓度比为一常数(KD),此常数KD称为分配系数,或称能斯特分配数。
亨利定律(稀溶液定律):在无限稀释的溶液中,溶质的浓度n与溶质摩度N成正比。
浓度系数:元素在矿床中最低工业品位与克拉克值之比。
活度积:当T 一定时,难溶强电解质溶液中离子活度的乘积为一常数。
同离子效应:在难溶化合物的饱和溶液中加入与该化合物有相同离子的易溶化合物时,使原难溶化合物的溶解度降低。
盐效应:当溶液中存在易溶盐类时,溶液的含盐度对元素的溶解度有影响。
溶液中易溶电解质的浓度增大, 导致其他溶解度增大的现象。
二、填空题1.地球化学研究方法:反序法和类比法2.补充稀土元素57La 58Ce 59Pr *60Nd 61Pm 62Sm 63Eu 64Gd 65Tb 66Dy 67Ho 68 Er 69Tm 70Yb 71Lu 39Y镧铈镨钕钜钐铕钆铽镝钬铒铥镱镥钇3.稀土元素的存在形式:被吸附状态、类质同象、独立矿物。
地球化学重点整理Part I 后半学期内容Chap1 宇宙和地球的成因及组成1.元素丰度的定义、表达形式、研究意义定义:化学元素在一定自然体系中的相对平均含量。
表达形式:元素丰度值采用的是相对于106个Si 原子的各个元素的原子数,即原子丰度值,选择Si 作为标准是因为该元素分布广且挥发性又小,因而稳定性好。
意义:丰度实际上是一个体系的背景,它是是地球化学的几个基本问题之一,在地球化学的发展中必不可少的工作。
2.化学元素在太阳系行星中的分布特点类地行星:主要元素是Fe, Si, Mg等非挥发性元素;巨行星:化学成分以H、He为主,亲铁、亲石元素少;远日行星:成分以C、N、O为主,H、He比例不大,少量亲铁-亲石元素。
3.确定太阳系元素丰度的途径太阳系平均化学成分或元素宇宙丰度的确定主要依据两类数据:一是根据太阳大气光谱资料确定太阳系中挥发性元素含量。
二是根据球粒陨石的化学组成确定太阳系中非挥发性元素的组成和含量。
4.元素在宇宙中的丰度宇宙中元素分布的如下特征规律:1. 宇宙中最丰富的元素为H 和He,H/He 比值为12.5。
2. 原子序数较低(Z<50)的轻元素随原子序数增加呈指数递减,而在较重元素范围内(Z>50),不仅元素的丰度低,而且丰度值几乎不变,即丰度曲线近乎水平。
3. 原子序数为偶数的元素其丰度值大大高于原子序数为奇数的相邻元素。
4. 与He 相邻的元素Li、Be 和B 具有很低的丰度,按较轻元素的丰度水平它们是非常亏损的元素;O 和Fe 呈明显的峰出现在元素丰度曲线上,说明它们是过剩的元素5. Tc 和Pm 没有稳定性同位素,在宇宙中不存在;原子序数大于83(Bi)的元素也没有稳定同位素,它们都是Th 和U 的长寿命放射成因同位素。
在丰度曲线上这些元素的位置空缺。
6. 质量数为4的倍数的核素或同位素具有较高的丰度,如4He、16O、40Ca、56 Fe和140Ce等。
第一章太阳系和地球系统的元素丰度元素丰度是每一个地球化学体系的基本数据,可在同一或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素动态情况,从而建立起元素集中、分散、迁移活动等一系列地球化学概念。
从某种意义上来说,也就是在探索和了解丰度这一课题的过程中,逐渐建立起近代地球化学。
研究元素丰度是研究地球化学基础理论问题的重要素材之一。
宇宙天体是怎样起源的?地球又是如何形成的?地壳中主要元素为什么与地幔中的不一样?生命是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和规律。
基础概念太阳系的组成及元素丰度地球的结构和化学成分地壳元素的丰度区域中元素分布的研究1.1基本概念1.地球化学体系按照地球化学的观点,我们把所要研究的对象看作是一个地球化学体系。
每个地球化学体系都有一定的空间,都处于特定的物理化学状态(C、T、P等),并且有一定的时间连续。
这个体系可大可小。
某个矿物包裹体,某矿物、某岩石可看作一个地球化学体系,某个地层、岩体、矿床(某个流域、某个城市)也是一个地球化学体系,从更大范围来讲,某一个区域、地壳、地球直至太阳系、整个宇宙都可看作为一个地球化学体系。
不同尺度的地球化学体系实例:太阳系、地球、自然金矿物地球化学的基本问题之一就是研究元素在地球化学体系中的分布(丰度)、分配问题,也就是地球化学体系中元素“量”的研究。
2.分布与丰度所谓元素在体系中的分布,一般认为是元素在这个体系中的相对含量(以元素的平均含量表示),即元素的“丰度”。
其实“分布”比“丰度”具有更广泛的涵义:体系中元素的丰度值实际上只是对这个体系里元素真实含量的一种估计,它只反映了元素分布特征的一个方面,即元素在一个体系中分布的一种集中(平均)倾向。
但是,元素在一个体系中,特别是在较大体系中的分布决不是均一的,还包含着元素在体系中的离散(不均一)特征,因此,元素的分布包括: ①元素的相对含量(平均含量=元素的“丰度”);②元素含量的不均一性(分布离散特征数、分布所服从的统计模型)。
第一章克拉克值:元素在地壳中的丰度,称为克拉克值。
元素在宇宙体或地球化学系统中的平均含量称之为丰度。
丰度通常用重量百分数(%),PPM(百万分之一)或g/t表示。
2 .富集矿物:指所研究元素在其中的含量大大超过它在岩石总体平均含量的那种矿物。
3. 载体矿物:指岩石中所研究元素的主要量分布于其中的那种矿物。
4. 浓集系数 =工业利用的最低品位/克拉克值。
为某元素在矿床中可工业利用的最低品位与其克拉克值之比。
5.球粒陨石:是石陨石的一种。
(约占陨石的84%):含有球体,具有球粒构造,球粒一般为橄榄石和斜方辉石。
基质由镍铁、陨硫铁、斜长石、橄榄石、辉石组成。
划分为: E群——顽火辉石球粒陨石,比较稀少;O群——普通球粒陨石: H亚群—高铁群,橄榄石古铜辉石球粒损石;L亚群—低铁群,橄榄紫苏辉石球粒陨石; LL亚群—低铁低金属亚群;C群——碳质球粒陨石,含有碳的有机化合物和含水硅酸盐,如烷烃、芳烃、烯烃、氨基酸、卤化物、硫代化合物等。
为研究生命起源提供重要信息。
分Ⅰ型、Ⅱ型和Ⅲ型。
Ⅰ型其非挥发性组成代表了太阳系星云的非挥发性元素丰度。
6.浓度克拉克值=某元素在地质体中的平均含量/克拉克值,反映地质体中某元素的浓集程度。
1.陨石在地化研究中的意义:(一)陨石的成分是研究和推测太阳系及地球系统元素成分的重要依据:(1)用来估计地球整体的平均化学成分。
1陨石类比法,即用各种陨石的平均成分或用球粒陨石成分来代表地球的平均化学成分。
2地球模型和陨石类比法来代表地球的平均化学成分,其中地壳占质量的1%,地幔31.4%,地核67.6%,然后用球粒陨石的镍—铁相的平均成分加5.3%的陨硫铁可以代表地核的成分,球粒陨石的硅酸盐相平均成分代表地壳和地幔的成分,用质量加权法计算地球的平均化学成分。
(2)I型碳质球粒陨石其挥发性组成代表了太阳系中非挥发性元素的化学成分。
(二)陨石的类型和成分是用来确定地球内部具层圈结构的重要依据:由于陨石可以分为三种不同的陨石—石陨石、石铁陨石和铁陨石,因而科学家设想陨石是来自某种曾经分异成一个富含金属的核和一个硅酸盐外壳的行星体,这种行星经破裂后就成为各种陨石,其中铁陨石来自核部,石铁陨石来自金属核和硅酸盐幔的界面,而石陨石则来自富硅酸盐的幔区。
第一章元素的丰度与分布第一节元素的宇宙丰度我们常说的元素宇宙丰度,实际上是太阳系的元素丰度,元素的宇宙丰度是研究元素起源的理论依据,是解释各类天体演化过程的基础。
由太阳、行星及其卫星、小行星、营星、流星体和星际物质构成的天体系统称为太阳系。
太阳的质量占整个太阳系总质量的99.8%,而其它成员总合仅占o.2%。
按成分特点,九大行星可以划分为三种类型:类地行星:顾名思义,它指与地球类似的行星,包括水星、金星、地球和火星。
其特点是质量小、密度大、体积小、卫星少。
成分特点是以岩石物质为主,富含Mg、Si、Fe等,含亲气元素少;巨行星:木星和土星。
它们的体积大、质量大、密度小、卫星多。
如果以地球质量和体积分别为1,则土星分别为95.18和745,木星分别为317.94和1316。
其成分特点是主要含H、He,亲石和亲铁元素少;远日行星:天王星、海王星、具王星。
其成分特点是以冰物质为主。
H含量估计为10%,He、Ne平均为12%。
上述三类行星中岩石物质:冰物质:气物质的比值分别为1:10—‘:10—y—lo“’;O.02:o.07:o.9120.195:0.68:0.12。
以上三类行星主要元素的原子相对丰度如表1.1所示:随着行星际空间探测的发展,地球和月球成分的大量精细研究,各类陨石元素组成数据的积累,雪星、流星体成分的测定,“使之对太阳系化学组成的研究获得了比较满意的结果,对各行星及卫星也提出了多种化学组成模式。
如前所述,太阳系的行星成分可分三大类:岩石质的;岩石质和冰物质的;气物质的。
根据平衡凝聚模型,由于太阳星云凝聚过程中温度的差异,距太阳愈远温度愈低,因而各行星区凝聚物的成分和含量均不相同。
水星:主要由难熔金属矿物,铁镍合金和少量顽辉石组成;金星:除上述成分外,还含有钾(钠)铝硅酸盐,但不含水;地球;除上述成分外,还含有透闪石等一些含水硅酸盐和三种形式的铁(金属铁,FeO,FeS),其中金属钦和FeS形成低熔点混合物,在放射性加热下熔化、分异,形成早期地核。
第一章1.太阳系元素丰度的特征①H和He是丰度最高的两种元素,其原子数几乎占太阳中全部原子数目的98%②原子序数较低的范围内(Z<45),元素丰度随原子序数增大呈指数递减,而(Z>45)各元素丰度值很相近。
③质量数为4的倍数的核素或同位素具有较高丰度。
④原子序数为偶数的元素其丰度大大高于相邻原子序数为奇数的元素。
这一规律称为奥多-哈根斯法则,亦即奇偶规律。
⑤Li、Be和B具有很低的丰度,属于强亏损的元素,而O和Fe呈现明显的峰,它们是过剩元素。
2.陨石类型及其化学成分①铁陨石(siderite)金属含量大于90%。
主要由金属Ni,Fe(占98%)和少量其他元素组成(Co,S,P,Cu,Cr,C等)。
②石陨石(aerolite)主要由硅酸盐矿物组成(橄榄石、辉石)。
这类陨石可分为两类,根据它们是否含有球粒硅酸盐结构,分为球粒陨石(约含10%金属)和无球粒陨石(1%)。
③铁石陨石(sidrolite)约含50%金属。
由数量上大体相等的Fe-Ni和硅酸盐矿物组成,是上述两类陨石的过渡类型。
3. 研究陨石成分的意义①是认识宇宙天体、行星的成分、性质及其演化的最易获取、数量最大的地外物质;②是认识地球组成、内部构造和起源的主要介质;③陨石中60多种有机化合物是非生物合成的“前生物物质”,为探索生命前期化学演化开拓了新途径;④可作为某些元素和同位素的标准样品(稀土元素,铅、硫同位素等)。
4.中国的嫦娥计划有何现实意义(百度)百度的:其一,强大的政治影响力其二,培养科技人才,促进科学进步。
其三,带动国内经济增长。
5. 概念:丰度、常量元素、微量元素、CAI、奥多-哈根斯法则丰度:元素在地球化学体系中的平均含量。
常量元素(major element):(氧化物重量百分比)含量>0.1%微量元素(Trace element):含量<0.1%CAI:富钙、铝难熔包体,形成于太阳星云演化历史的最初始阶段,保留了星云最原始的信息,具有同位素异常和大量灭绝核素的子体,是研究早期太阳星云形成和演化的探针。