8旋转中的最值问题
- 格式:docx
- 大小:286.18 KB
- 文档页数:2
解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD中,点E,F分别在AB,BC上,沿EF翻折后,点B落在边CD上的G处,若EG⊥CD,BE=4,DG=3,则AE的长为.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D= 80°,则∠BCF的度数是.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD中,AB=8,∠A=120°,M是CD上,DM=3,N是点AB上一动点,四边形CMNB沿直线MN翻折,点C对应点为E,当AE最小时,AN=.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.5.(2024·云南曲靖·二模)如图,已知在△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,点E为AC上一点,连接BE,交CD于点G,△BFE是△BCE沿BE折叠所得,且点C的对应点F恰好落在AB上,连接FG.(1)求证:四边形CEFG为菱形;(2)若AC=8,BC=6,求DG的长.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.258.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.1929.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.2210.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD 中,∠ABC =60°,P 是直线BD 上一动点,以AP 为边向右侧作等边△APE ,(A 、P ,E 按逆时针排列),点E 的位置随点P 的位置变化而变化.(1)如图1,当点P 在线段BD 上,且点E 在菱形ABCD 内部或边上时,连接CE ,则BP 与CE 的数量关系是,BC 与CE 的位置关系是;(2)①如图2,当点P 在线段BD 上,且点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE ,若AB =2,∠APD =75°,直接写出BE 的长;(3)当点P 在直线BD 上时,其他条件不变,连接BE .若AB =23,BE =219,请直接写出△APE 的面积.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O影部分的面积为cm2.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=23,则GH的最小值是.17.(23-24八年级下·安徽合肥·期末)菱形ABCD中,∠B=60°,E是BC中点,连接AE,DE,点F是DE上一动点,G为AF中点,连接CG.(1)∠BAE=;(2)若AB=2,则CG的最小值为.18.(2024八年级下·全国·专题练习)如图,菱形ABCD中,AB=4,∠ABC=60°,点P为AD边上任意一点(不包括端点),连结AC,过点P作PQ∥AC,交边CD于点Q,点R线段AC上的一点.(1)若点R为菱形ABCD对角线的交点,PQ为△ACD的中位线,求PR+QR的值;(2)当PR+QR的值最小时,请确定点R的位置,并求出PR+QR的最小值;(3)当PR+QR的值最小,且PR+QR+PQ的值最小时,在备用图中作出此时点P,Q的位置,写作法并写出PR+QR+PQ的最小值.【考点五利用菱形的性质与判定解决新定义型问题】19.(22-23八年级下·江苏苏州·期末)定义:如果三角形有两个内角的差为90°,那么称这样的三角形为“准直角三角形”.(1)已知△ABC是“准直角三角形”,∠C>90°,若∠A=40°,则∠B=°.(2)如图,在菱形ABCD中,∠B>90°,AB=5,连接AC,若△ABC正好为一个准直角三角形,求菱形ABCD的面积.【变式训练】20.(23-24九年级下·山东威海·期中)【理解新定义】若一个四边形具备一组对角互补和一组邻边相等,则称该四边形为“补等四边形”.如正方形和筝形,它们都具备这样的特征,所以称为补等四边形.【解决新问题】(1)如图Ⅰ,点E,F分别在菱形ABCD的边CD,AD上,CE=DF,∠A=60°.四边形BEDF是否为补等四边形?(填“是”或“否”)(2)如图Ⅱ,在△ABC中,∠B>90°.∠ACB的平分线和边AB的中垂线交于点D,中垂线交边AC于点G,连接DA,DB.四边形ADBC是否为补等四边形?若是,进行证明;若不是,说明理由.21.(22-23八年级下·浙江宁波·期末)我们定义:以已知菱形的对角线为边且有一条边与已知菱形的一条边共线的新菱形称为已知菱形的伴随菱形.如图1,在菱形ABCD中,连接AC,在AD的延长线上取点E 使得AC=AE,以CA、AE为边作菱形CAEF,我们称菱形CAEF是菱形ABCD的“伴随菱形”.(1)如图2,在菱形ABCD中,连接AC,在BC的延长线上作CA=CF,作∠ACF的平分线CE交AD的延长线于点E,连接FE.求证:四边形AEPC为菱形ABCD的“伴随菱形”.(2)①如图3,菱形AEFC为菱形ABCD的“伴随菱形”,过C作CH垂直AE于点H,对角线AC、BD相交于点O.连接EO若EO=2CH,试判断ED与BD的数量关系并加以证明.②在①的条件下请直接写出CHED的值.22.(22-23八年级下·安徽合肥·期末)定义:在三角形中,若有两条中线互相垂直,则称该三角形为中垂三角形.(1)如图(a),△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,且BD⊥AE于点O,若∠BAE=45°,求证:△ABC是等腰三角形.(2)如图(b),在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,求证:AC2+BC2=5AB2.(3)如图(c),四边形ABCD是菱形,对角线AC,BD交于点O,点M,N分别是OA,OD的中点,连接BM,CN并延长,交于点E.求证:△BCE是中垂三角形;解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD 中,点E ,F 分别在AB ,BC 上,沿EF 翻折后,点B 落在边CD 上的G 处,若EG ⊥CD ,BE =4,DG =3,则AE 的长为.【答案】914【分析】此题重点考查菱形的性质、轴对称的性质、平行四边形的判定与性质、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.作BH ⊥CD 交DC 的延长线于点H ,因为EG ⊥CD ,所以BH ∥EG ,由四边形ABCD 是菱形,得AB ∥CD ,AB =BC =CD ,则四边形BEGH 是平行四边形,所以GH =BE =4,由折叠得GE =BE =4,则BH =GE =4,所以DH =DG +GH =3+4=7,由勾股定理得42+7-AB 2=AB 2,求得AB =6514,所以AE =AB -BE =6514-4=914,于是得到问题的答案.【详解】解:作BH ⊥CD 交DC 的延长线于点H ,则∠H =90°,∵EG ⊥CD ,∴BH ∥EG ,∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC =CD ,∴BE ∥GH ,∴四边形BEGH 是平行四边形,∴GH =BE =4,由折叠得GE =BE =4,∵DG =3,∴DH =DG +GH =3+4=7,∵BH 2+CH 2=BC 2,CH =7-CD =7-AB ,∴42+7-AB 2=AB 2,解得AB =6514,∴AE =AB -BE =6514-4=914,故答案为:914.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠BCF 的度数是.【答案】80°/80度【分析】此题考查了菱形的性质,折叠的性质,等边对等角和平行线的性质,首先根据平行的性质得到BC =CD ,由折叠得BC =CF ,然后求出CF =CD ,然后根据等边对等角和平行线的性质求解即可.【详解】∵四边形ABCD 是菱形∴BC =CD由折叠可得,BC =CF∴CF =CD∴∠CFD =∠D =80°∵四边形ABCD 是菱形∴AD ∥BC∴∠BCF =∠DFC =80°.故答案为:80°.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD 中,AB =8,∠A =120°,M 是CD 上,DM =3,N 是点AB 上一动点,四边形CMNB 沿直线MN 翻折,点C 对应点为E ,当AE 最小时,AN =.【答案】7【分析】本题考查了菱形的性质,折叠的性质,勾股定理等知识,解决本题的关键是确定点E在AM上时,AE的值最小.作AH⊥CD于H,如图,根据菱形的性质可求得AH=32AD=83,DH=CH=8,在Rt△AHM中,利用勾股定理计算出AM=7,再根据两点间线段最短得到当点E在AM上时,AE的值最小,然后证明AN=AM即可.【详解】解:作AH⊥CD于H,如图,∵菱形ABCD的边AB=8,∠A=120°,∴AD=AB=CD=8,AB∥CD,∴∠D=180°-∠BAD=60°,∴∠DAH=30°,∴DH=12AD=4,AH=AD2-DH2=43,∵DM=3,∴HM=1,MC=CD-DM=5,在Rt△AHM中,AM=AH2+HM2=7,∵四边形CMNB沿直线MN翻折,点C对应点为E,,∴ME=MC=10,∵AE+ME≥AM,∴AE≥AM-ME,∴当点E在AM上时,AE的值最小,由折叠的性质得∠AMN=∠CMN,而AB∥CD,∴∠ANM=∠CMN,∴∠AMN=∠ANM,∴AN=AM=7.故答案为:7.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.【答案】6075【分析】本题考查菱形的性质,垂直平分线的定义.(1)直接根据菱形的对角相等即可求解;(2)如图,由垂直平分线的定义得到∠1=90°,从而∠ADC =30°,由菱形的性质得到∠CDC =∠1=90°,从而由折叠有∠CDE=∠C DE=12∠CDC =45°,因此∠ADE=75°,再根据菱形的对边平行即可求解.【详解】解:(1)∵四边形ABCD是菱形,∴∠C=∠A=60°.故答案为:60(2)如图,∵C D 是AB 的垂直平分线,∴∠1=90°,∴∠ADC =90°-∠A =90°-60°=30°,∵在菱形ABCD 中,AB ∥CD ,∴∠CDC =∠1=90°,由折叠可得∠CDE =∠C DE =12∠CDC =12×90°=45°,∴∠ADE =∠ADC +∠C DE =30°+45°=75°,∵在菱形ABCD 中,AD ∥BC ,∴∠DEC =∠ADE =75°.故答案为:755.(2024·云南曲靖·二模)如图,已知在△ABC 中,∠ACB =90°,过点C 作CD ⊥AB 于点D ,点E 为AC 上一点,连接BE ,交CD 于点G ,△BFE 是△BCE 沿BE 折叠所得,且点C 的对应点F 恰好落在AB 上,连接FG .(1)求证:四边形CEFG 为菱形;(2)若AC =8,BC =6,求DG 的长.【答案】(1)见解析(2)GD =1.8.【分析】(1)推出CG =EF ,CG ∥EF ,进而推出四边形CEFG 是平行四边形,并根据EC =EF 证得四边形CEFG 是菱形;(2)首先利用勾股定理求出AB ,设CG =x ,然后用x 表示出AE 和EF ,再在Rt △AEF 中,利用勾股定理构建方程,求出x ,进一步计算即可求解.【详解】(1)证明:∵CD ⊥AB ,△BFE 是△BCE 沿BE 折叠所得,∴∠BFE =∠BCE =90°,∠CEG =∠FEG ,EC =EF ,∴CD ∥EF ,∴∠CGE =∠FEG ,∴∠CGE =∠CEG ,∴CE =CG ,∴CG =EF ,∵CG ∥EF ,∴四边形CEFG 是平行四边形,∵EC =EF ,∴平行四边形CEFG 是菱形;(2)解:∵AC =8,BC =6,∠ACB =90°,22∵四边形CEFG 是菱形,∴EF =FG =CE =CG =x ,∴AE =8-x ,∵△BFE 是△BCE 沿BE 折叠所得,∴BF =BC =6,∴AF =AB -BF =10-6=4,∵在Rt △AEF 中,EF 2+AF 2=AE 2,∴x 2+42=8-x 2,解得:x =3,即CG =3.∵CD ⊥AB ,∴S △ABC =12AC ×BC =12AB ×CD ,∴CD =4.8,∴GD =4.8-3=1.8.【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,平行四边形的判定,菱形的判定和性质以及勾股定理的应用,灵活运用各性质进行推理论证是解题的关键.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【答案】C【分析】首先根据题意作图,然后由图象判断出点P 在对角线BD 上,BP =4,BP +AP =6,设AO =x ,则AB =2AO =2x ,利用勾股定理求解即可.【详解】如图所示,由图象可得,当x 从0到4时,MA MC=y =1∴MA =MC∵四边形ABCD 是菱形∴点P 在对角线BD 上∴由图象可得,BP =4,BP +AP =6∵在菱形ABCD 中,∠B =60°,∴∠ABD =30°,AC ⊥BD∴设AO =x ,则AB =2AO =2x∴PO =BP -BO =4-3x∴BO =AB 2-AO 2=3x∴在Rt △APO 中,AP 2=AO 2+PO 2∴22=x 2+4-3x 2解得x =3,负值舍去∴AB =2x =23∴菱形ABCD 的边长是23.故选:C .【点睛】此题考查了动点函数图象问题,菱形的性质,勾股定理,含30°角直角三角形的性质等知识,解题的关键是根据图象正确分析出点P 在对角线BD 上.【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.25【答案】A 【分析】根据图象可知,当x =0时,即点P 与点A 重合,此时S △ABE =12,进而求出菱形的面积,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,利用菱形的性质,求出边长,即可得出结果.本题考查菱形的性质和动点的函数图象.熟练掌握菱形的性质,从函数图象中有效的获取信息,是解题的关键.【详解】解:由图象可知:当x =0时,即点P 与点A 重合,此时S △ABE =12,∴S 菱形ABCD =2S △ABE =24,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,交AC 于点O ,则:BD ⊥AC ,OA =OC =4,OB =OD ,∴S 菱形ABCD =12AC ⋅BD =24,∴BD =6,∴OB =OD =3,∴AB =OA 2+OB 2=5,∴菱形ABCD 的边长为5;故选A .8.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.192【答案】B【分析】本题主要考查了菱形的性质,勾股定理,动点问题的函数图象,过点C 作CE ⊥AD ,根据函数图象求出菱形的边长为a ,再根据图像的三角形的面积可得CE =8,再利用菱形的性质和勾股定理列方程可求a 即可.【详解】解:如图所示,过点C 作CE ⊥AD 于E ,∵在菱形ABCD 中,AD ∥BC ,AD =BC ,∴当点P 在边BC 上运动时,y 的值不变,∴AD =BC =10+a -10=a ,即菱形的边长是a ,∴12⋅AD ⋅CE =4a ,即CE =8.当点P 在AC 上运动时,y 逐渐增大,∴AC =10,∴AE =AC 2-CE 2=102-82=6.在Rt △DCE 中,DC =a ,DE =a -6,CE =8,∴a 2=82+a -6 2,解得a =253.故选:B .9.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.22【答案】C 【分析】结合图象,得到当x =0时,PO =AO =4,当点P 运动到点B 时,PO =BO =2,根据菱形的性质,得∠AOB =∠BOC =90°,继而得到AB =BC =OA 2+OB 2=25,当点P 运动到BC 中点时,PO 的长为12BC=5,解得即可.本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当x=0时,PO=AO=4,当点P运动到点B时,PO=BO=2,根据菱形的性质,得∠AOB=∠BOC=90°,故AB=BC=OA2+OB2=25,当点P运动到BC中点时,PO的长为12BC=5,故选C.10.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边△APE,(A、P,E按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)①如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE,若AB=2,∠APD=75°,直接写出BE的长;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=23,BE=219,请直接写出△APE的面积.【答案】(1)BP=CE,CE⊥BC;(2)①仍然成立,见解析;②20-83(3)73或313【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;(2)①(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;②根据已知得出DP=AD,进而根据①可得BP=CE,根据CE⊥BC,勾股定理,即可求解;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】(1)解:如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∴AP=AE,∠P AE=60°,∴∠BAP=∠CAE=60°-∠P AC,∴△BAP≌△CAE SAS,∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=1∠ABC=30°,2∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠P AE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE SAS,∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD仍然成立;②如图所示,∵△ABP≌△ACE SAS,∴CE=BP,∵∠APD=75°,∠ADB=30°∴∠DAP=75°=∠APD,∴DA=DP=2,∵BD=2BO=23AO=3AB=23∴BP=CE=BD-DP=23-2∵CE⊥AD,AD∥BC∴CE⊥BC∴BE=BC2+CE2=22+23-22=20-83故答案为:20-83.(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∵∠ABC =60°,AB =23,∴∠ABO =30°,∴AO =12AB =3,OB =3AO =3,∴BD =6,由(2)知CE ⊥AD ,∵AD ∥BC ,∴CE ⊥BC ,∵BE =219,BC =AB =23,∴CE =(219)2-(23)2=8,由(2)知BP =CE =8,∴DP =2,∴OP =5,∴AP =OA 2+OP 2=(3)2+52=27,∵△APE 是等边三角形,∴S △AEP =34×27 2=73,如图4中,当点P 在DB 的延长线上时,同法可得AP =OA 2+OP 2=(3)2+112=231,∴S △AEP =34×231 2=313.【点睛】此题考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【答案】D 【分析】本题考查了旋转的性质、菱形的性质,含30°直角三角形的性质,勾股定理,坐标与图形,根据题意得到旋转的规律是解题的关键.根据题意得到点C 2024与点C 重合,在菱形中算出C 点坐标,即可解答.【详解】解:作CD ⊥OA 于D ,则∠CDO =90°,∵四边形OABC 是菱形,O 0,0 ,A -1,0 ,∴∠AOC =∠B =60°,OC =OA =1∴∠OCD =30°∴OD =12OC =12,CD =3OD =32∴点C 的坐标为-12,32,若菱形绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,则菱形OABC 绕点O 连续旋转2024次,旋转4次为一周,旋转2024次为2024÷4=506(周),∴绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024与菱形OABC 重合,∴点C 2024与C 重合,∴点C 2024的坐标为-12,32,故选:D .【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O按顺时针方向分别旋转90°、180°、270°后,得到如图的图形,每相邻两个菱形有一个顶点重合,则图中阴影部分的面积为cm 2.【答案】12-43【分析】连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,S △AOD =12×AE ×OD =12×3×3-1 =3-32cm 2 ,计算即可.【详解】如图,连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,∴点D 在OB 上,由已知条件易得BE =DE =12AB =1cm ,AE =OE =3cm ,∴OD =3-1cm ,∴S =1×AE ×OD =1×3×3-1 =3-3cm 2 ,∴所求面积为8×3-32=12-43cm2.故答案为:12-43.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?【答案】(1)证明见解析(2)①33;②30°或90°【分析】(1)连接AF,根据菱形的性质,可得到△GAF≅△EAF,从而得到∠GAF=∠EAF,进而得到△DAF ≅△BAF,即可求证;(2)①连接AF,EG,BD,AC,BD与AC交于点O,AF交EG于点P,根据旋转的性质和菱形的性质可得AF∥OD,△ABD和△AEG是等边三角形,从而得到AF=OD,进而得到四边形AODF是平行四边形,即可求解;②分两种情况讨论:∠BDF=90°和∠BFD=90°,利用矩形的性质、等边三角形的判定与性质求解即可得.【详解】(1)证明:连接AF,∵四边形AEFG是菱形,∴AE=EF=FG=GA,在△GAF和△EAF中,AG=AEGF=EFAF=AF,∴△GAF≅△EAF SSS,∵四边形ABCD 是菱形,∴AD =AB ,在△DAF 和△BAF 中,AD =AB∠DAF =∠BAF AF =AF,∴△DAF ≅△BAF SAS ,∴DF =BF .(2)解:①如图,连接AF ,EG ,BD ,AC ,BD 与AC 交于点O ,AF 交EG 于点P ,由(1)得当菱形AEFG 没有旋转时,AC 平分∠BAD ,AF 平分∠EAG ,∴此时点A 、F 、C 三点共线,∴当菱形AEFG 绕点A 按逆时针方向旋转时,∠FAC =α,∴当α=90°时,∠FAC =∠BAE =90°,在菱形ABCD 中,AB =AD ,OD =12BD ,OA =12AC ,BD ⊥AC ,∠DAO =12∠BAD =30°,∴∠AOD =90°∴∠DOA +∠FAC =180°,∴AF ∥OD ,在菱形AEFG 中,∠EAF =12∠EAG =30°,AE =AG ,AP =12AF ,PE =12EG ,∵∠DAB =∠GAE =60°.∴△ABD 和△AEG 是等边三角形,∴BD =AB =6,EG =AE =3,∴OD =3,EP =32,∴AP =AE 2-EP 2=32,OA =AD 2-OD 2=33∴AF =3,∴AF =OD ,∴四边形AODF 是平行四边形,∴DF =OA =33;②由①得四边形AODF 是平行四边形,∵∠FAC =90°,∴四边形AODF 是矩形,∴∠BDF =90°,即△DFB 为直角三角形,∴此时旋转角α的度数为90°;如图,当点F 在AD 上时,由①得AF =3,∴AF=DF,∵△ABD为等边三角形,∴BF⊥AD,即∠BFD=90°,∴此时△DFB为直角三角形,∵∠EAF=1∠EAG=30°,2∴∠BAE=∠BAD-∠EAF=30°,即此时旋转角α的度数为30°;综上所述,当△DFB为直角三角形时,旋转角α的度数为30°或90°.【点睛】本题主要考查了菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,并利用分类讨论思想解答是解题的关键.14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【答案】(1)43(2)FD=3CG,证明见解析(3)OE=3OC,2≤OC≤4【分析】(1)连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,根据菱形的性质,证明B,F,D三点共线,求出BD,BF的长,用BD-BF即可求出DF的长度;(2)过点D作DM∥FG,过点G作GM∥DF,过点C作CN⊥MG,得到四边形DMGF为平行四边形,证明△CDM≌△CBG,得到CM=CG,∠DCM=∠BCG,进而求出∠MCG=∠BCG+∠BCM=∠DCM+∠BCM=∠DCB=120°,利用等腰三角形的性质结合30度角的直角三角形的性质,即可得出结论;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,先证明△DOC≌△GOH,推出四边形AHGB为平行四边形,再证明△HAC≌△EBC,推出△CHE为等边三角形,利用等边三角形的性质和含30度角的直角三角形的性质,即可得出结论;②三角形的三边关系,求出CE的范围,进而求出OC的范围即可.【详解】(1)解:连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,∵菱形ABCD ,菱形EBGF ,∴∠ABD =∠CBF =12∠ABC =30°,∠EBF =∠GBF =12∠EBG =30°,AC ⊥BD ,EG ⊥BF ,BD =2OB ,BF =2HB ,∵点E 、G 分别在边AB 、BC 上,∴∠ABD =∠ABF =30°,∴B ,F ,D 三点共线,∵BE =2,∠EBF =30°,∴HE =12BE =1,BH =3HE =3,∴BF =2BH =23,同理:BD =2OB =23OA =2×32AB =63,∴DF =BD -BF =43;故答案为:43;(2)FD =3CG ,证明如下:过点D 作DM ∥FG ,过点G 作GM ∥DF ,过点C 作CN ⊥MG ,则:四边形DMGF 为平行四边形,∴DF =MG ,DM =GF ,∵菱形ABCD ,菱形EBGF ,∠ABC =∠EBG =60°,∴AD ∥BC ,BE ∥GF ,∠ADB =∠ABC =∠EBG =60°,CD =BC ,BG =GF =DM∴BE ∥DM ,∠1=∠2,∠DCB =180°-∠ADC =120°,∴∠3=∠DMN ,∵∠1=∠ADM +∠DMN ,∠2=∠3+∠CBE∴∠ADM =∠CBE ,∴∠CDA +∠ADM =∠CBE +∠EBG ,即:∠CDM =∠CBG ,又∵CD =BC ,BG =DM ,∴△CDM ≌△CBG ,∴CM =CG ,∠DCM =∠BCG ,∴∠MCG =∠BCG +∠BCM =∠DCM +∠BCM =∠DCB =120°,∴∠CMG =∠CGM =12180°-120° =30°,∵CN ⊥MG ,∴DF =MG =2NG ,CN =12CG ,∴NG=CG2-CN2=3CG,2∴DF=3CG;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,∵O是DG的中点,∴OD=OG,又∵∠DOC=∠HOG,∴△DOC≌△GOH,∴GH=CD,∠OCD=∠OHG,∴CD∥HG,∵菱形ABCD,∴AB∥CD,AD∥BC,AB=BC=CD=DA,∠ADC=∠ABC=60°,∴AB∥HG,GH=CD=AB,△ABC为等边三角形,∴四边形AHGB为平行四边形,∠BAC=∠ACB=60°,AC=AB=BC,∴AH∥BG,AH=BG,∠CAQ=180°-∠CAB=120°,∴∠HAQ=∠ABG,∵BG=BE,∴AH=BE,∵∠CBE=∠ABC+∠ABG+∠EBG=120°+∠ABG,∠HAC=∠HAQ+∠CAQ=∠HAQ+120°,∴∠CBE=∠HAC,又∵AH=BE,AC=BC,∴△HAC≌△EBC,∴CH=CE,∠HCA=∠ECB,∴∠HCE=∠HCA+∠ACE=∠BCE+∠ACE=∠ACB=60°,∴△CHE为等边三角形,∵OC=OH,∠HEC=60°,∴OE⊥OC,∠CEO=30°,∴OC=1CE,2∴OE=3OC;②∵BC=AB=6,BE=2,∴BC-BE≤CE≤BC+BE,即:4≤CE≤8,∵OC=1CE,2∴2≤OC≤4.【点睛】本题考查菱形的性质,平行四边形的判定和性质,等腰三角形的判定和性质,等边三角形的判定和性质,含30度角的直角三角形,勾股定理,三角形的三边关系等知识点,综合性强,难度大,属于压轴题,熟练掌握相关知识点,添加辅助线构造特殊图形和全等三角形,是解题的关键.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【答案】3【分析】此题考查轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质连接BD ,DE ,根据菱形的性质可得,△ABD 是等边三角形,再证明△ADP ≌△ABP ,可得PD =PB ,从而得到PE +PB 的最小值为DE 的长,再由E 是AB 的中点,可得DE ⊥AB ,AE =12AB =1,然后根据勾股定理可得DE =3,即可求解.【详解】解:如图,连接BD ,DE ,∵四边形ABCD 是菱形,周长为8,∠DAC =30°,∴∠DAB =2∠DAC =60°,∠DAP =∠BAP ,AB =AD =2,∴△ABD 是等边三角形,在△ADP 和△ABP 中,∵AP =AP ,∠DAP =∠BAP ,AB =AD ,∴△ADP ≌△ABP ,∴PD =PB ,∴PE +PB =PE +PD ≥DE ,即PE +PB 的最小值为DE 的长,∵E 是AB 的中点,∴DE ⊥AB ,AE =12AB =1,∴DE =AD 2-AE 2=3,即PE +PB 的最小值为3.故答案为:3.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若∠B =45°,BC =23,则GH 的最小值是.【答案】62【分析】连接AF ,利用三角形中位线定理,可知GH =12AF ,当AF ⊥BC 时,AF 最小,求出AF 最小值即可求出.【详解】解:连接AF ,如图,∵四边形ABCD 是菱形,∵G ,H 分别为AE ,EF 的中点,∴GH 是△AEF 的中位线,∴GH =12AF ,当AF ⊥BC 时,则∠AFB =90°,AF 最小,GH 得到最小值,∵∠B =45°,∴△ABF 是等腰直角三角形,∴AF 2+BF 2=AB 2,即2AF 2=AB 2,∴AF =6,∴GH =62,故答案为:62.【点睛】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.17.(23-24八年级下·安徽合肥·期末)菱形ABCD 中,∠B =60°,E 是BC 中点,连接AE ,DE ,点F 是DE 上一动点,G 为AF 中点,连接CG .(1)∠BAE =;(2)若AB =2,则CG 的最小值为.【答案】30°2217【分析】(1)连接AC ,证明△ABC 为等边三角形,三线合一,即可得出结果;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI ,根据三角形的中位线定理,推出点G 在IH 上运动,当CG ⊥HG 时,CG 最小,进行求解即可.【详解】解:(1)连接AC ,∵菱形ABCD ,∴AB =BC ,∵∠B =60°,∴△ABC 为等边三角形,∴∠BAC =60°,∵E 是BC 中点,∴AE 平分∠BAC ,∴∠BAE =12∠BAC =30°;故答案为:30°;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI则:IG ∥DF ,HG ∥DF ,∴I ,G ,H 三点共线,。
中考数学中关于动点的最值问题作者:邓昌滨来源:《中学数学杂志(初中版)》2008年第05期在平面几何问题中,当某点在给定条件运动时,求某几何量的最大值或最小值问题,即最值问题. 这类题综合性强,能力要求高. 它能全面的考查学生的实践操作能力、空间想象能力以及分析问题和解决问题的能力,对培养学生的思维品质和各种能力有更大的促进作用,本文仅以2008年江苏中考压轴题为例进行分析,供参考.1 利用函数的性质求最值图1例1 (2008年连云港)如图1,现有两块全等的直角三角形纸板Ⅰ、Ⅱ,它们两直角边的长分别为1和2. 将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上. 一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动. 当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.(1)求直线AC所对应的函数关系式;(2)当点P是线段AC(端点除外)上的动点时,试探究:①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.解(1)由直角三角形纸板的两直角边的长为1和2,知A,C两点的坐标分别为(1,2),(2,1). 易得直线AC所对应的函数关系式为y=-x+3.①点M到x轴的距离h与线段BH的长总相等. 因为点C的坐标为(2,1),所以,直线OC所对应的函数关系式为y=12x. 又因为点P在直线AC上,所以可设点P的坐标为(a,3-a). 过点M作x轴的垂线,设垂足为点K,则有MK=h. 因为点M在直线OC上,所以有M(2h,h). 因为纸板为平行移动,易得Rt△PHG∽△Rt△PFE,有GHPH=EFPF=12. 故GH=12PH=12(3-a). 所以OG=OH-GH=a-12(3-a)=32(a-1). 故G点坐标为(32(a-1),0). 又点P的坐标为(a,3-a),可得直线PG所对的函数关系式为y=2x+(3-3a). 将点M的坐标代入,得h=4h+(3-3a).解得h=a-1. 而BH=OH-OB=a-1,从而总有h=BH.②由①知,点M的坐标为(2a-2,a-1),点N的坐标为(a,12a).△-△-12OG×h=12×12a×a-12×3a-32×(a-1)=--34=-12(a-当a=32时,S有最大值,最大值为38.取最大值时点P的坐标为(32,32).评注解此类题的关键是分析运动变化的过程,用点P的横坐标a的代数式表示描述点的运动过程,把动点视为静点参与运算,列出关于a的函数关系式,证明线段相等,再根据二次函数的增减性求得最值问题.2 利用轴对称变换求最值图2例2 (2008年南通)如图2,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D 作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是射线DE上的动点. 设DP=xcm(x>0),四边形BCDP 的面积为①求y关于x的函数的关系式;②当x为何值时,△PBC的周长最小,并求出此时y的值.证明(1)因为AD=CD,DE⊥AC,所以DE垂直平分AC,所以AF=CF,∠DFA=∠DFC=90°,∠DAF=∠DCF. 因为∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,所以∠DCF=∠DAF=∠B,易得△DCF∽△ABC,所以CDAB=CFCB,即CDAB=AFCB. 所以AB•AF=CB•CD.解(2)①因为AB=15,BC=9,∠ACB=90°,所以--所以CF=AF=6,所以y=12(x+9)×6=3x+27(x>0).②因为BC=9(定值),所以△PBC的周长最小,就是PB+PC最小. 由(1)可知,点C 关于直线DE的对称点是点A,所以PB+PC=PB+PA,故只要求PB+PA最小. 显然当P、A、B 三点共线时PB+PA最小. 此时DP=DE,PB+PA=AB. 由(1),∠ADF=∠FAE,∠DFA=∠ACB=90°,得△DAF∽△ABC. EF∥BC,得AE=BE=12AB=152,EF=92,所以AF∶BC=AD∶AB,即6∶9=AD∶15,所以AD=10. Rt△ADF中,AD=10,AF=6,所以DF=8. 所以DE=DF+FE=8+92=252.所以当x=252时,△PBC的周长最小,此时y=1292.评注本题可转化为直线上一点到直线同侧两点的距离和最小问题,一般我们先用“对称”的方法化成两点之间的最短距离问题,然后根据“两点之间的线段最短”,从而找到所需的最短路线.3 利用动点的范围求最值例3 (2008年徐州)如图,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°.操作将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC交于点Q.探究1 在旋转过程中:(1)如图,当CEEA=1时,EP与EQ满足怎样的数量关系?并给出证明.(2)如图,当CEEA=2时,EP与EQ满足怎样的数量关系?并说明理由.(3)根据你对(1)、(2)的探究结果,试写出当CEEA=m时,EP与EQ满足的数量关系式为,其中m的取值范围是(直接写出结论,不必证明).图图图探究2 若CEEA=2,AC=30cm,连结PQ,设△EPQ的面积为在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?求出相应S的取值范围.解探究(1)作EM⊥AB于点M,作EN⊥BC于点N,连结BE,因为∠ABC=90°,所以∠MEN=90°. 因为AB=BC,CE=EA,所以BE为∠ABC的平分线,所以EM=EN. ①若点M、P重合,显然EP=EQ. ②若点M、P不重合,因为∠MEP=∠NEQ=90°-∠PEN,所以Rt△EMP≌Rt△ENQ. 所以(2)作EM⊥AB于点M,作EN⊥BC于点N,因为∠ABC=90°,所以EM∥BC,所以△EMP∽△ENQ,所以EMBC=AEAC=13. 同理ENAB=23. 因为AB=BC,所以EMEN=12. ①若点M、P重合,显然EPEQ=EMEN=12. ②若点M、P不重合,因为∠MEP=∠NEQ=90°-∠PEN,所以△EMP∽△ENQ,所以EPEQ=EMEN=12. 综上,EPEQ=12. 由上可得EPEQ=1m,设EF=x,则DE=AC=3x,当E在边AC上由C向A移动时,要确保EF与BC有交点Q,EQ最大时,EQ⊥BC,此时EQ=EF=x,EC=2x,EA=AC-EC=3x-2x,所以此时m=CEEA=2x3x-2x=6+2,故0探究(1)设EQ=x,则△其中102≤x≤103.故如图,当x=EN=102cm时,△取得最小值如图,当x=EF=103cm时,△取得最大值(2)如图,当x=EB=510cm时,△;故当50时图时图时图评注本题以学生熟悉的三角板为背景,通过学生观察、动手操作、猜想、验证等数学活动过程,激发了学生的学习兴趣,此题的关键是将所求问题转化为动点Q在BC上时EQ的最值问题,渗透了化归、分类、数形结合、特殊化诸多数学思想方法,全面考查了学生的空间想象能力,几何变换,探索问题和解决问题的能力.。
几何最值问题解题技巧
几何最值问题是一个常见的数学问题,它涉及到在给定的几何形状中找到一个或多个点的最大或最小值。
解决这类问题需要一定的技巧和策略。
以下是一些解决几何最值问题的技巧:
1. 转化问题:将最值问题转化为几何问题,例如求点到直线的最短距离,可以转化为求点到直线的垂足。
2. 建立数学模型:根据问题的具体情况,建立适当的数学模型,例如利用勾股定理、三角函数等。
3. 寻找对称性:在几何图形中寻找对称性,例如利用轴对称、中心对称等性质,可以简化问题。
4. 利用基本不等式:利用基本不等式(如AM-GM不等式)可以求出某些量的最大或最小值。
5. 转化为一元函数:将问题转化为求一元函数的最大或最小值,然后利用导数等工具求解。
6. 构造辅助线:在几何图形中构造辅助线,可以改变问题的结构,从而更容易找到最值。
7. 尝试特殊情况:在某些情况下,尝试特殊情况(例如旋转、对称等)可以找到最值。
8. 逐步逼近:如果无法直接找到最值,可以尝试逐步逼近的方法,例如二分法等。
以上技巧并不是孤立的,有时候需要综合运用多种技巧来解决一个问题。
在解决几何最值问题时,需要灵活运用各种方法,不断尝试和调整,才能找到最合适的解决方案。
初中数学几何旋转最值最短路径问题专题训练专练3 最短路径模型——旋转最值类基本模型图:【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是().A. B.6 C. D.4【思路探究】根据E为AB中点,BE=B′E可知,点A、B、B′在以点E为圆心,AE长为半径的圆上,D、E为定点,B′是动点,当E、B′、D三点共线时,B′D的长最小,此时B′D=DE-EB′,问题得解.【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心,AB长为直径的圆上,如图所示. B′D的长最小值= DE-EB′.故选A.22-=-【启示】此题属于动点(B′)到一定点(E )的距离为定值(“定点定长”),联想到以E 为圆心,EB′为半径的定圆,当点D 到圆上的最小距离为点D 到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如,当且仅当点E 、B′、D 三点共线B D DE B E ''≤-时,等号成立.【典例2】如图,E 、F 是正方形ABCD 的边AD 上两个动点,满足AE =DF ,连接CF 交BD 于点G ,连结BE 交AG 于点H ,若正方形的边长是2,则线段DH 长度的最小值是.【思路探究】根据正方形的轴对称性易得∠AHB =90°,故点H 在以AB 为直径的圆上.取AB 中点O ,当D 、H 、O 三点共线时,DH 的值最小,此时DH =OD -OH ,问题得解.【解析】由△ABE ≌△DCF ,得∠ABE =∠DCF ,根据正方形的轴对称性,可得∠DCF =∠DAG ,∠ABE =∠DAG ,所以∠AHB =90°,故点H 在以AB 为直径的圆弧上.取AB 中点O ,OD 交⊙O 于点H ,此时DH 最小,∵OH =,OD =,∴DH 的最小值为112AB=OD -OH .1【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H 在以AB 为直径的圆上,点D 在圆外,DH 的最小值为DO -OH .当然此题也可利用的基本模型解决.DH OD OH ≤-【针对训练 】1. 如图,在△ABC 中,∠ACB =90°,AC =2,BC =1,点A ,C 分别在x 轴,y 轴上,当点A 在轴正半轴上运动时,点C 随之在轴上运动,在运动过程中,点B 到原点O 的最大x y 距离为( ).ABC .D .312.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为().A . B. C. D.4323. 如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P 、Q 分别是边BC 和半圆上的运点,连接PQ ,则PQ 长的最大值与最小值的和是( ).A.6B.C.9D.1+3224.如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为().A. B. C.5 D.213-213+9165.如图,已知正方形ABCD 的边长为2,E 是BC 边上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG ,则CG 的最小值为().A B 11-1-1+6.如图,△ABC 、△EFG 是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FG 相交于点M ,当△EFG 绕点D 旋转时,线段BM 长的最小值是A . B21+1-7.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连结A′C,则A′C长度的最小值是.8.如图,△ABC为等边三角形,AB=2,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.。
旋转中的最值问题班级姓名座号【例1】如图,在Rt△ABC中,∠BAC=90°,∠B=30°,D为BC边上一个动点(不包含点B和点C),连接AD,把AD绕点A逆时针旋转90°,点D的对应点为点E,连接CE,若AC=4,在点D移动的过程中,则CE的最小值为.【变式训练】1、如图,在△ABC中,∠ACB=90°,∠B=30°,AB=7,点D是BC边上一动点,以AD为一边等边△ADE,则线段CE长度的最小值是.2、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=34,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,求DG的最大值和最小值.【例2】思考:(1)如图①,若点D为等边三角形△ABC的边AC上一点,以BD为边作等边△BDE(在BD下方),连接CE.若CD=1,CE=3,则AC=.(2)如图②,点D为等边△ABC的AC边上一动点,以BD为边作等边△BDE(在BD 下方),点M是BC的中点,连接ME.若BC=5,则ME长的最小值是.问题解决:(3)如图③,等边△ABC中,BC=5,点D是BC边上的高AM所在直线上的点,以BD 为边作等边△BDE(在BD下方),连接ME,则ME的长是否存在最小值?不存在请说明理由;若存在,说明理由并求出这个最小值.【变式训练】1、如图1,△ABC,△EDC是两个等腰直角三角形,其中∠ABC=∠EDC=90°,AB=5,DE=3,连接AE,取AE中点F,连接BF,DF.(1)如图1,当B,C,D三个点共线时,请直接写出BF与DF的数量关系与位置关系;(2)如图2,将△EDC绕点C逆时针旋转,取AC与EC的中点G,H,当点G,H,F 三点不共线时,连接GF,HF,BG,DH,求证:△BGF≌△FHD;(3)在(2)的条件下,连接BD,在△EDC绕点C旋转的过程中,求△BFD面积的最小值,并说明理由.2、如图,△ABC为等边三角形,AB=12,将边AB绕点A顺时针旋转θ,得到线段AD,连接CD,CD与AB交于点G,∠BAD的平分线交CD于点E,F为CD上一点,且DF=2CF.(1)当∠EAB=30°时,求∠AEC的度数;(2)M为边AC上一点,当CM=4时,求线段BM的长;(3)在(2)的条件下,边AB绕点A旋转过程中,求线段BF长度的最小值.。
牛吃草最值问题:1.如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN=1,则△PMN 周长的最小值为.2.如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 周长的最小值为.3.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上一动点,点N(6,0)是OB 上的一定点,点M 是ON 中点,∠AOB=30∘,要使PM+PN 最小,则点P 的坐标为.4.如图,Rt △ABC 中,∠ACB=90º,∠CAB=30º, BC=1,将△ABC 绕点B 顺时针转动, 并把各边缩小为原来的一半,得到△DBE ,点A ,B ,E 在一直线上.P 为边DB 上的动点,则AP+CP 的最小值为 .5.点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA+QB 的值最小的点,则OP OQ ⋅= .N M O P B A Ay6.如图,当四边形PABN 的周长最小时,a =.7.矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为8.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为三角形条件及隐圆最值问题1.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C. 则A′C 长度的最小值是.N (a +2,0)P (a ,0)B (4,-1)A (1,-3)O y x F D C B A x y O E F D C B A x y O E2如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是3.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的边长为4,则线段DH长度的最小值是.4.如图,AB为直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,取AP中点Q,连CQ,则线段CQ的最大值为5.如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BH:CF=6.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.7.如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线OF 绕O点旋转时,CD的最小值为________8.如图,点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______9.AB是半圆O的直径,AB=10,弦AC长为8,点D是弧BC上一个动点,连接AD,作CP⊥AD,垂足为P,连接BP,则BP的最小值是_____10.直线y=x+4 分别与x 轴、y 轴相交与点M、N,边长为2 的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交与点P,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是__________11.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是x−3与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、12.如图,已知直线y=34PB.则△PAB面积的最小值是_____.13.如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD 的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,PM=x,则x的最大值是14.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是15.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是16.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕着点A旋转,当∠ABF最大时,S△ADE =17.如图,在直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为18.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是19.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=20..如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是路径问题:1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC 的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是2.如图,在圆心角为90°的扇形OAB中,OB=2,P为上任意一点,过点P作PE⊥OB于点E,设M为△OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为3.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是4.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.若AF=BE,当点E从点A运动到点C时,则点P经过的路径长为.5.如图,边长为2 的正方形ABCD 的两条对角线交于点O,把BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时正方形ABCD 随之变成四边形A′BCD′.设A′C,BD′交于点O′,若旋转了60°,则点O 运动到点O′所经过的路径长为6.已知等边三角形ABC 的边长为4,点D 是边BC 的中点,点E 在线段BA 上由点B 向点A 运动,连接DE,以DE 为边在DE 右侧作等边三角形DEF.设△DEF 的中心为O,则点 E 由点 B 向点 A 运动的过程中,点O 运动的路径长为胡不归型问题:当 k≠1 且 k 为正数时,若点 P 在某条直线上运动时,此时所求的最短路径问题称之为“胡不归”问题.那么对于当“PA + k·PB”的值最小时,点 P 的位置如何确定呢?过点 P 作 PQ⊥BN,垂足为 Q,如图3则 k·PB = PB·sin∠MBN = PQ.因此,本题求“PA + k·PB”的最小值转化为求“PA +PQ”的最小值,即 A,P,Q 三点共线时最小.1.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+1BM的最小值为.22.在△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是阿氏圆模型问题:已知平面上两点 A,B,则所有满足 PA + k·PB(k≠1,且 k 为正数),若点 P 的轨迹是一个圆,当点 P 在圆周上运动的类型称之为“阿氏圆”(阿波罗尼斯圆)问题.如图所示,⊙O 的半径为 r,点 A,B 都在圆外,P 为⊙O 上的动点,已知 r = k·OB,连接 PA,PB,则当“PA + k·PB”的值最小时,P 点的位置如何确定?在线段 OB 上截取 OC 使 OC = k·r,则可说明△BPO∽△PCO,即 k·PB = PC.因此,求“PA + k·PB”的最小值转化为求“PA + PC”的最小值,即 A,P,C 三点共线时最小1.已知A(-4,-4)、B(0, 4)、C(0, -6)、 D(0, -1),AB与x轴交于点E,以点E为圆心,ED长为半径作圆,点M为⊙E上AM的最小值.一动点,求CM+122.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+1BP的最小值为.2旋转最值及路径问题:1.如图,点O在线段AB上,OA=1,OB=3,以O为圆心,OA长为半径作⊙O,点M在⊙O上运动,连接MB,以MB为腰作等腰Rt△MBC,使∠MBC=90°,M,B,C三点为逆时针顺序,连接AC,则AC长的取值范围为___________.2.如图,线段AB为⊙O的直径,AB=4,点C为OB的中点,点P在⊙O上运动,连接CP,以CP为一边向上作等边△CPD,连接OD,则OD的最大值为___________.3.如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下做等边△ABC,连接OC,则OC的最小值为__________4.如图,在Rt△ABC中,AB=BC=2,点P为AB边上一动点,连接CP,以CP为边向下作等腰RT△CPD,连接BD,则BD的最小值为____________.5..如图,在直角坐标系中,已知点A(4,0),点B为直线y=2上一动点,连接AB,以AB为底边向下做等腰Rt△ABC,∠ACB=90°,连接OC,则OC的最小值为__________6.如图,已知点A(3,0),C(0,-4),⊙C的半径为√5,点P为⊙C上一动点,连接AP,若M为AP的中点,连接OM,则OM的最大值为.7.如图,已知△ABC为等腰直角三角形,∠BAC=90°,AC=2,以点C为圆心,1为半径作圆,点P为⊙C上一动点,连结AP,并绕点A顺时针旋转90°得到AP′,连结CP′,则CP′的取值范围是.8.如图,Rt△ABC中,AC=6,BC=8,∠C=90°.点P是AB边上一动点,D是AC延长线上一点,且AC=CD,连接PD,过点D作.则当点P从点A运动到B点时,点E运动的路径长为DE⊥PD,连接PE,且tan∠DPE=252的一个定点,AC⊥x 轴于点M,交直线y=-x 于点N.若点P 是线段ON 上9.如图,点A 是第一象限内横坐标为3的一个动点,∠APB=30°,BA⊥PA,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.当点P 从点O 运动到点N 时,点B 运动的路径长是旋转构图法(补形)问题:常见旋转模型:1.如图,在△ABC 中,AB=AC=32,∠BAC=120°,点D ,E 都在BC 上,∠DAE=60°,若BD=2CE ,则DE 的长为_____.2.在四边形ABCD 中,AD=4,CD =3,∠ABC=∠ACB =∠ADC=45°,则BD 的长为;3.如图,在△ABC 中,∠ABC=90°,将AB 边绕点A 逆时针旋转90°得到线段AD ,将AC 边绕点C 顺时针旋转90°得到线段CE ,AE 与BD 交于点F .若DF=2,EF=22,则BC 边的长为____________.A D CB E FDE CB A4.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为5.如图,在△ABC中,∠ABC=30°,AB=4 ,BC=5 , P是△ABC内部的任意一点,连接PA , PB , PC,则PA + PB + PC 的最小值为.。
共点手拉手模型(又称旋转“一拖二”模型)——兼谈最值、轨迹问题特点——公共点是等腰三角形顶角的顶点如图,若连接BB’、CC’,易证明△ABB’≌△ACC’(SAS)。
这就是传说中的“旋转一拖二”,又称为“手拉手模型”。
典型问题:【例1】(成都高新区2017-2018八年级上期27题)【例2】(成都金牛区2017-2018八年上期27题)如图,在△ABC中,∠B=45°,AB=22,2=BC,等腰直角∆ADE中,∠DAE=90°,2+3且点D是边BC上一点。
(1)(3 分)求AC的长;(2)(4 分)如图1,当点E恰在AC上时,求点E到BC的距离;(3)(3 分)如图2, 当点D从点B向点C运动时,求点E到BC的距离的最大值。
图1【例3】(2017届初二上期七中联盟半期)已知:ABC △是等腰直角三角形,动点P 在斜边AB 所在的直线上,以PC 为直角边作等腰直角三角形PCQ ,其中90PCQ =∠,探究并解决下列问题:(1)如图①,若点P 在线段AB上,且AC =,12PA =,则: ①线段PB =________,PC =________;②猜想:222,,PQ PA PB 三者之间的数量关系为_______________________;(2)如图②,若点P 在AB 的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程; (3)若动点P 满足4PA PB =,求PQAC的值.(提示:请利用备用图进行探求)图① 图② 备用图QCBPAQCB ACBA【例4】如图,已知30MON ∠=︒ ,B 为OM 上一点,BA ON ⊥ 于A ,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP ,将CP 绕点C 顺时针方向旋转90︒ 得CE ,连结BE ,若 4AB = ,则BE 的最小值为【例5】(成都武侯区2016-2017八年上期27题)如图,已知直线x y =过点A ,y AB ⊥轴于点B ,x AC ⊥轴于点C ,点P 是y 轴上的一动点,连接AP 交直线BC 于点E .点N 在直线BC 上,连接AN 且︒=∠90PAN ,在射线AN 上截取AE AD =,连接DE .(1)求证:2222AE EC BE =+;(2)若点A 的坐标是(6,m ),点P 的坐标是(0,m 32),求线段AD 的长; (3)当31=EC BE 时,求BPDE的值.27题【例6】(成都青羊区2016-2017八上期27题)在Rt ACB ∆中,90ACB ∠=︒,AC=BC ,D 为AB 上一点,连结CD ,将CD 绕C 点逆时针旋转90︒至CE ,连结DE ,过C 作CF ⊥DE 交AB 于F ,连结BE.(1)求证:AD=BE ;(2)求证:222AD BF DF +=; (3)若15ACD ∠=︒,1CD =+,求BF.【例7】(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,当△DCE 旋转至点A ,D ,E 在同一直线上,连接BE ,易证△BCE ≌△ACD .则 ①∠BEC =;②线段AD 、BE 之间的数量关系是 . (2)拓展研究:如图2,△ACB 和△DCE 均为等腰三角形,且∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,若AE =15,DE =7,求AB 的长度.(3)探究发现:如图3,P 为等边△ABC 内一点,且∠APC =150°,且∠APD =30°,AP =5,CP =4,DP =8,求BD 的长.E答案典型问题:【例1】(2017-2018上期成都高新区27题)解:(1)∵∠BAC=∠DAE=︒90 ∴∠BAD=∠CAE∵AB=AC ,AD=AE ∴△ABD ≌△ACE (SAS )(2)取AB 的中点G ,连接DG(I )∵∠BAC=∠DAE=︒120且点D是边BC上一点。
初中数学辅助线添加技巧:旋转方法总结1.旋转是中考压轴题中常见题型,在解这类题目时,什么时候需要构造旋转,怎么构造旋转.下面,就不同类型的旋转问题,给出构造旋转图形的解题方法:遇中点,旋转180°,构造中心对称; 遇90°,旋90°,造垂直; 遇60°,旋60°,造等边; 遇等腰,旋等腰.综上四点得到旋转的本质特征:等线段,共顶点,就可以有旋转.2.图形旋转后我们需要证明旋转全等,而旋转全等中的难点实际上是倒角.下面给出旋转常用倒角,只要是旋转,必然存在这两个倒角之一.如图1,若AOB COD ∠=∠,必有AOC BOD ∠=∠,反之亦然. 如图2,若A D ∠=∠,必有B C ∠=∠.图2图1OABCDDCB AO倒角是在初中数学学习中常用的名词,其意思是通过角之间的等量关系,得到我们所需要的角度的关系的过程.典例精析例1.(1)如图1,边长为1的正方形ABCD ,绕点A 逆时针旋转30°到正方形AB'C'D',图中我们阴影部分的面积是( )A.1-BC.1 D .12(2)正方形ABCD 在坐标系中的位置如图2所示,将正方形ABCD 绕点D 顺时针旋转90°后,B 点的坐标为 .图2图1D'C'BA解:(1)A ;(2)(4,0).点拨:本例第2小问是在平面直角坐标系中考查旋转变换的作图,是数形结合的完美体现.首先要确定旋转中心是点D 而不是坐标原点O ,此处易出现错误,然后利用平面直角坐标系的特征确定正方形ABCD 绕点D 旋转90°后B'的位置,这类题型常见于正方形网格中的旋转作图.例2.如图,E 、F 分别是正方形ABCD 的边BC 、DC 上的点,且∠EAF =45°,求证:EF =BE +DF .FED CBA证明:延长CB 到点G ,使得BG =DF ,连接AG .GF ED CBA∵四边形ABCD 是正方形, ∴90,D ABG AB AD ∠=∠=︒=. ∴ADF ABG △≌△. ∴,AF AG DAF BAG =∠=∠. ∵45EAF ∠=︒, ∴45DAF BAE ∠+∠=︒.∴45DAG BAE ∠+∠=︒,即45EAG ∠=︒. ∵AE AE =, ∴AFE AGE △≌△.∴EF EG EB BG BE DF ==+=+.点拨:旋转图形可将分散的条件集中到一个图形中,从而可充分利用已知条件,找到有效的解题方法.这种方法在正方形、正三角形以及其它正多边形中都有着广泛的应用.本题是旋转一个经典模型(半角模型),其中结论较多.例3.如图,以ABC △的边AC 、AB 为一边,分别向三角形的外侧作正方形ACFG 和正方形ABDE ,连接EC 交AB 于点H ,连接BG 交CE 于点M ,求证:BG ⊥CE .MH GFEDCBA证明:∵四边ABDE 、ACFG 是正方形, ∴,,90AE AB AC AG EAB GAC ==∠=∠=︒. ∴EAB BAC GAC BAC ∠+∠=∠+∠. ∴EAC GAB ∠=∠. ∴EAC GAB =△△. ∴AEC ABG ∠=∠.∵90,AEC AHE AHE BHM ∠+∠=︒∠=∠, ∴90ABG BHM ∠+∠=︒. ∴90EMB ∠=︒. ∴BG CE ⊥.点拨:本题旋转的基本模型,充分体现了利用旋转全等解题,本题是以ABC △为基本,以其两边分别向外构造正方形,构成旋转全等(其中用到了8字倒角),和其类似的还可以构造正三角形以及正五边形.例4.如图,在等腰ABC △中,,AB AC ABC α=∠=,在四边形BDEC 中,DB =DE ,2BDE α∠=,M 为CE 的中点,连接AM 、DM .M EDCB A(1)在图中画出DEM △关于点M 成中心对称的图形; (2)求证:AM DM ⊥;(3)当α= 时,AM DM =. 解:(1)M FEDCB A(2)在(1)中连接AD 、AF .M FEDCB A由(1)中的中心对称可知,DEM FCM △≌△, ∴,,DE FC BD DM FM DEM FCM ===∠=∠, ∵2BDE α∠=,∴ABD ABC CBD ∠=∠+∠360BDE DEM BCE α=+︒-∠-∠-∠360DEM BCE α=︒--∠-∠.∵360360ACF ACE FCM BCE FCM α∠=︒-∠-∠=︒--∠-∠, ∴ABD ACF ∠=∠. ∵AB AC =, ∴ABD ACF =△△. ∴AD AF =. ∵DM FM =, ∴AM DM ⊥. (3)45α=︒.∵,,AB AC AD AF BAC DAF ==∠=∠, ∴ADF ABC α∠=∠=.若AM DM =,则ADM △为等腰直角三角形,即45ADM ∠=︒, ∴45α=︒点拨:本题中第(1)问已经作出了中心对称图形,所以利用中心对称证全等的思路很清晰.本题的难点是利用周角和四边形的内角和为的有关知识倒角.初中几何常用的倒角是平行线的三线八角、对顶角、等边对等角等.例5.已知:在△ABC 中,BC =a ,AC =b ,以AB 为边作等边三角形ABD . 探究下列问题: (1)如图1,当点D 与点C 位于直线AB 的两侧时,a =b =3,且∠ACB =60°,则CD = ;(2)如图2,当点D 与点C 位于直线AB 的同侧时,a =b =6,且∠ACB =90°,则CD = ;(3)如图3,当∠ACB 变化,且点D 与点C 位于直线AB 的两侧时,求 CD 的最大值及相应的∠ACB 的度数.D CBAA B CDABCD图1 图2 图3(1)(2)(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.联结AE,CE,∴CD=ED,∠CDE=60°,AE=CB=a,∴△CDE为等边三角形,∴CE=CD.当点E、A、C不在一条直线上时,有CD=CE<AE+AC=a+b;当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b;此时∠CED=∠BCD=∠ECD=60°,∴∠ACB=120°,因此当∠ACB=120°时,CD有最大值是a+b.例6.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示),并给出证明.ABCDMN AB CD M NN M 图3图2图1D CBA解:(1)=证明:∵AC 平分∠MAN ,∠MAN =120°, ∴∠CAB =∠CAD =60°, ∵∠ABC =∠ADC =90°, ∴∠ACB =∠ACD =30°, ∴12AB AD AC ==, ∴AB +AD =A C . (2)成立.证法一:如图,过点C 分别作AM ,AN 的垂线,垂足分别为E ,F ,ABCD M N F E∵AC 平分∠MAN , ∴CE =CF ,∵∠ABC +∠ADC =180°,∠ADC +∠CDE =180°, ∴∠CDE =∠ABC , ∵∠CED =∠CFB =90°, ∴△CED ≌△CFB , ∴ED =FB ,∴AB +AD =AF +BF +AE -ED =AF +AE ,由(1)知AF +AE =AC , ∴AB +AD =AC ,证法二:如图,在AN 上截取AG =AC ,连接CG ,AB CD M NG∵∠CAB =60°,AG =AC ,∴∠AGC =60°,CG =AC =AG , ∵∠ABC +∠ADC =180°,∠ABC +∠CBG =180°, ∴∠CBG =∠ADC , ∴△CBG ≌△CDA , ∴BG =AD ,∴AB +AD =AB +BG =AG =AC ;(3)①证明:由(2)知,ED =BF ,AE =AF ,ABC D M N FE在Rt △AFC 中,cos AFCAF AC∠=, 即cos2AFACα=, ∴cos2AF AC α=,∴AB +AD =AF +BF +AE -ED =AF +AE =2AF 2cos 2AC α=.把α=60°,代入得AB AD +=. ②2cos2α点拨:在第(2)小题中,由题意可知,60BCD ∠=︒,有60°角就可把有关图形旋转60°,所以我们作,CE AM CF AN ⊥⊥的实质,就是将CBF △以顶点C 为旋转中心顺时针旋转了60°,从而构造了全等三角形,使此题有了解题思路.例7.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点F 、E ,使OF =2OA ,OE =2OD ,连接EF .将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1(如图2).(1)探究AE 1与BF 1的数量关系,并给予证明; (2)当α=30°时,求证:△AOE 1为直角三角形.AB CDE 1F 1O FE 图2图1O DC BA解:(1)AE 1=BF 1.证明:∵O 为正方形ABCD 的中心, ∴OA =OD ,∵OF =2OA ,OE =2OD , ∴OE =OF ,∵将△EOF 绕点O 逆时针旋转α角得到△E 1OF 1 ∴OE 1=OF 1,∵∠F 1OB =∠E 1OA ,OA =OB , ∴△E 1AO ≌△F 1BO , ∴AE 1=BF 1;(2)证明:取OE 1中点G ,连接AG ,ABCDE 1F 1O G∵∠AOD =90°,α=30°, ∴∠E 1OA =90°-α=60°, ∵OE 1=2OA , ∴OA =OG ,∴∠E 1OA =∠AGO =∠OAG =60°,∴AG =GE 1,∴∠GAE 1=∠GE 1A =30°, ∴∠E 1AO =90°,∴△AOE 1为直角三角形.例8.如图,等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =2,∠C =60°,M 是BC 的中点.D'C'MFE DCBA(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD')与AB 交于一点E ,MC 即MC')同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.解:(1)证明:过点D 作DP ⊥BC ,于点P ,过点A 作AQ ⊥BC 于点Q ,PQ D'C'M FE DCBA∵∠C =∠B =60°∴12CP BQ AB ==,CP +BQ =AB 又∵ADPQ 是矩形,AD =PQ ,故BC =2AD , 由已知,点M 是BC 的中点, BM =CM =AD =AB =CD ,即△MDC 中,CM =CD ,∠C =60°,故△MDC 是等边三角形. (2)解:△AEF 的周长存在最小值,理由如下:连接AM ,由(1)平行四边形ABMD 是菱形,△MAB ,△MAD 和△MC'D'是等边三角形,∠BMA =∠BME +∠AME =60°,∠EMF =∠AMF +∠AME =60°, ∴∠BME =∠AMF ).在△BME 与△AMF 中,BM =AM , ∠EBM =∠FAM =60°, ∴△BME ≌△AMF (ASA ).∴BE =AF , ME =MF ,AE +AF =AE +BE =AB ,∵∠EMF =∠DMC =60°,故△EMF 是等边三角形,EF =MF . ∵MF 的最小值为点M 到ADEFAEF 的周长=AE +AF +EF =AB +EF , △AEF的周长的最小值为2. 跟踪训练1.如图,在△ABC 中,AB =AC ,90BAC ∠=︒,点D 是BC 上的任意一点,探究:22BD CD +与2AD 的关系,并证明你的结论.CBA2.如图,P 是等边△ABC 内一点,若AP =3,PB =4,PC =5,求APB ∠的度数.PCBA3.如图1,在ABCD □中,AE BC ⊥于点E ,E 恰为BC 的中点,tan 2B =.(1)求证:AD AE =;(2)如图2,点P 在线段BE 上,作EF DP ⊥于点F ,连结AF .求证:DF EF -=;(3)请你在图3中画图探究:当P 为线段EC 上任意一点(P 不与点E 重合)时,作EF 垂直直线DP ,垂足为点F ,连结AF .线段DF 、EF 与AF 之间有怎样的数量关系?直接写出你的结论.图1EDCBA图2PF ABCDE图3ABCDE4.请阅读下列材料:已知:如图(1)在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别为线段BC 上两动点,若∠DAE =45°.探究线段BD 、DE 、EC 三条线段之间的数量关系.小明的思路是:把△AEC 绕点A 顺时针旋转90°,得到△ABE ′,连接E ′D ,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD 、DE 、EC 三条线段之间存在的数量关系式,直接写出你的猜想; (2)当动点E 在线段BC 上,动点D 运动在线段CB 延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC 中,点D 、E 在边AB 上,且∠DCE =30°,请你找出一个条件,使线段DE 、AD 、EB 能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.图3图2图1CE ADBCE AD BEDCBA5.请阅读下列材料:问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段PG 与PC 的位置关系及PGPC的值; (2)将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中2(090)ABC BEF αα∠=∠=<<,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出PGPC的值(用含α的式子表示).6.在Rt △ABC 中,AB =BC ,在Rt △ADE 中,AD =DE ,连接EC ,取EC 的中点M ,连接DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图1,探索BM 、DM 的关系并给予证明;(2)如果将图1中的△ADE 绕点A 逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.DCG PAB EF图2DAB EF CPG图1图2图1AEBMD CMEDB CA7.已知正方形ABCD 和等腰Rt △BEF ,EF =BE ,∠BEF =90°,按图1旋转,使点F 在BC 上,取DF 中点G ,连接EG 、CG .(1)探索EG 、CG 的关系,并说明理由;(2)将图1中△BEF 绕点B 顺时针旋转45°得图2,连接DF ,取DF 的中点G .问(1)中的结论是否成立?并说明理由.(3)将图1中△BEF 绕点B 转动任意度数(旋转角在0到90°之间)得图3,连接DF ,取DF 的中点G ,问(1)中的结论是否成立,请说明理由.图3BF DC GEABFDCGE AG F图2图1E DBCA中考前瞻将正方形ABCD 绕中心O 顺时针旋转角α得到正方形1111A B C D ,如图1所示. (1)当45α=︒时,如图2,若线段OA 与边11A D 的交点为E ,线段1OA 与AB 的交点为F ,可得下列结论成立①EOP FOP △≌△,②1PA PA =,试选择一个证明;(2)当090α︒<<︒时,第(1)小题的结论1PA PA =还成立吗?如果成立,请证明;如果不成立,请说明理由.(3)在旋转过程,记正方形1111A B C D 与AB 边交于P 、Q 两点,探究POQ ∠的度数是否发生变化?如果变化,请描述它与α之间的关系;如果不变,请直接写出POQ 的度数.PQ PD 1AA 1BB 1CC 1DD 1C 1B 1A 1F E F图2图1EDBCA。
旋转中的最值问题方法一、三角形旋转中的最值问题。
题目1:在等腰直角三角形ABC中,∠ ACB = 90^∘,AC = BC=√(2),将ABC绕点C逆时针旋转角α(0^∘<α<90^∘)得到A'B'C,连接A'B。
求A'B的最小值。
解析:1. 因为ABC绕点C旋转得到A'B'C,所以CA = CA'=√(2)。
2. 在A'CB中,根据余弦定理:A'B^2=A'C^2+BC^2- 2A'C· BC·cos(∠ A'CB)。
3. 由于∠ A'CB=∠ ACB+α = 90^∘+α,A'C = AC=√(2),BC=√(2)。
4. 则A'B^2=2 + 2-2×√(2)×√(2)cos(90^∘+α)=4 + 4sinα。
5. 因为0^∘<α<90^∘,当sinα = 0(即α = 0^∘)时,A'B^2取得最小值4,所以A'B的最小值为2。
题目2:已知等边三角形ABC的边长为2,点D是边BC的中点,将ABD绕点A逆时针旋转得到ACE。
求线段DE的最大值。
解析:1. 因为ABD绕点A逆时针旋转得到ACE,所以AD = AE,∠ DAE=∠ BAC = 60^∘,所以ADE是等边三角形。
2. 点D是边BC的中点,在等边三角形ABC中,AD⊥ BC,根据勾股定理可得AD=√(3)。
3. 因为ADE是等边三角形,所以DE = AD=√(3),DE的最大值就是√(3)。
题目3:在ABC中,AB = 3,AC = 4,∠ BAC = 60^∘,将ABC绕点A旋转,得到AB'C'。
求BC'的最大值。
解析:1. 由余弦定理可得BC=√(AB^2)+AC^{2-2AB· AC·cos∠ BAC}- 把AB = 3,AC = 4,∠ BAC = 60^∘代入可得:BC=√(9 + 16-2×3×4×frac{1){2}}=√(13)。