流体力学常考知识点
- 格式:doc
- 大小:34.00 KB
- 文档页数:3
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学知识点大全流体力学是研究流体运动规律的一门学科,涉及流体的力学性质、流体力学方程、流体的温度、压力、速度分布等等。
以下是流体力学的一些主要知识点:1.流体的性质和分类:流体包括液体和气体两种状态,液体具有固定体积,气体具有可压缩性。
液体和气体都具有易于流动的特点。
2.流体力学基本方程:流体力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程描述了流体质量的守恒,动量守恒方程描述了流体动量的守恒,能量守恒方程描述了流体能量的守恒。
3.流体的运动描述:流体的运动可以通过速度场描述,速度场是空间中每一点上的速度矢量的函数。
速度矢量的大小和方向决定了流体中每一点的速度和运动方向。
4. 流体静力学:流体静力学研究的是处于静止状态的流体,通过压力分布可以确定流体的力学性质。
压力是流体作用在单位面积上的力,根据Pascal定律,压力在流体中均匀传播。
5.流体动力学:流体动力学研究的是流体的运动,通过速度场和压力分布可以确定流体的速度和运动方向。
流体动力学包括流体的运动方程、速度场描述和流动量的计算等。
6.流体的定常流和非定常流:流体的定常流指的是流体的运动状态随时间不变,速度场和压力分布在任意时刻均保持不变。
而非定常流则是指流体的运动状态随时间变化,速度场和压力分布在不同的时刻会有所改变。
7.流体的层流和湍流:流体的层流是指在流体中存在着明确的层次结构,流体颗粒沿着规则的路径流动。
而湍流则是指流体中存在着随机不规则的流动,流体颗粒方向和速度难以预测。
8.流体的黏性:流体的黏性是指流体内部存在摩擦力,影响流体的流动性质。
流体的黏度越大,流体粘性越大,流动越缓慢。
黏性对于流体的层流和湍流特性有重要影响。
9.流体的雷诺数:雷诺数是用于描述流体运动是否属于层流还是湍流的参数。
当雷诺数小于临界值时,流体运动属于层流;当雷诺数大于临界值时,流体运动为湍流。
10.流体的边界层:边界层是指在流体靠近固体表面的地方,速度和压力的变化比较大的区域。
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
《流体力学考》考点重点知识归纳1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。
流体元可看做大量流体质点构成的微小单元。
2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律)(1)流体质点无线尺度,只做平移运动(2)流体质点不做随即热运动,只有在外力的作用下作宏观运动;(3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。
4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。
5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:6.牛顿流体:动力粘度为常数的流体称为牛顿流体。
7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。
液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。
、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。
8.温度对粘度的影响:温度对流体的粘度影响很大。
液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。
压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。
9.描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。
它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。
流体力学基础知识一、流体的物理性质1、流动性流体的流动性是流体的基本特征,它是在流体自身重力或外力作用下产生的。
这也是流体容易通过管道输送的原因2、可压缩性流体的体积大小会随它所受压力的变化而变化,作用在流体上的压力增加,流体的体积将缩小,这称为流体的可压缩性。
3、膨胀性流体的体积还会随温度的变化而变化,温度升高,则体积膨胀,这称为流体的膨胀性。
4、粘滞性粘滞性标志着流体流动时内摩擦阻力的大小,它用粘度来表示。
粘度越大,阻力越大,流动性越差。
气体的粘度随温度的升高而升高,液体的粘度随温度的升高而降低。
二、液体静力学知识1、液体静压力及其基本特性液体静压力是指作用在液体内部距液面某一深度的点的压力。
液体静压力有两个基本特性:①液体静压力的方向和其作用面相垂直,并指向作用面。
②液体内任一点的各个方向的静压力均相等。
2、液体静力学基本方程P=Pa+ρgh式中Pa----大气压力ρ-----液体密度上式说明:液体静压力的大小是随深度按线性变化的。
3、绝对压力、表压力和真空①绝对压力:是以绝对真空为零算起的。
用Pj表示。
②表压力(或称相对压力):以大气压力Pa为零算起的。
用Pb表示。
③真空:绝对压力小于大气压力,即表压Pb为负值。
绝对压力、表压力、真空之间的关系为:Pj=Pa+Pb三、液体动力学知识1、基本概念①液体的运动要素:液体流动时,液体中每一点的压力和流速,反映了流体各点的运动情况。
因此,压力和流速是流体运动的基本要素。
②流量和平均流速:假定流体在流过断面时,其各点都具有相同的流速,在这个流速下所流过的流量与同一断面各点以实际流速流动时所流过的流量相当,这个流速称为平均流速,记作V。
单位时间内,通过与管内液流方向相垂直的断面的液体数量,称为流量。
流量可分为体积流量Qv和质量流量Qm。
Qv=V AQm=ρV A③稳定流和非稳定流:稳定流是指流体流速和压力不随时间的变化而变化的流动,反之则为非稳定流。
流体力学知识点总结一、流体的物理性质流体区别于固体的主要特征是其具有流动性,即流体在静止时不能承受切向应力。
流体的物理性质包括密度、重度、比容、压缩性和膨胀性等。
密度是指单位体积流体所具有的质量,用符号ρ表示,单位为kg/m³。
重度则是单位体积流体所受的重力,用γ表示,单位为 N/m³,且γ =ρg(g 为重力加速度)。
比容是密度的倒数,它表示单位质量流体所占有的体积。
流体的压缩性是指在温度不变的情况下,流体的体积随压强的变化而变化的性质。
通常用体积压缩系数β来表示,其定义为单位压强变化所引起的体积相对变化率。
对于液体来说,其压缩性很小,在大多数情况下可以忽略不计;而气体的压缩性则较为明显。
膨胀性是指在压强不变的情况下,流体的体积随温度的变化而变化的性质。
用体积膨胀系数α来表示,它是单位温度变化所引起的体积相对变化率。
二、流体静力学流体静力学主要研究静止流体的力学规律。
静止流体中任一点的压强具有以下特性:1、静止流体中任一点的压强大小与作用面的方向无关,只与该点在流体中的位置有关。
2、静止流体中压强的大小沿垂直方向连续变化,即从液面到液体内部,压强逐渐增大。
流体静力学基本方程为 p = p₀+γh,其中 p 为某点的压强,p₀为液面压强,h 为该点在液面下的深度。
作用在平面上的静水总压力可以通过压力图法或解析法来计算。
对于矩形平面,采用压力图法较为简便;对于不规则平面,则通常使用解析法。
三、流体动力学流体动力学研究流体的运动规律。
连续性方程是流体动力学的基本方程之一,它基于质量守恒定律。
对于不可压缩流体,在定常流动中,通过流管各截面的质量流量相等。
伯努利方程则是基于能量守恒定律得出的,它表明在理想流体的定常流动中,单位体积流体的动能、势能和压力能之和保持不变。
其表达式为:p/ρ + 1/2 v²+ gh =常数其中 p 为压强,ρ 为流体密度,v 为流速,g 为重力加速度,h 为高度。
3347 流体力学全国自考第一章绪论1、液体和气体统称流体,流体的基本特性是具有流动性。
流动性是区别固体和流体的力学特性。
2、连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续踢来研究。
3、流体力学的研究方法:理论、数值和实验。
4、表面力:通过直接接触,作用在所取流体表面上的力。
5、质量力:作用在所取流体体积内每个质点上的力,因力的大小与流体的质量成比例,故称质量力。
重力是最常见的质量力。
6与流体运动有关的主要物理性质:惯性、粘性和压缩性。
7、惯性:物体保持原有运动状态的性质;改变物体的运功状态,都必须客服惯性的作用。
8、粘性:流体在运动过程中出现阻力,产生机械能损失的根源。
粘性是流体的内摩擦特性。
粘性又可定义为阻抗剪切变形速度的特性。
9、动力粘度:是流体粘性大小的度量,其值越大,流体越粘,流动性越差。
10、液体的粘度随温度的升高而减小,气体的粘度随温度的升高而增大。
11、压缩性:流体受压,分子间距离减小,体积缩小的性质。
12、膨胀性:流体受热,分子间距离增大,体积膨胀的性质。
13、不可压缩流体:流体的每个质点在运动过程中,密度不变化的流体。
14、气体的粘度不受压强影响,液体的粘度受压强影响也很小。
第二章流体静力学1、精致流体中的应力具有一下两个特性:应力的方向沿作用面的内法线方向。
静压强的大小与作用面方位无关。
2、等压面:流体中压强相等的空间点构成的面;等压面与质量力正交。
3、绝对压强是以没有气体分子存在的完全真空为基准起算的压强、4、相对压强是以当地大气压强为基准起算的压强。
5、真空度:若绝对压强小于当地大气压,相对压强便是负值,有才呢个•又称负压,这种状态用真空度来度量。
6工业用的各种压力表,因测量元件处于大气压作用之下,测得的压强是改点的绝对压强超过当地大气压的值,乃是相对压强。
因此,先跪压强又称为表压强或计示压强。
7、z+p/ p g=C:z为某点在基准面以上的高度,可以直接测量,称为位置高度或位置水头.。
第一章流体力学基本知识解析第一节流体及其空气的物理性质流动性是流体的基本物理属性。
流动性是指流体在剪切力作用下发生连续变形、平衡破坏、产生流动,或者说流体在静止时不能承受任何剪切力。
易流动性还表现在流体不能承受拉力。
(一) 流体的流动性通风除尘与气力输送涉及的流体主要是空气。
流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。
这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。
实际上质点包含着大量分子,例如在体积为10-15cm3的水滴中包含着3×107个水分子,在体积为1mm3的空气中有2.7×1016个各种气体的分子。
质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。
然而,也不是在所有情况下都可以把流体看成是连续的。
高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。
而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。
所谓连续性的假设,首先意味着流体在宏观上质点精品文档精品文档是连续的,其次还意味着质点的运动过程也是连续的。
有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。
(二)惯性(密度)流体的第一个特性是具有质量。
流体单位体积所具有流体彻底质量称为密度,用符号ρ表示。
在均质流体内引用平均密度的概念,用符号ρ表示:Vm =ρ 式中: m ——流体的质量[Kg];V ——流体的体积[m 3];ρ——流体密度Kg/m 3。
但对于非均质流体,则必需用点密度来描述。
所谓点密度是指当ΔV →0值的极限(dV dm V m V 0 lim ),即: dV dm V m lim V =∆∆=→∆0ρ精品文档 公式中,ΔV →0理解为体积缩小为一点,此点的体积可以忽略不计,同时,又必须明确,这点和分子尺寸相比必然是相当大的,它必定包括多个分子,而不至丧失流体的连续性。
流体力学知识点流体力学是研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。
它在许多领域都有着广泛的应用,如航空航天、水利工程、化工、生物医学等。
下面我们来一起了解一些流体力学的重要知识点。
一、流体的性质流体具有易流动性,即它们在微小的切应力作用下就会发生连续的变形。
流体的密度和黏度是两个重要的物理性质。
密度是指单位体积流体的质量。
对于均质流体,密度是一个常数;对于非均质流体,密度会随位置而变化。
例如,空气在不同高度的密度不同。
黏度则反映了流体内部的内摩擦力。
黏度大的流体,如蜂蜜,流动起来比较困难;而黏度小的流体,如水,流动相对容易。
二、流体静力学流体静力学主要研究静止流体的压力分布规律。
帕斯卡定律指出,在密闭容器内,施加于静止液体上的压力将以等值传递到液体各点。
这在液压系统中有着重要的应用。
另一个重要的概念是浮力。
当物体浸没在流体中时,它受到的浮力等于排开流体的重量。
这就是阿基米德原理。
例如,船舶能够漂浮在水面上,就是因为受到的浮力等于其自身的重量。
三、流体运动学流体运动学关注流体的运动方式和描述方法。
流线是用来描述流体流动的重要概念。
流线是在某一瞬时,在流场中画出的一条空间曲线,在该曲线上,流体质点的速度方向与曲线相切。
流量是指单位时间内通过某一截面的流体体积或质量。
四、流体动力学流体动力学研究流体运动与受力之间的关系。
伯努利方程是流体动力学中的一个关键方程,它表明在理想流体的稳定流动中,沿着一条流线,总水头(位置水头、压力水头和速度水头之和)保持不变。
例如,在水平管道中,流速大的地方压力小,流速小的地方压力大。
这可以解释为什么飞机机翼上方的流速快、压力低,从而产生升力。
五、黏性流体的流动实际流体都具有黏性。
在黏性流体的流动中,会产生内摩擦力,导致能量损失。
层流和湍流是两种常见的流动状态。
层流时,流体的质点作有规则的平行运动,各层之间互不干扰;而湍流时,流体的质点作不规则的随机运动。
流体力学基础知识1、什么是流体?什么是可压缩流体与不可压缩流体?一切物质都是由分子组成的。
在相同的体积中,气体和液体的分子数目要比固体少得多,分子间的空隙就比较大,因此,分子之间的内聚力小,分子运动剧烈。
这就决定了气体和液体不能保持固定的形状而具有流动性,所以,我们称气体和液体为流体。
在一定温度下,流体的体积随压力升高而缩小的性质,称为流体的可压缩性。
流体压缩性的大小用压缩系数K表示。
它的意义是当温度不变时,单位压力增量所引起流体体积的相对缩小量。
液体的压缩系数很小,故一般称液体为不可压缩流体。
温度与压力的改变,对气体体积影响很大。
由热力学可知,当温度不变时,气体的体积与压力成反比,即压力增加一倍,体积缩小为原来的一半。
由于压力变化对气体体积影响明显,故一般称气体为可压缩流体。
2、什么是流体的粘性与粘度(粘性系数)?当流体运动时,在流体层间产生的内摩擦力具有阻碍流体运动的性质,故将这一特性称为流体的粘性,将内磨擦力称为粘性力。
粘性是流体运动时间生能量损失的根本原因。
液体的粘性大小,用粘度(粘性系数)表示。
粘度有动力粘度与运动粘度两种。
所谓动力粘度是指流体单位面积上的粘性力与垂直于运动方向上的速度变化率的比值。
3、流体粘性大小与哪些因素有关?流体粘性的大小,不仅与流体的种类有关,且随流体的压力和温度的改变而变化。
由于压力改变对流体粘性影响很小,一般可忽略不计。
温度是影响粘性的主要因素。
温度对粘度的影响,对液体和气体是截然不同的。
温度升高时,液体的粘度迅速降低,而气体的粘度则随之升高。
这主要是因为,液体的粘性力主要是由于分子间吸引力造成的,当温度升高时,分子距离加大,引力减小,使粘性力减弱,粘度降低。
气体的粘性力主要是由气体内部分子运动引起的分子掺混、碰撞而产生的,温度升高,分子运动的速度加快,层间分子掺混、碰撞机会增多,使具有不同速度的气体层间的质量与动量交换加剧。
所以,粘性力加大,粘度升高。
液体粘度随温度升高而降低的特性,对电厂燃料油的输送与雾化是有利的。
流体力学相关知识点流体力学是一门研究流体(液体和气体)的力学行为的学科。
以下是流体力学中的一些基本概念和知识点:1. 牛顿粘性定律:流体力学中的内摩擦力或粘性力,与相对速度梯度和接触面面积成正比,与流体的物理属性(粘度)有关。
2. 伯努利定理:在不可压缩、无粘性的理想流体中,流体的总能量(动能+势能)沿流线保持不变。
3. 斯托克斯定理:在重力和表面张力作用下的粘性流体,如果流动是小扰动引起的,则流线是围绕封闭曲线的闭合曲线。
4. 泊肃叶定律:在一定条件下,粘性流体在管道中流动时,其流量Q与管道半径r,流体粘度μ及管道长度L成正比,与压强差ΔP成正比。
5. 库塔流定理:在二维不可压缩、无粘性的理想流体中,如果存在一个封闭的不可穿透的曲线(库塔流线),则在该曲线所包围的区域内,存在一个与之相对应的稳定流体运动。
6. 欧拉方程:描述了流体运动的动量变化率等于外力(体积力与表面力之和)对该流体微元的作用。
7. 雷诺方程:描述了粘性流体在管内层流时,其动量方程如何受到粘性的影响。
8. 纳维-斯托克斯方程:描述了考虑粘性效应的流体运动的动量、能量和组分变化等基本方程。
9. 普朗特边界层方程:描述了流体在物体表面附近形成边界层后,边界层的动量、能量和组分变化等基本方程。
10. 流体静力学:研究流体静止时的平衡状态及对固体壁面的压力和作用力。
11. 流体动力学:研究流体运动的基本规律,包括速度场、压力场、温度场等。
12. 湍流理论:研究湍流的形成、发展和衰减机理,建立湍流模型并求解湍流运动的基本方程。
13. 流动稳定性理论:研究流体运动的稳定性问题,分析流体微小扰动的发展和演化过程。
14. 计算流体力学:通过数值方法求解流体力学的基本方程,模拟和分析流体运动的规律和特性。
以上是流体力学中的一些基本概念和知识点,它们是理解和解决实际工程问题的基础。
《流体力学考》考点重点知识归纳1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。
流体元可看做大量流体质点构成的微小单元。
2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律)(1)流体质点无线尺度,只做平移运动(2)流体质点不做随即热运动,只有在外力的作用下作宏观运动;(3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性;3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。
4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。
5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的:6.牛顿流体:动力粘度为常数的流体称为牛顿流体。
7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。
液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。
、流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。
8.温度对粘度的影响:温度对流体的粘度影响很大。
液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。
压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。
9.描述流体运动的两种方法拉格朗日法:拉格朗日法又称为随体法。
它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。
流体力学知识点总结流体力学是一门研究流体(包括液体和气体)的运动规律以及流体与固体之间相互作用的学科。
它在许多领域都有着广泛的应用,如航空航天、水利工程、能源开发、生物医学等。
下面将对流体力学的一些重要知识点进行总结。
一、流体的物理性质1、密度和比容密度是指单位体积流体的质量,用ρ 表示。
比容则是单位质量流体所占的体积,是密度的倒数,用ν 表示。
2、压缩性和膨胀性压缩性是指流体在压力作用下体积缩小的性质,通常用体积压缩系数β 来表示。
膨胀性是指流体在温度升高时体积增大的性质,用体积膨胀系数α 来表示。
液体的压缩性和膨胀性通常较小,可视为不可压缩和不可膨胀流体;而气体的压缩性和膨胀性较为显著。
3、粘性粘性是流体内部产生内摩擦力以阻碍流体相对运动的性质。
粘性的大小用动力粘度μ 或运动粘度ν 来表示。
牛顿内摩擦定律指出,相邻两层流体之间的切应力与速度梯度成正比。
4、表面张力液体表面由于分子引力不均衡而产生的沿表面切线方向的拉力称为表面张力。
表面张力会使液体表面有收缩的趋势,在一些涉及小尺度流动的问题中需要考虑。
二、流体静力学1、静压强及其特性静止流体中任一点的压强大小与作用面的方位无关,只与该点的位置有关,即静压强各向同性。
2、欧拉平衡方程在静止流体中,单位质量流体所受的质量力和表面力平衡,由此可以导出欧拉平衡方程。
3、重力作用下的静压强分布在重力作用下,静止液体中的压强随深度呈线性增加,其计算公式为 p = p0 +ρgh,其中 p0 为液面压强,h 为深度。
4、压力的表示方法绝对压强是以绝对真空为基准计量的压强;相对压强是以当地大气压为基准计量的压强。
真空度则是当绝对压强小于大气压时,相对压强为负值,其绝对值称为真空度。
5、作用在平面上的静水总压力对于垂直放置的平面,静水总压力的大小等于受压面面积与形心处压强的乘积,其作用点位于受压面的形心之下。
6、作用在曲面上的静水总压力将曲面所受静水总压力分解为水平方向和垂直方向的分力进行计算。
流体力学11.1 流体的基本性质1)压缩性流体是液体与气体的总称。
从宏观上看,流体也可看成一种连续媒质。
与弹性体相似,流体也可发生形状的改变,所不同的是静止流体内部不存在剪切应力,这是因为如果流体内部有剪应力的话流体必定会流动,而对静止的流体来说流动是不存在的。
如前所述,作用在静止流体表面的压应力的变化会引起流体的体积应变,其大小可由胡克定律描述。
大量的实验表明,无论气体还是液体都是可以压缩的,但液体的可压缩量通常很小。
例如在500个大气压下,每增加一个大气压,水的体积减少量不到原体积的两万分之一。
同样的条件下,水银的体积减少量不到原体积的百万分之四。
因为液体的压缩量很小,通常可以不计液体的压缩性。
气体的可压缩性表现的十分明显,例如用不大的力推动活塞就可使气缸内的气体明显压缩。
但在可流动的情况下,有时也把气体视为不可压缩的,这是因为气体密度小在受压时体积还未来得与改变就已快速地流动并迅速达到密度均匀。
物理上常用马赫数M来判定可流动气体的压缩性,其定义为M=流速/声速,若M2<<1,可视气体为不可压缩的。
由此看出,当气流速度比声速小许多时可将空气视为不可压缩的,而当气流速度接近或超过声速时气体应视为可压缩的。
总之在实际问题中若不考虑流体的可压缩性时,可将流体抽象成不可压缩流体这一理想模型。
2)粘滞性为了解流动时流体内部的力学性质,设想如图10.1.1所示的实验。
在两个靠得很近的大平板之间放入流体,下板固定,在上板面施加一个沿流体表面切向的力F 。
此时上板面下的流体将受到一个平均剪应力F/A 的作用,式中A 是上板的面积。
实验表明,无论力F 多么小都能引起两板间的流体以某个速度流动,这正是流体的特征,当受到剪应力时会发生连续形变并开始流动。
通过观察可以发现,在流体与板面直接接触处的流体与板有相同的速度。
若图10.1.1中的上板以速度u 沿x 方向运动下板静止,那么中间各层流体的速度是从0(下板)到u (上板)的一种分布,流体内各层之间形成流速差或速度梯度。
流体力学知识重点流体连续介质模型:可以认为流体内的每一点都被确定的流体质点所占据,其中并无间隙,于是流体的任一物理参数()都可以表示为空间坐标跟时间的连续函数(),而且是连续可微函数,这就是流体连续介质假说,即流体连续介质模型。
流体的力学特性1,流动性:流体没有固定的形状,其形状取决于限制它的固体边界,流体在受到很小的切应力时,就要发生连续的变形,直到切应力消失为止。
2,可压缩性:流体不仅形状容易发生变化,而且在压力作用下体积也会发生变化。
3,粘滞性:流体在受到外部剪切力作用发生连续变形,即流动的过程中,其内部相应要发生对变形的抵抗,并以内摩擦的形式表现出来,运动一单停止,内摩擦即消失。
牛顿剪切定律:流体层之间单位面积的内摩擦力与流体变形速率(速度梯度)成正比()无滑移条件:流体与固体壁面之间不存在相对滑动,即固体壁面上的流体速度与固体壁面速度相同,在静止的固体壁面上,流体速度为零。
理想流体:及粘度()的流体,或称为无黏流体表面张力:对于与气体接触的液体表面,由于表面两侧分子引力作用的不平衡,会是液体表面处于张紧状态,即液体表面承受有拉伸力,液体表面承受的这种拉伸力称为表面张力。
表面张力系数:液体表面单位长度流体线上的拉伸力称为表面张力系数,通常用希腊字母()表示,单位()毛细现象:如果将直径很小的两只玻璃管分别插入水和水银中,管内外的液位将有明显的高度差,这种现象称为毛细现象,毛细现象是由液体对固体表面的润湿效应和液体表面张力所决定的一种现象。
毛细现象液面上升高度()牛顿流体:有一大类流体,他们在平行层状流动条件下,其切应力()与速度梯度()表现出线性关系,这类流体被称为牛顿型流体,简称牛顿流体。
描述流体运动的两种方法1,拉格朗日法:通过研究流体场中单个质点的运动规律,进而研究流体的整体运动规律,这一种方法称为拉格朗日法2,欧拉法:通过研究流体场中某一空间点的流体运动规律,进而研究流体的整体运动规律,这一种方法称为欧拉法迹线:流体质点的运动轨迹线曲线称为迹线流线:流线是任意时刻流场中存在的一条曲线,该曲线上流体质点的速度方向与其所在点处曲线的切线方向一致。
流体力学期末复习第一章绪论基本知识点:1.连续介质的概念。
2.流体的主要物理力学性质—实际流体模型:实际流体是由质点组成的连续体,具有易流动性、粘滞性、不可压缩性、不计表面张力的性质。
3.牛顿内摩擦定律。
4.理想流体模型:不考虑粘滞性。
5.物理量的基本量纲,M、L、T6.作用在液体上的力:质量力、表面力。
考核要求:1.理解连续介质和理想流体的概念及其在流体力学研究中的意义。
2.理解流体的主要物理力学性质,重点掌握流体粘滞性、牛顿内摩擦定律及其适用条件。
3.掌握物理量的基本量纲、基本单位及导出量的单位。
4.理解质量力、表面力的定义,掌握其表示方法。
如判断某说法的对错:流体的质量力是作用在所考虑的流体表面上的力。
单位质量力X、Y、Z第二章流体静力学基本知识点:1.静压强及其两个特性,等压面概念。
2.静压强基本公式及其物理意义。
3.相对压强、绝对压强、真空压强的概念。
4.测压管水头的概念。
—位能(位置水头)—压能(压强水头、测压管高度)—总势能(测压管水头)5.点压强的计算。
①找已知点压强、②找等压面、③利用静压强基本方程推求点压强6.相对静压强分布图的绘制。
7.作用于平面上静水总压力的计算。
(1)解析法静水总压力的大小:静水总压力的作用点:(2)(图解法)8.作用在曲面上静水总压力的计算。
水平方向的分力:铅垂方向的分力:总压力:总压力作用线(与水平面的夹角)9.压力体图。
考核要求:1.理解静压强的两个特性和等压面的概念。
如判断某说法的对错:静止的液体和气体接触的自由面,它既是等压面,也是水平面。
2.掌握静压强基本公式,理解该公式表达的物理意义。
3.理解绝对压强和相对压强,以及绝对压强、相对压强、真空压强之间的相互关系,理解位置水头、压强水头、测压管水头的概念。
4.掌握点压强的计算。
5.掌握静压强(相对压强)分布图的绘制。
6.掌握作用在矩形平面上静水总压力的计算,包括图解法和解析法。
7.掌握压力体图的绘制和作用在曲面上的静水总压力的计算方法。
第二讲流体动力学基础【内容提要】流体运动的基本概念:恒定总流的连续性方程,恒定总流的能量方程【重点、难点】恒定总流的连续性方程和能量方程的运用。
【内容讲解】一、流体运动的基本概念(一)流线和迹线流线是在流场中画出的这样一条曲线:同一瞬时,线上各流体质点的速度矢量都与该曲线相切,这条曲线就称为该瞬时的一条流线。
由它确定该瞬时不同流体质点的流速方向。
流线的特征是在同一瞬时的不同流线一般情况下不能相交;流线也不能转折,只能是光滑的曲线。
迹线是某一流体质点在一段时间内运动的轨迹,迹线上各点的切线表示同一质点在不同时刻的速度方向。
(二)元流和总流在流场中任取一微小封闭曲线,通过曲线上的每一点均可作出一根流线,这些流线形成一管状封闭曲面称流管。
由于速度与流线相切,所以穿过流管侧表面的流体流动是不可能的。
这就是说位于流管中的流体有如被刚性的薄壁所限制。
流管中的液(气)流就是元流,元流的极限是一条流线。
总流是无限多元流的总和。
因此,在分析总流前,先分析元流流动,再将元流积分就可推广到总流。
与元流或总流的流线相垂直的截面称过流断面,用符号A表示其断面面积。
在流线平行时,过流断面为平面,流线不平行则过流断面为曲面。
(三)流量和断面平均流速(四)流动分类1.按流动是否随时间变化将流动分为恒定流和非恒定流。
若所有的运动要素(流速、压强等)均不随时间而改变称为恒定流。
反之,则为非恒定流。
恒定流中流线不随时间改变;流线与迹线相重合。
在本节中,我们只讨论恒定流。
2.按流动是否随空间变化将流动分为均匀流和非均匀流。
流线为平行直线的流动称为均匀流。
如等直径长管中的水流,其任一点的流速的大小和方向沿流线不变。
反之,流线不相平行或不是直线的流动称为非均匀流。
即任一点流速的大小或方向沿流线有变化。
在非均匀流中,当流线接近于平行直线,即各流线的曲率很小,而且流线间的夹角也很小的流动称为渐变流。
否则,就称为急变流。
渐变流和急变流没有明确的界限,往往由工程需要的精度来决定。
流体力学知识点总结x一、流体力学基本概念1、流体:指气体和液体,其中气体又称气态物质,液体又称液态物质,也指过渡态的固、液、气。
2、流体静力学:指研究流体在外力作用下的静态特性、压强及重力场等的一般理论。
3、流体动力学:指研究复杂流动现象的动态特性,如流速、湍流及涡流等。
4、流体性质:指流体具有的物理性质,如密度、粘度、比容、表面张力和热特性等。
二、基本假定1、流体的原子间的相互作用是可以忽略的,可以认为是稀薄的。
2、可以假设流体每@点的性质是一致的,允许有速度和温度的变化,其变化有连续性。
3、流体的流动受力不受力,受力的变化很小。
4、流体流动的程度比凝固物体的几何比例大,可以忽略凝固物体对流体流动的影响。
三、流体力学基本概念1、流体质量流率:是流体中的所有物质在某一时刻的移动量,单位为千克/秒(千克/秒)。
2、流体动量流率:是流体中所有物质在某一时刻的动量的移动量,单位是千克·米/秒(千克·米/秒)。
3、流体的动量守恒:流体系统中的动量移动量不变,即:动量进入系统等于动量离开系统。
4、流体的动量定理:假定流体的粘度是恒定的,在流体力学中,运动的流体的动量守恒定理如下:5、流体的能量守恒:流体系统中的能量移动量不变,即:能量的一部分进入系统、离开系统或转移到其他系统中等于能量的一部分离开系统或转移到系统中。
6、绝对动量守恒:在不考虑粘度、流体的办法、温度及热量的变化的情况下,流体系统的绝对动量总量不变。
四、流体力学基本公式1、流体的动量定理:即Bernoulli定理,它用来描述非稳定流动中的动量转换,其形式为:p+ρv2∕2+ρgz=P+ρV+2;2、流体的能量定理:即费休定理,它用来描述流体中的施加动能和升能变化,其形式为:p+ρv2∕2+ρgz=P+ρV∕2+ρgz;3、流体力学定理:即拉格朗日定理,它用来描述流体的流动变化,其形式为:p+ρv2∕2+ρgz=p0+ρv02∕2+ρgz0;4、流体的动量方程:用来描述流体的动量变化,其形式为:(ρv)t+·ρvv=p+·μv+ρf。
流体力学应知应会(过控专业的不用做红色字体的题)、流体力学基本概念1. 流体的易流性和粘性的概念2. 流体的压缩性和膨胀性及其表示方法3. 计示压强和真空度的概念4. 流体运动的两种表示方法及其它们之间的转换5. 迹线和流线的概念6. 物质导数的概念7. 系统和控制体的概念8. 速度分解定理,应变率张量和旋转率张量及其各分量的物理意义9. 有旋流动的概念10. 速度环量和涡通量,斯托克斯公式11. 涡线和涡管的概念,涡线微分方程12. 雷诺输运定理及其应用13. 应力张量的概念,理想和静止流体的应力张量14. 牛顿流体的本构方程,动力粘度和运动粘度15. 量纲的概念16. 力学相似的概念、雷诺数、欧拉数和弗劳德数的物理意义17. 边界层的概念、边界层的名义厚度、位移厚度和动量损失的计算公式及其意义18. 速度势函数的概念、性质19. 流函数的概念、性质20. 复位势和复速度的概念及复位势的性质21. 基本流动1) 均匀流的速度势函数、流函数、复位势和复速度2) 点源(汇)的速度势函数、流函数、复位势和复速度3) 点涡的速度势函数、流函数、复位势和复速度4) 偶极子的速度势函数、流函数、复位势和复速度22. 镜象法(1 )平面定理(以实轴为边界)及其应用(2)圆定理及其应用23. 层流和湍流的概念24. 雷诺应力的概念、计算部分在40mm的两个平行壁面之间充满动力粘度0.7 Pa?s的液体,在液体中有个边长为a=60mm的正方形薄板以015m/s的速度沿着薄板所在的平面内运动,假设沿着铅直方向的速度分布为直线规律。
试求:1. 当h=10mm时,求薄板运动的液体阻力;2. 如果h可变,求当h为多大时,薄板的运动阻力为最小并求此时的最小阻力。
已知管内液体质点的轴向速度与质点所在半径r成抛物线型分布规律。
当r 0时, 0;当r R时,0。
如果R 6mm , 0 3.6 ms , 0.1 Pa s,试求r 0、2、4、6mm处的切应力。
1.粘滞性:流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质。
牛顿内摩擦定律:流体的内摩擦力大小与流体性质有关,与流体速度变化梯度和接触面积成正比。
非牛顿流体。
2.液体的动力粘滞系数随温度升高而减小,气体的动力粘滞系数随温度升高而增大。
通常
的压强对流体的动力粘滞系数影响不大,高压下流体的动力粘滞系数随压强的升高而增大。
3.连续介质:将流体认为是充满其所占据空间无任何空隙的质点所组成的连续体。
无黏性
流体:不考虑黏性作用的流体。
不可压缩流体:不计压缩性和热膨胀性对流体物理性质简化。
4.理想流体:不考虑黏性作用的流体。
5.实际流体:考虑黏性流体作用的实际流体。
6.流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法
线。
7.由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见
水平面是压强处处相等的面,即水平面必是等压面。
8.在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。
满足等
压面的三个条件是同种液体连续液体静止液体。
9.阿基米德原理:无论是潜体或浮体的压力体均为物体的体积,也就是物体排开液体的体
积。
10.重力大于浮力,物体下沉至底。
重力等于浮力,物体在任一水深维持平衡。
重力小于浮
力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。
11.(1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘
压强最高。
12.绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。
相对压强:当地同高
程的大气压强ap为零点起算的压强。
压力表的度数是相对压强,通常说的也是相对压强。
1atm=101325pa=10.33mH2O=760mmHg.
13.和大气相通的表面叫自由表面。
14.流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该
点的速度方向重合,这条曲线叫流线。
区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。
流线是由无究多个质点组成的,它是表示这无究多个流体质点在某一固定瞬间运动方向的曲线。
而迹线则是在时间过程中表示同一流体质点运动的曲线。
15.我们把流体流动占据的空间称为流场,流体力学的主要任务就是研究流场中的流动。
16.欧拉法:通过描述物理量在空间的分布来研究流体运动的方法。
拉格朗日法:通过描述
每一质点的运动达到了解流体运动的方法。
17.动平衡的流动,各点流速不随时间变化,由流速决定的压强、粘性力也不随时间变化,
这种流动称之为恒定流动反之为非恒定流动。
18.因为建立恒定总流的伯努利方程时,把(z+P/pg)作为常熟提到积分号外面,只有渐变
流断面或均匀流断面的(Z+P/pg)=C。
19.可以,因为渐变流断面或均匀流断面上(Z+P/pg)=C。
20.动能修正系数:总流有效断面上的实际动能对按平均流速算出假象动能的比值,流速分
布越不均匀,值越大。
动量修正系数:实际动量和按照平均流速计算的动量的比值,流速分布越不均匀,值越大。
21.在沿程不变的管段上,流动阻力沿程也基本不变,称这类阻力为沿程阻力,克服沿程阻
力引起的能量损失为沿程损失。
在边壁急剧变化的区域,阻力主要地集中在该区域中及
其附近,这种集中分布的阻力称为局部阻力。
克服局部阻力的能量损失为局部损失。
公式4-1-1
22.层流:各液层间毫不相混,分层有规则的流动状态。
紊流:液体质点的运动轨迹是极不
规则的,各部分流体相互剧烈掺混。
用临界雷诺数作为判断准则,圆管流临界雷诺数等于2000
23.4-3-8 4-3-4
24.课本105——106有些字母打不出来。
所以~
25.在相同条件下,管嘴的过流能力是孔口的1.32倍。
收缩断面处真空起的作业。
圆柱形外
管嘴的正常工作条件:作用水头 H0《=9.3m,管嘴长度l=(3~4)d.
26.在容器侧壁或底壁上开一孔口,容器中的液体自孔口出流到大气中,称为孔口自由出流。
如出流到充满液体的空间,则称为淹没出流。
27.流体微团的旋转角速度不完全为零的流动称为有旋流动,流场中各点旋转角速度等于零
的运动,成为无旋运动。
28.拉格朗曰法着眼于流体中各质点的流动情况跟踪每一个质点观察与分析该质点的运动
历程然后综合足够多的质点的运动情况以得到整个流体运动的规律。
欧拉法着眼于流体经过空间各固定点时的运动情况它不过问这些流体运动情况是哪些流体质点表现出来的也不管那些质点的运动历程因此拉格朗曰分析法和欧拉分析法是描述流体的运动形态和方式的两种不同的基本方法。
29.在流场内,取任意非流线的封闭曲线L,经此曲线上全部点做流线,这些流线组成的管
状流面,称为流管。
流管以内的流体,称为流束。
垂直于流束的断面称为流束的过流断面,当流束的过流断面无限小时,这根流束就称为元流。
30.从入口到形成充分发展的管流的长度称为入口段长度,以Xe 表示。
层流:Xe/d=0.028Re.
紊流:Xe/d=50.
31.P/r是断面压强作用使流体沿测压管所能上升的高度,水力学中称为压强水头,表示压力
作功所能提供给单位重量流体的能量,称为单位压能
32.几何相似是指流动空间几何相似,即形成此空间任意相应两线段交角相同,任意相应线
段长度保持一定的比例。
运动相似是指两流动的相应流线几何相似,即相应点的流速大小成比例,方向相同。
动力相似是指要求同名力作用,相应的同名力成比例。
33.如果两个同一类的物理现象,在对应的时空点上,各标量物理量的大小成比例,各向量
物理量除大小成比例外,且方向相同,则称两个现象是相似的。
要保证两个流动问题的力学相似,必须是两个流动几何相似,运动相似,动力相似,以及两个流动的边界条件和起始条件相似。
34.因次是指物理量的性质和类别。
因次分析法就是通过对现象中的物理量的因次以及因次
之间互相联系的各种性质的分析来研究对象相似性的方法。
35.因次和谐原理:完整的物理方程式中的各项的因次应相同的性质。
36.因为虹吸管内出现真空。
37.泵所输送的单位重量流量的流体从进口道出口能量的增值,也就是单位重量流量的流体
通过泵所获得的有效能量。
38.水力半径:过流断面面积与湿周的比值。
当量半径=4乘以水利半径。
39.气蚀指浸蚀破坏材料之意,它是空气泡现象所产生的后果。
产生原因:泵的安装位置高
出吸液面的高度太大;泵安装地点的大气压太低;泵所输送的液体的温度过高。
40.略
41.在沿程不变的管段上,流动阻力沿程也基本不变,称这类阻力为沿程阻力,克服沿程阻
力引起的能量损失为沿程损失。
与雷诺数和管壁粗糙度有关
42.气流某断面的流速,设想以无摩擦绝热过程降低至零时,断面各参数所达到的值,称为
气流在该断面的滞止参数。
滞止参数一下标“0”表示。
43.M<1为亚音速流动,说明速度随断面的增大而减慢;随断面的减少而加快。
M>1为超
音速流动,说明速度随断面的增大而加快;随断面的减少而减慢。
M=1既气流速度与当地音速相等,此时称气体处于临界状态。
44.。