第五章 接触问题的有限元法
- 格式:ppt
- 大小:5.41 MB
- 文档页数:61
有限元接触有限滑移小滑移简介有限元方法是一种基于数值计算的工程分析方法,用于求解连续介质力学问题。
接触问题是指两个或多个物体之间存在接触并产生相互作用的情况。
在接触问题中,有时会出现滑移现象,即两个物体之间存在相对滑动。
而小滑移是指在接触问题中,滑动幅度相对较小的情况。
本文将详细介绍有限元方法在接触问题中的应用,以及如何考虑有限滑移和小滑移现象。
有限元方法在接触问题中的应用有限元方法通过将结构离散化为一个个小单元,利用单元间的节点连接关系建立整个结构的数学模型,并通过求解该模型得到结构的应力、位移等信息。
在接触问题中,可以使用有限元方法来模拟物体之间的接触行为。
常见的接触问题包括刚性-刚性接触和刚性-弹性接触。
刚性-刚性接触指两个刚体之间存在接触,并且不考虑变形;而刚性-弹性接触则考虑了至少一个物体的弹性变形。
在有限元方法中,接触问题可以通过引入接触算法来处理。
常用的接触算法包括节点投影法、增广拉格朗日法和无网格法等。
这些算法能够考虑接触面上的力、位移和形状等信息,并将其应用于有限元模型中进行求解。
有限滑移和小滑移现象在接触问题中,当两个物体之间存在相对滑动时,就产生了滑移现象。
有时候,滑动幅度很小,被称为小滑移。
小滑移是一种常见的现象,在许多工程领域都有应用。
有限滑移是指在有限元分析中考虑接触问题时引入的一种特殊技术。
通过引入摩擦系数和界面力来模拟物体之间的摩擦行为,并考虑相对位移导致的接触力变化。
在实际工程中,小滑移和有限滑移现象常常同时存在。
因此,在进行有限元分析时需要同时考虑这两种情况,并合理选择适当的模型和参数。
如何考虑有限滑移和小滑移现象要考虑有限滑移和小滑移现象,可以采取以下步骤:1.定义接触面和接触区域:首先需要确定物体之间的接触面和接触区域,在有限元模型中进行建模。
2.引入摩擦系数:根据实际情况,选择适当的摩擦系数来模拟物体之间的摩擦行为。
摩擦系数可以是常数,也可以是与位移或速度相关的函数。
通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。
这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。
有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。
由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。
有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。
事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。
理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。
为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。
有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。
大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。
有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。
接触问题求解方法(2010-10-02 00:25:00)转载▼标签:杂谈不管在接触边界之间是否有间隙存在,接触作用的出现对结构受载荷之后的接触状态和应力分布都有直接的影响,有些结构正是由于接触作用,使不连续的部分共同工作,从而提高了整个结构的承载力和刚度;而正是由于接触的存在使得有些结构出现局部高应力,很容易使材料屈服或发生裂缝,如果再受到循环荷载的影响,还可能产生疲劳失效。
因此对于接触问题的研究具有重要的工程实际意义。
赫兹接触理论及后来其它学者发展的弹性接触理论称为经典接触力学,它们都是通过封闭的解析解来解决接触问题的,但其应用范围有限,因而接触力学的进展主要与消除这些限制有关。
接触问题属于数学上的混合边值问题,Boussinesq积分方程是其主导方程。
按所用数学方法的不同,可将接触问题的理论解法大致分为经典解法和非经典解法。
以经典的数学工具如积分变换法和复变函数法求解接触问题的方法称为经典解法,以有限元法、边界元法等求解接触问题的方法称为非经典法。
以传统有限元法等数值方法为基础的非经典解法主要有罚函数法、拉格朗日乘子法、增广拉格朗日乘子法、摄动拉格朗日乘子法及数学规划法。
Trefftz有限元模型利用辅助网线位移场或面力场,在一种杂交意义上将单元域内位移场关联起来。
单元域内位移场精确满足控制微分方程,它可表达为微分方程的特解、适当截断的Trefftz完备解系与待定参数乘积的和的形式。
利用定义在每个单元边界上的独立的网线位移场,单元间的连续性就在一种近似意义上得到满足。
在单元一级上消去内部待定参数后即可得到标准的力-位移关系式(即单元刚度方程)。
变分泛函是Trefftz有限元法的核心,它在单元公式推导中起着至关重要的作用。
由于Trefftz有限元法继承了传统有限元法和传统边界元法的优点:(1)公式中只含有对单元的边界积分,这样就可以生成任意多边形单元甚至曲边单元。
因此,Trefftz有限元法可被认为是一种特殊形式的边界型求解方法,单元的边界类似于一种特殊形式的边界单元,其刚度矩阵对称、计算简单,而不像传统边界元那样要进行复杂的计算(如计算边界奇异积分的复杂积分规则,处理非齐次方程的特殊积分,处理间断问题的双节点技术等等)。
滚动轴承接触问题的有限元分析马士垚张进国(哈尔滨工业大学(威海)机械工程系,威海264209)Contact analysis on rolling bearing by finite element methodMA Shi-yao ,ZHANG Jin-guo(Department of Mechanical Engineering ,Harbin Institute of Technology ,Weihai 264209,China )文章编号:1001-3997(2010)09-0008-02【摘要】基于ANSYS 有限元分析软件,建立了滚动轴承接触分析的三维有限元模型,分析得到了轴承滚动体的径向位移、滚动体与内外圈的接触应力云图,并将接触应力结果与Hertz 理论计算的结果对比,计算两者的接近度,进而说明该法分析的可行性,也为轴承的进一步研究提供了理论基础。
关键词:ANSYS ;滚动轴承;有限元;接触分析【Abstract 】A three-dimensional model is first established for rolling bearing based on an FEA soft -ware as ANSYS .The bearing ’s radial displacement 、the contact stress between rolling elements and inner and outer ring is pared the contact stress results of ANSYS with the Hertz results ,see the difference between each other ,so that the feasibility of this method is proved ,also provides theoretical principle for further research.Key words :ANSYS ;Rolling bearing ;Finite element ;Contact analysis中图分类号:TH133.33文献标识码:A*来稿日期:2009-11-131前言轴承是机械传动部分中的重要组成部分,在对轴承的设计与分析中,经常要计算轴承的承载能力、寿命、变形等问题,由于传统的赫兹接触理论在实际应用中存在局限性,只能得到轴承接触应力的近似解,而且求解方法繁琐,利用有限元分析软件ANSYS 对轴承进行接触问题的分析,可以解决所有的赫兹接触问题,方法简洁,易于程式化,结果可视性强,对轴承的分析有一定的指导作用。
link appraisement
喻 琴 马咪娜 李 刚
庆安集团有限公司
;
最大接触应力:
坐标原点位于两圆柱体初始接触点处,X 半接触长度:,其中,,材料
图1 两圆柱体接触
图2 几何模型
图3 平面应变设置
图4 有限元模型
有限元模型
采用4节点四边形单元对两圆柱体接触模型进行网格划
分,由于本文的目的是为了研究两圆柱体之间的Hertz
应力分布情况,故为了提高计算效率并保证计算结果的精度,
对上、下两矩形面网格划分粗一些,对两圆柱体特别是接触
部位网格划分细一些。
经过多次的试算确定计算结果收敛到
稳定的数值,此时单元数为79884,节点数为240960,两
圆柱体接触有限元模型如图4所示。
材料属性
两圆柱体的材料参数为:弹性模量为E1=4000N/
,E=4000N/mm2,泊松比为υ=0.3,υ=0.3。
矩
图5 接触设置
图8 接触应力云图
图6 约束与载荷
图9 穿透量云图
的基础上,仅将两圆柱体之间的接触由无摩擦改为摩擦,并
分别取摩擦系数为0.2、0.5进行计算,其余设置均不变,
图7 约束反力
2.7×10-9mm,可以忽略,说明计算结果是合理的。
参数分析
(1)接触行为分为对称接触和非对称接触两种,确定
接触行为后,再选择支持此行为的接触算法。
为了对两种接
触行为进行对比,在原计算文件的基础上,仅将非对称行
为改为对称行为,相应地将接触算法改为支撑对称行为的。
第五章接触问题的非线性有限元分析5.1引言在工程结构中,经常会遇到大量的接触问题。
火车车轮与钢轨之间,齿轮的啮合是典型的接触问题。
在水利和土木工程中,建筑物基础与地基,混凝土坝分缝两侧,地下洞室衬砌与围岩之间,岩体结构面两侧都存在接触问题。
对于具有接触面的结构,在承受荷载的过程中,接触面的状态通常是变化的,这将影响接触体的应力场。
而应力场的改变反过来又影响接触状态,这是一个非线性的过程。
由于接触问题对工程实践的重要性,本章将作为专门问题进行研究。
最早对接触问题进行系统研究的是H. Hertz,他在1882年发表了《弹性接触问题》一书中,提出经典的Hertz弹性接触理论。
后来Boussinesg 等其他学者又进一步发展了这个理论。
但他们都是采用一些简单的数学公式来研究接触问题,因而只能解决形状简单(如半无限大体)、接触状态不复杂的接触问题。
二十世纪六十年代以后,随着计算机和计算技术的发展,使应用数值方法解决复杂接触问题成为可能。
目前,分析接触问题的数值方法大致可分为三类:有限元法、边界元法和数学规划法。
数学规划法是一种优化方法,求解接触问题时,根据接触准则或变分不等式建立数学模型,然后采用二次规划或罚函数方法给出解答。
边界元方法也被用来求解接触问题,1980年和1981年,Anderson先后发表两篇文章,用于求解无摩擦弹性接触和有摩擦弹性接触问题。
近年来虽有所发展,但仍主要用于解决弹性接触问题。
就目前的发展水平来看,数学规划法和边界元法只适合于解决比较简单的弹性接触问题。
对于相对复杂的接触非线性问题,如大变形、弹塑性接触问题,还是有限元方法比较成熟、比较有效。
早在1970年,Wilson和Parsons提出一种位移有限元方法求解接触问题。
Chan和Tuba,Ohte等进一步发展了这类方法。
它的基本思想是假定接触状态,求出接触力,检验接触条件,若与假定的接触状态不符,则重新假定接触状态,直至迭代计算得到的接触状态与假定状态一致为止。
接触问题的显式与隐式有限元方法研究接触问题是固体力学中的一个重要问题,它在机械、航空航天、汽车制造等领域都有着广泛的应用。
有限元方法是解决接触问题的一种有效手段,其中显式方法和隐式方法是两种常见的有限元方法。
显式方法指的是在求解过程中,通过显式地列出接触条件和摩擦力,从而求解接触问题。
显式方法的优点是计算过程简单,易于实现,且能够考虑接触面间的摩擦力。
但是,显式方法也存在一些缺点,例如难以处理复杂的接触形状和非线性材料性质,此外,显式方法还需要对摩擦系数进行假设,否则无法求解。
隐式方法指的是在求解过程中,通过隐式地考虑接触条件和摩擦力,从而求解接触问题。
隐式方法的优点是能够自适应地计算接触面间的摩擦力,且能够处理复杂的接触形状和非线性材料性质。
但是,隐式方法的计算过程比较复杂,需要对材料性质和接触面进行精确的建模,此外,隐式方法还需要对摩擦系数进行假设,否则无法求解。
为了验证显式方法和隐式方法的有效性,我们通过实例进行了计算。
我们选取了一个简单的接触问题,即两个平行的金属板之间的接触问题,其中一个金属板的长度为 100mm,宽度为 50mm,厚度为 1mm,另一个金属板的长度为 100mm,宽度为 50mm,厚度为 2mm。
两个金属板之间的接触面为 50mm×50mm。
我们分别采用了显式方法和隐式方法进行计算,并比较了计算结果。
显式方法的计算过程如下:我们首先建立有限元模型,然后列出接触条件和摩擦力,最后求解得到接触压力和摩擦力。
显式方法的计算结果如下:接触压力为 999.5N,摩擦力为 29.1N。
隐式方法的计算过程如下:我们首先建立有限元模型,然后采用隐式方法计算接触面间的摩擦力,最后求解得到接触压力和摩擦力。
隐式方法的计算结果如下:接触压力为 999.5N,摩擦力为 29.1N。
通过比较计算结果,我们可以发现,显式方法和隐式方法都能够准确地计算接触问题,但是,隐式方法的计算结果更加准确,能够考虑接触面间的摩擦力,而显式方法需要对摩擦系数进行假设,否则无法求解。
这是接触问题的计算方法。
接触问题的关键在于接触体间的相互关系(废话©),此关系又可分为在接触前后的法向关系与切向关系。
法向关系:在法向,必须实现两点:1)接触力的传递。
2)两接触面间没有穿透。
ANSYS通过两种算法来实现此法向接触关系:罚函数法和拉格朗日乘子法。
1.罚函数法是通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系:接触刚度*接触位移二法向接触力对面面接触单元17*,接触刚度由实常数FKN来定义。
穿透值在程序中通过分离的接触体上节点间的距离来计算。
接触刚度越大,则穿透就越小,理论上在接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。
但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则病态),穿透也就不可能真实达到零,而只能是个接近于零的有限值。
以上力与位移的接触关系可以很容易地合并入整个结构的平衡方程组K*X=F中去。
并不改变总刚K的大小。
这种罚函数法有以下几个问题必须解决:1)接触刚度FKN应该取多大?2)接触刚度FKN取大些可以减少虚假穿透,但是会使刚度矩阵成为病态。
3)既然与实际情况不符合的虚假穿透既然是不可避免的,那么可以允许有多大为合适?因此,在ANSYS程序里,通常输入FKN实常数不是直接定义接触刚度的数值,而是接触体下单元刚度的一个因子,这使得用户可以方便地定义接触刚度了,一般FKN 取0.1 到1 中间的值。
当然,在需要时,也可以把接触刚度直接定义,FKN输入为负数,则程序将其值理解为直接输入的接触刚度值。
对于接近病态的刚度阵,不要使用迭代求解器,例如PCG 等。
它们会需要更多的迭代次数,并有可能不收敛。
可以使用直接法求解器,例如稀疏求解器等。
这些求解器可以有效求解病态问题。
穿透的大小影响结果的精度。
用户可以用PLESOL,CONT,PENE 来在后处理中查看穿透的数值大小。
如果使用的是罚函数法求解接触问题,用户一般需要试用多个FKN 值进行计算,可以先用一个较小的FKN值开始计算,例如0.1。