912《信号处理(信号与系统+信号处理基础)》
- 格式:doc
- 大小:29.50 KB
- 文档页数:2
课程编号15102308《数字信号处理》教学大纲Digital Signal Processing一、课程基本信息二、本课程的性质、目的和任务《数字信号处理》课程是信息工程本科专业必修课,它是在学生学完了高等数学、概率论、线性代数、复变函数、信号与系统等课程后,进一步为学习专业知识打基础的课程。
本课程将通过讲课、练习使学生建立“数字信号处理”的基本概念,掌握数字信号处理基本分析方法和分析工具,为从事通信、信息或信号处理等方面的研究工作打下基础。
三、教学基本要求1、通过对本课程的教学,使学生系统地掌握数字信号处理的基本原理和基本分析方法,能建立基本的数字信号处理模型。
2、要求学生学会运用数字信号处理的两个主要工具:快速傅立叶变换(FFT)与数字滤波器,为后续数字技术方面课程的学习打下理论基础。
3、学生应具有初步的算法分析和运用MA TLAB编程的能力。
四、本课程与其他课程的联系与分工本课程的基础课程为《高等数学》、《概率论》、《线性代数》、《复变函数》、《信号与系统》等课程,同时又为《图像处理与模式识别》等课程的学习打下基础。
五、教学方法与手段教师讲授和学生自学相结合,讲练结合,采用多媒体教学手段为主,重点难点辅以板书。
六、考核方式与成绩评定办法本课程采用平时作业、期末考试综合评定的方法。
其中平时作业成绩占40%,期末考试成绩占60%。
七、使用教材及参考书目【使用教材】吴镇扬编,《数字信号处理》,高等教育出版社,2004年9月第一版。
【参考书目】1、姚天任,江太辉编,《数字信号处理》(第二版),华中科技大学出版社,2000年版。
2、程佩青著,《数字信号处理教程》(第二版),清华大学出版社出版,2001年版。
3、丁玉美,高西全编著,《数字信号处理》,西安电子科技大学出版社,2001年版。
4、胡广书编,《数字信号处理——理论、算法与实现》,清华大学出版社,2004年版。
5、Alan V. Oppenheim, Ronald W. Schafer,《Digital Signal Processing》,Prentice-Hall Inc, 1975.八、课程结构和学时分配九、教学内容绪论(1学时)【教学目标】1. 了解:什么是数字信号处理,与传统的模拟技术相比存在哪些特点。
西安交通大学《信号与系统B》课程教学大纲(说明:信通系应该学的是《信号与系统A》,但是找不到A的大纲。
只找到了西交大电子、计算机等专业的《信号与系统B》的大纲,因为用的教材是一样的,大家就凑活着用吧)英文名称:Signals and Systems B课程编号:INFT3014学时:68 (讲课60 ,实验8 );学分:4.0 开课时间:秋季学期适用对象:电子科学与技术、计算机科学与技术专业、光信息科学与技术专业先修课程:数学分析(工程类)或高等数学、电路使用教材及参考书:1. 阎鸿森、王新凤、田惠生编《信号与线性系统》,西安交通大学出版社,1999 年8 月第一版2. [ 美] A.V. 奥本海姆等著,刘树棠译,《信号与系统》(第二版),西安交通大学出版社,1998 年一.课程性质、目的和任务“信号与系统”是电气与电子信息类各专业本科生继“电路”或“电路分析基础”课程之后必修的重要主干课程。
该课程主要研究确知信号的特性,线性时不变系统的特性,信号通过线性时不变系统的基本分析方法,信号与系统分析方法在某些重要工程领域的应用,以及数字信号处理的基础知识。
通过本课程的学习,使学生掌握信号分析、线性系统分析及数字信号处理的基本理论与分析方法,并对这些理论与方法在工程中的某些应用有初步了解。
为适应信息科学与技术的飞速发展及在相关专业领域的深入学习打下坚实的基础。
同时,通过习题和实验,学生应在分析问题与解决问题的能力及实践技能方面有所提高。
该课程是学习《现代通信原理》、《自动控制理论》等后续课程所必备的基础。
二.教学基本要求通过本课程的学习,在掌握连续时间信号与系统和离散时间信号与系统分析以及数字信号处理的基本理论和方法方面应达到以下基本要求:1. 掌握信号与系统的基本概念,信号与系统的描述方法,基本信号的特性,系统的一般性质,系统的互联,增量线性系统的等效方法。
2. 掌握信号分解的基本思想及信号在时域、频域和变换域进行分解的基本理论及描述方法。
第二章习题解答1、求下列序列的z 变换()X z ,并标明收敛域,绘出()X z 的零极点图。
(1) 1()()2nu n (2) 1()()4nu n - (3) (0.5)(1)nu n --- (4) (1)n δ+(5) 1()[()(10)]2nu n u n -- (6) ,01na a <<解:(1) 00.5()0.50.5nn n n zZ u n z z ∞-=⎡⎤==⎣⎦-∑,收敛域为0.5z >,零极点图如题1解图(1)。
(2) ()()014()1414n nn n z Z u n z z ∞-=⎡⎤-=-=⎣⎦+∑,收敛域为14z >,零极点图如题1解图(2)。
(3) ()1(0.5)(1)0.50.5nnn n zZ u n z z --=-∞-⎡⎤---=-=⎣⎦+∑,收敛域为0.5z <,零极点图如题1解图(3)。
(4) [](1Z n z δ+=,收敛域为z <∞,零极点图如题1解图(4)。
(5) 由题可知,101010910109(0.5)[()(10)](0.5)()(0.5)(10)0.50.50.50.50.50.5(0.5)n n nZ u n u n Z u n Z u n z z z z z z z z z z z --⎡⎤⎡⎤⎡⎤--=--⎣⎦⎣⎦⎣⎦⋅=-----==--收敛域为0z >,零极点图如题1解图(5)。
(6) 由于()(1)nn n a a u n a u n -=+--那么,111()(1)()()()nn n Z a Z a u n Z a u n z z z a z a z a a z a z a ----⎡⎤⎡⎤⎡⎤=---⎣⎦⎣⎦⎣⎦=----=-- 收敛域为1a z a <<,零极点图如题1解图(6)。
(1) (2) (3)(4) (5) (6)题1解图2、求下列)(z X 的反变换。
心音信号MFCC特征向量提取方法的优化许春冬;周静;应冬文;龙清华【摘要】为了提高利用梅尔频率倒谱系数(Mel-frequency cepstral coefficients,MFCC)特征向量进行心音信号分类的准确率,本文提出以一种基于独立成分分析(independent component analysis,ICA)及权值优化的MFCC特征向量优化方法.首先,通过消除趋势项、降噪、提取心动周期与基础心音分割等步骤对心音信号预处理;接着,对提取的基础心音信号做Mel频谱变换及倒谱分析提取MFCC特征向量,其中用ICA替代离散余弦变换去除分量间高阶量的相关性,同时采用相关系数为权值优化整体混合矩阵;最后,采用F比衡量特征向量贡献率,并以其为权值优化各维特征向量.通过提取MFCC特征向量采用支持向量机(support vector machine,SVM)的分类器识别第一心音及第二心音,并与人工标注心音状态集进行对比.实验结果表明,基于ICA及权值优化的MFCC特征向量在SVM分类器中识别率得到了有效的提升,且优化算法具备一定抗噪性能.【期刊名称】《信号处理》【年(卷),期】2019(035)003【总页数】9页(P410-418)【关键词】心音;梅尔频率倒谱系数;独立成分分析;权值优化;支持向量机【作者】许春冬;周静;应冬文;龙清华【作者单位】江西理工大学信息工程学院,江西赣州341000;江西理工大学信息工程学院,江西赣州341000;江西理工大学信息工程学院,江西赣州341000;中国科学院声学研究所语言声学与内容理解重点实验室,北京100190;江西理工大学信息工程学院,江西赣州341000【正文语种】中文【中图分类】TN9121 引言心音分析是现阶段主流的心血管疾病诊断方法之一[1]。
心音信号是人体心脏机械工作产生的振动经胸腔、胸壁等组织的传递到达胸部表层的信号,主要与人体心脏的心肌收缩、瓣膜关闭以及泵血等运动有关[2]。
信号处理-习题(答案)数字信号处理习题解答第二章数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1)该信号的最小采样频率;(2)若采样频率f s =5000Hz ,其采样后的输出信号;分析:利用信号的采样定理及采样公式来求解。
○1采样定理采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号-???? ????? ??=?+???? ????? ??-???? ????? ??=????++???? ????? ??-+???? ????? ??=?+???? ????? ??+???? ????? ??=???====n n n n n n n n n n n f n x nT x t x n x s s nT t s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
信号与系统综述本文曾以长文刊出,阅读很不便,违背了微课程的“微”的原则。
将原来的长文分解为几篇短文,分几次刊出。
综述性的文章不好写,因为要对整个课程有比较深刻的理解才可以。
权威期刊上的综述文章,一般都邀请本领域最著名的专家来写,就是例证。
信号与系统的大致组织结构,和吴大正教材的顺序不一样,但是基本的逻辑关系是一致的。
《信号与系统》是电子、信息类专业的专业基础课,为后续课如通信原理、数字信号处理等的学习打下基础,可以说,信号与系统课程学习的好坏,对整个电子信息类专业课程的学习至关重要,因为它起着承上启下的作用。
可惜我们的同学这门课都学得不好。
从功利和追求真理两个角度来说,都应该学好这门课:从功利的角度来说,这门课学分多,难学,能拉开与其他学生的距离,获得好的绩点对毕业评优很有好处,是某些专业考研的必考科目;从掌握真理的角度来说,学好这门课是理解通信过程的一个关键环节,否则不仅后续课如通信原理、数字信号处理不好理解,而且对通信的基本问题,如信号无失真失真传输的条件、带限信号采样定理、信号调制等都不能理解,即使大学本科毕业了,其实对通信还是一个“门外汉”。
《信号与系统》这门课的主要内容,可以从它的课程名字,即“信号”与“系统”及为了研究信号与系统的求解而引入的“变换”这三个方面来说明。
1、信号信号是信息的载体,任何信息都通过信号作为载体来传输。
有的信号如声音信号、图像信号等模拟信号是我们本身需要的,有的信号如各种调制信号是为了信号的传输而产生的,如模拟调制信号、数字调制信号,那么我们需要掌握信号的各种性质,包括时域的性质和频域的性质。
信号在时域有哪些性质呢?我们在时域能对信号进行哪些处理呢?①信号在时域有连续性和离散型之分,连续性和离散型指时间取值,离散信号是数字时代的基本特征,它是对连续信号进行等间隔采样取得的。
对连续信号,有两个特殊的信号很重要:阶跃信号和冲激信号,它们往往是描述其他连续信号的基础;对离散信号,也有两个重要的特殊信号:单位采样信号和单位阶跃信号。
信号分析与处理第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统。
测试技术的目的是信息获取、处理和利用。
测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。
信号分析与处理是测试技术的重要研究内容。
信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。
一切物体运动和状态的变化,都是一种信号,传递不同的信息。
信号常常表示为时间的函数,函数表示和图形表示信号。
信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。
信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析; 信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。
信号处理包括时域处理和频域处理。
时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容;测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。
常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)序列、单位阶跃序列、斜变序列、正弦序列、复指数序列。
离散序列用图形、数列表示,常见序列单位抽样系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。
被测系统和测试系统统称为系统。
输入信号和输出信号统称为测试信号。
系统分为连续时间系统和离散时间系统。
系统的主要性质包括线性和非线性,记忆性和无记忆性,因果系统和非因果系统,时不变系统和时变系统,稳定系统和非稳定系统。
第二章连续时间信号分析:周期信号分析(傅立叶级数展开)非周期信号的傅立叶变换、周期信号的傅立叶变换、采样信号分析(从连续开始引入到离散)。
《信号处理基础》考试大纲
一、考试的总体要求
要求掌握信号与系统以及数字信号处理的基本概念、理论、算法、变换方法和设计方法。
二、考试方式
考试采用笔试方式,考试时间为180分钟,试卷满分为150分。
三、题型
题型由填空题(20分)、选择题(30分)和计算题(100分)三部分组成。
四、考试内容
考试内容包括信号与系统、数字信号处理两部分。
(一)信号与系统主要内容
(1) 绪论
了解信号与系统的概念、表示与分类,了解连续时间信号与离散时间信号的概念,掌
握信号的分解与运算,了解线性时不变系统的概念与基本性质。
(2) 线性时不变系统的时域分析
掌握线性时不变系统输入输出方程的建立及解法,掌握零输入响应和零状态响应、单
位冲激响应(单位样值响应)和单位阶跃响应、卷积(和)等概念及求解运算,掌握线性时
不变系统的基本性质并能用框图表示线性时不变系统。
(3) 连续时间傅里叶变换
掌握连续时间周期信号傅里叶级数的各种表示及系数转换关系,掌握傅里叶变换及其
性质,掌握傅里叶变换应用于连续时间线性时不变系统的分析方法。
(4) 拉普拉斯变换、连续时间系统的s域分析
掌握双边/单边拉普拉斯变换的定义、收敛域和基本性质,掌握拉普拉斯逆变换的求解
方法,掌握微分方程和电路的s域求解方法,掌握线性时不变系统的系统函数、零极
点图等概念,掌握系统的因果性、稳定性等性质与零极点分布和收敛域的关系,掌握
连续时间线性时不变系统的框图表示。
(5) 连续时间傅里叶变换应用于通信系统—滤波、调制与抽样
掌握奈奎斯特抽样定理,掌握抽样前、后信号的频谱之间的关系,了解内插公式,掌
握模拟信号正弦振幅调制和解调的频谱变化关系。
(二)数字信号处理主要内容
(1) 离散时间信号与系统
离散时间信号,离散时间系统(线性移不变系统),常系数线性差分方程,连续时间
信号的抽样。
(2) z变换与离散时间傅里叶变换
z变换(反变换)与收敛域,z变换的基本性质和定理,离散时间傅里叶变换(DTFT)
和性质,离散时间系统的系统函数和频率响应。
(3) 离散傅里叶变换与快速傅里叶变换
周期序列的离散傅里叶级数(DFS)和性质,离散傅里叶变换(DFT)和性质,利用
DFT计算模拟信号的傅里叶变换(级数)对;按时间抽选的基-2 FFT算法,按频率抽
选的基-2 FFT算法,离散傅里叶反变换的快速计算方法。
(4) 数字滤波器的基本结构
数字滤波器结构的表示方法,无限长单位冲激响应(IIR)滤波器的基本结构,有限长
单位冲激响应(FIR)滤波器的基本结构。
(5) IIR、FIR数字滤波器的设计
最小与最大相位延时(超前)系统,全通系统,设计IIR数字滤波器的基本方法:冲
激响应不变法、阶跃响应不变法、双线性变换法,常用模拟低通滤波器的特性及设计
方法(巴特沃思逼近、切贝雪夫逼近),设计IIR数字滤波器的频率变换法;线性相位
FIR滤波器的特点,窗函数设计法,频率抽样设计法,IIR和FIR数字滤波器的比较。