第2章MATLAB语言基础
- 格式:ppt
- 大小:654.50 KB
- 文档页数:76
第二章 MATLAB语言基础教学重点:矩阵运算、MATLAB程序设计教学难点:基本算术运算与点运算、switch语句、try语句、for语句MATLAB是英文MATrix LABoratory(矩阵实验室)的缩写。
矩阵是MATLAB最基本、最重要的数据对象,MA TLAB的大部分运算或命令都是在矩阵运算的意义下执行的,而且这种运算定义在复数域上。
一、MATLAB编程基础1.变量MATLAB对变量名称有以下三个规定:●变量名称开头必须是英文字母,后面可以接英文字母、下划线、数字●区分大小写●变量名称长度应不超过31个字符2.预定义变量在MA TLAB中,有一些预先定义好的保留数值和函数供用户使用,这些特殊函数和数3.基本赋值语句MATLAB最基本的赋值语句结构为:变量名列表=表达式表达式可以用分号结束,也可以用逗号或换行号结束,但它们的含义不同。
如果用分号结束,则程序运行时等式左边的变量的运行结果将不在屏幕上显示出来,否则将把左边变量的运行结果全部显示出来。
4.工作空间的管理1)who和whos可以用who或whos命令来查看程序中使用的变量表,who命令只返回一个简单的变量列表,whos命令返回全部变量的变量名(Name)、大小(Size)、元素数(Element)、字节数(Byte)、表现密度(Density)、有无复数(Complex),除了对单个变量给出相应的信息外,还将给出整个变量空间的占用情况。
2)clear可以调用clear命令来删除其中的一些不再使用的变量,这样可以使得整个工作空间更简洁。
3)exist如果用户想查询在当前的工作空间中是否存在一个变量时,可以使用exist命令来实现,改函数的调用格式为:i=exist(‘A’);返回值i表示变量名存在的形式,含义如下:i=1:表示在当前工作空间中存在一个变量名为A的矩阵i=2:表示在MA TLAB的工作路径下存在一个名为A.m的文件i=3:表示在MA TLAB的工作路径下存在一个名为A.mex的文件i=4:表示存在一个编译号的名为A.m的SIMULINK文件i=5:表示存在一个MATLAB函数A( )i=0:表示不存在和A有关的变量和文件4)size( )、length( )、ndims( )size( )返回矩阵的行数和列数length( )返回矩阵行数和列数的最大值ndims( )给出矩阵的维数5.字符串在MA TLAB中,字符串是用单撇号括起来的字符序列。
第1章控制系统计算机辅助设计概述第2章 MATLAB语言程序设计基础第3章线性控制系统的数学模型第4章线性控制系统的计算机辅助分析第5章 Simulink在系统仿真中的应用第6章控制系统计算机辅助设计第1章控制系统计算机辅助设计概述【1】已阅,略【2】已阅,略【3】已经掌握help命令和Help菜单的使用方法【4】区别:MATLAB语言实现矩阵的运算非常简单迅速,且效率很高,而用其他通用语言则不然,很多通用语言所实现的矩阵运算都是对矩阵维数具有一点限制的,即使限制稍小的,但凡维数过大,就会造成运算上的溢出出错或者运算出错,甚至无法处理数据的负面结果【5】【8】(1)输入激励为正弦信号(2)输入激励为脉冲模拟信号(3)输入激励为时钟信号(4) 输入激励为随机信号(5) 输入激励为阶跃信号δ=0.3δ=0.05δ=0.7结论:随着非线性环节的死区增大,阶跃响应曲线的范围逐渐被压缩,可以想象当死区δ足够大时,将不再会有任何响应产生。
所以可以得到结论,在该非线性系统中,死区的大小可以改变阶跃响应的幅值和超调量。
死区越大,幅值、超调量将越小,而调整时间几乎不受其影响第2章 MATLAB语言程序设计基础【1】>> A=[1 2 3 4;4 3 2 1;2 3 4 1;3 2 4 1]A =1 2 3 44 3 2 12 3 4 13 24 1>> B=[1+4i,2+3i,3+2i,4+i;4+i,3+2i,2+3i,1+4i;2+3i,3+2i,4+i,1+4i;3+2i,2+3i,4+i,1+4i]B =1.0000 + 4.0000i2.0000 +3.0000i 3.0000 + 2.0000i4.0000 + 1.0000i4.0000 + 1.0000i 3.0000 + 2.0000i 2.0000 + 3.0000i 1.0000 + 4.0000i2.0000 +3.0000i 3.0000 + 2.0000i4.0000 + 1.0000i 1.0000 + 4.0000i3.0000 + 2.0000i 2.0000 + 3.0000i4.0000 + 1.0000i 1.0000 + 4.0000i>> A(5,6)=5A =1 2 3 4 0 04 3 2 1 0 02 3 4 1 0 03 24 1 0 00 0 0 0 0 5∴若给出命令A(5,6)=5则矩阵A的第5行6列将会赋值为5,且其余空出部分均补上0作为新的矩阵A,此时其阶数为5×6【2】相应的MATLAB命令:B=A(2:2:end,:)>> A=magic(8)A =64 2 3 61 60 6 7 579 55 54 12 13 51 50 1617 47 46 20 21 43 42 2440 26 27 37 36 30 31 3332 34 35 29 28 38 39 2541 23 22 44 45 19 18 4849 15 14 52 53 11 10 568 58 59 5 4 62 63 1>> B=A(2:2:end,:)B =9 55 54 12 13 51 50 1640 26 27 37 36 30 31 3341 23 22 44 45 19 18 488 58 59 5 4 62 63 1∴从上面的运行结果可以看出,该命令的结果是正确的【3】>> syms x s; f=x^5+3*x^4+4*x^3+2*x^2+3*x+6f =x^5 + 3*x^4 + 4*x^3 + 2*x^2 + 3*x + 6>> [f1,m]=simple(subs(f,x,(s-1)/(s+1)))f1 =19 - (72*s^4 + 120*s^3 + 136*s^2 + 72*s + 16)/(s + 1)^5m =simplify(100)【4】>> i=0:63; s=sum(2.^sym(i))s =0615【5】>> for i=1:120if(i==1|i==2) a(i)=1;else a(i)=a(i-1)+a(i-2);endif(i==120) a=sym(a); disp(a); endend[ 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, , , , , 5, 1, 6, 7, 3, 70, 03, 73, 76, 49, , 074, 099, 173, 272, 2445, 3717, 6162, 9879, 6041, 55920, 81961, 37881, 19842, 106, 177565, 035288, 212853, 248141, 0460994, , 1170129, 1879264, 8065, , , , 00884757, , 0, 5, 6, 1, 0, 88, , 673, 58, 931, , 120, , 029, 4, 2, 9905, 3072, 2977, 46049, 69026, 15075, 40, 99176, 083277, 082453, 165730, 248183, 7576, 62096, , 4738105, 5814114, 9, 186333, , 284885, 9, 3488322, 9, 0, 0]【6】>>k=1;for i=2:1000for j=2:iif rem(i,j)==0if j<i, break;endif j==i, A(k)=i; k=k+1; break; endendendenddisp(A);Columns 1 through 132 3 5 7 11 13 17 19 23 29 31 37 41 Columns 14 through 2643 47 53 59 61 67 71 73 79 83 89 97 101 Columns 27 through 39103 107 109 113 127 131 137 139 149 151 157 163 167 Columns 40 through 52173 179 181 191 193 197 199 211 223 227 229 233 239 Columns 53 through 65241 251 257 263 269 271 277 281 283 293 307 311 313 Columns 66 through 78317 331 337 347 349 353 359 367 373 379 383 389 397 Columns 79 through 91401 409 419 421 431 433 439 443 449 457 461 463 467 Columns 92 through 104479 487 491 499 503 509 521 523 541 547 557 563 569 Columns 105 through 117571 577 587 593 599 601 607 613 617 619 631 641 643 Columns 118 through 130647 653 659 661 673 677 683 691 701 709 719 727 733 Columns 131 through 143739 743 751 757 761 769 773 787 797 809 811 821 823 Columns 144 through 156827 829 839 853 857 859 863 877 881 883 887 907 911 Columns 157 through 168919 929 937 941 947 953 967 971 977 983 991 997【7】说明:h和D在MATLAB中均应赋值,否则将无法实现相应的分段函数功能syms x; h=input(‘h=’); D=input(‘D=’);y=h.*(x>D)+(h.*x/D).*(abs(x)<=D)-h.*(x<-D)【10】function y=fib(k)if nargin~=1,error('出错:输入变量个数过多,输入变量个数只允许为1!');endif nargout>1,error('出错:输出变量个数过多!');endif k<=0,error('出错:输入序列应为正整数!');endif k==1|k==2,y=1;else y=fib(k-1)+fib(k-2);endend【13】【14】>> t=[-1:0.001:-0.2,-0.1999:0.0001:0.1999,0.2:0.001:1];y=sin(1./t);plot(t,y);grid on;【15】(1) >> t=-2*pi:0.01:2*pi;r=1.0013*t.^2;polar(t,r);axis('square')(2) >> t=-2*pi:0.001:2*pi;r=cos(7*t/2);polar(t,r);axis('square')(3) >> t=-2*pi:0.001:2*pi;r=sin(t)./t;polar(t,r);axis('square')(4) >> t=-2*pi:0.001:2*pi;r=1-cos(7*t).^3;polar(t,r);axis('square')【17】(1)z=xy>> [x,y]=meshgrid(-3:0.01:3,-3:0.01:3);z=x.*y;mesh(x,y,z);>> contour3(x,y,z,50);(1)z=sin(xy)>> [x,y]=meshgrid(-3:0.01:3,-3:0.01:3);z=sin(x.*y);mesh(x,y,z);>> contour3(x,y,z,50);第3章线性控制系统的数学模型【1】(1) >> s=tf('s');G=(s^2+5*s+6)/(((s+1)^2+1)*(s+2)*(s+4))Transfer function:s^2 + 5 s + 6--------------------------------s^4 + 8 s^3 + 22 s^2 + 28 s + 16(2) >> z=tf('z',0.1);H=5*(z-0.2)^2/(z*(z-0.4)*(z-1)*(z-0.9)+0.6)Transfer function:5 z^2 - 2 z + 0.2---------------------------------------z^4 - 2.3 z^3 + 1.66 z^2 - 0.36 z + 0.6Sampling time (seconds): 0.1【2】(1)该方程的数学模型>> num=[6 4 2 2];den=[1 10 32 32];G=tf(num,den)Transfer function:6 s^3 + 4 s^2 + 2 s + 2------------------------s^3 + 10 s^2 + 32 s + 32(2)该模型的零极点模型>> G=zpk(G)Zero/pole/gain:6 (s+0.7839) (s^2 - 0.1172s + 0.4252)-------------------------------------(s+4)^2 (s+2)(3)由微分方程模型可以直接写出系统的传递函数模型【5】(1) >> P=[0;0;-5;-6;-i;i];Z=[-1+i;-1-i];G=zpk(Z,P,8)Zero/pole/gain:8 (s^2 + 2s + 2)-------------------------s^2 (s+5) (s+6) (s^2 + 1)(2) P=[0;0;0;0;0;8.2];Z=[-3.2;-2.6];H=zpk(Z,P,1,'Ts',0.05,'Variable','q')Zero/pole/gain:(q+3.2) (q+2.6)---------------q^5 (q-8.2)Sampling time (seconds): 0.05【8】(1)闭环系统的传递函数模型>> s=tf('s');G=10/(s+1)^3;Gpid=0.48*(1+1/(1.814*s)+0.4353*s/(1+0.4353*s));G1=feedback(Gpid*G,1)Transfer function:7.58 s^2 + 10.8 s + 4.8--------------------------------------------------------------0.7896 s^5 + 4.183 s^4 + 7.811 s^3 + 13.81 s^2 + 12.61 s + 4.8 (2)状态方程的标准型实现>> G1=ss(G1)a =x1 x2 x3 x4 x5 x1 -5.297 -2.473 -2.186 -0.9981 -0.7598x2 4 0 0 0 0 x3 0 2 0 0 0 x4 0 0 2 0 0x5 0 0 0 0.5 0b =u1x1 2x2 0x3 0x4 0x5 0c =x1 x2 x3 x4 x5y1 0 0 0.6 0.4273 0.3799d =u1y1 0Continuous-time state-space model.(3)零极点模型>> G1=zpk(G1)Zero/pole/gain:9.6 (s^2 + 1.424s + 0.6332)--------------------------------------------------------(s+3.591) (s^2 + 1.398s + 0.6254) (s^2 + 0.309s + 2.707)【11】>> Ga=feedback(s/(s^2+2)*1/(s+1),(4*s+2)/(s+1)^2);Gb=feedback(1/s^2,50);G=3*feedback(Gb*Ga,(s^2+2)/(s^3+14))Transfer function:3 s^6 + 6 s^5 + 3 s^4 + 42 s^3 + 84 s^2 + 42 s---------------------------------------------------------------------------s^10 + 3 s^9 + 55 s^8 + 175 s^7 + 300 s^6 + 1323 s^5 + 2656 s^4 + 3715 s^3+ 7732 s^2 + 5602 s + 1400【13】c1=feedback(G5*G4,H3)=G5*G4/(1+G5*G4*H3)c2=feedback(G3,H4*G4)=G3/(1+G3*H4*G4)c3=feedback(c2*G2,H2)=c2*G2/(1+c2*G2*H2)=G3*G2/(1+G3*H4*G4+G3*G2*H1)G=feedback(G6*c1*c3*G1,H1)=G6*c1*c3*G1/(1+ G6*c1*c3*G1*H1)=G6*G5*G4*G3*G2*G1/(1+G3*H4*G4+G3*G2*H1+G5*G4*H3+G5*G4*H3*G3*H4*G4+G5*G4* H3*G3*G2*H1+G6*G5*G4*G3*G2*G1*H1)【14】>> s=tf('s');c1=feedback(0.21/(1+0.15*s),0.212*130/s);c2=feedback(c1*70/(1+0.0067*s)*(1+0.15*s)/(0.051*s),0.1/(1+0.01*s));G=(1/(1+0.01*s))*feedback(130/s*c2*1/(1+0.01*s)*(1+0.17*s)/(0.085*s),0.0044/(1+0.01*s)) Transfer function:0.004873 s^5 + 1.036 s^4 + 61.15 s^3 + 649.7 s^2 + 1911 s---------------------------------------------------------------------------4.357e-014 s^10 + 2.422e-011 s^9 +5.376e-009 s^8 +6.188e-007 s^7+ 4.008e-005 s^6 + 0.001496 s^5 + 0.03256 s^4 + 0.4191 s^3+ 2.859 s^2 + 8.408 s 第4章线性控制系统的计算机辅助分析【1】(1) >> num=[1];den=[3 2 1 2];G=tf(num,den);eig(G)ans =-1.00000.1667 + 0.7993i0.1667 - 0.7993i分析:由以上信息可知,系统的极点有2个是在s域的右半平面的,因此系统是不稳定的(2) >> num=[1];den=[6 3 2 1 1];G=tf(num,den);eig(G)ans =-0.4949 + 0.4356i-0.4949 - 0.4356i0.2449 + 0.5688i0.2449 - 0.5688i分析:由以上信息可知,系统的极点有2个是在s域的右半平面的,因此系统是不稳定的(3) >> num=[1];den=[1 1 -3 -1 2];G=tf(num,den);eig(G)ans =-2.0000-1.00001.00001.0000分析:由以上信息可知,系统的极点有2个是在s域的右半平面的,因此系统是不稳定的(4) >> num=[3 1];den=[300 600 50 3 1];G=tf(num,den);eig(G)ans =-1.9152-0.14140.0283 + 0.1073i0.0283 - 0.1073i分析:由以上信息可知,系统的极点有2个是在s域的右半平面的,因此系统是不稳定的(5) >> s=tf('s');G=0.2*(s+2)/(s*(s+0.5)*(s+0.8)*(s+3)+0.2*(s+2));eig(G)ans =-3.0121-1.0000-0.1440 + 0.3348i-0.1440 - 0.3348i分析:由以上信息可知,系统的所有极点都在s域的左半平面,因此系统是稳定的【2】(1) >> num=[-3 2];den=[1 -0.2 -0.25 0.05];H=tf(num,den,'Ts',0.5);abs(eig(H)')ans =0.5000 0.5000 0.2000分析:由以上信息可知,所有特征根的模均小于1,因此该系统是稳定的(2) >> num=[3 -0.39 -0.09];den=[1 -1.7 1.04 0.268 0.024];H=tf(num,den,'Ts',0.5);abs(eig(H)')ans =1.1939 1.1939 0.1298 0.1298分析:由以上信息可知,由于前两个特征根的模均大于1,因此该系统是不稳定的(3) >> num=[1 3 -0.13];den=[1 1.352 0.4481 0.0153 -0.01109 -0.001043];H=tf(num,den,'Ts',0.5);abs(eig(H)')ans =0.8743 0.1520 0.2723 0.2344 0.1230分析:由以上信息可知,所有特征根的模均小于1,因此该系统是稳定的(4) >> num=[2.12 11.76 15.91];den=[1 -7.368 -20.15 102.4 80.39 -340];H=tf(num,den,'Ts',0.5,'Variable','q');abs((eig(H))')ans =8.2349 3.2115 2.3415 2.3432 2.3432分析:由以上信息可知,所有特征根的模均大于1,因此该系统是不稳定的【3】(1) >> A=[-0.2,0.5,0,0,0;0,-0.5,1.6,0,0;0,0,-14.3,85.8,0;0,0,0,-33.3,100;0,0,0,0,-10];eig(A)ans =-0.2000-0.5000-14.3000-33.3000-10.0000分析:由以上信息可知,该连续线性系统的A矩阵的所有特征根的实部均为负数,因此该系统是稳定的(2)>>F=[17,24.54,1,8,15;23.54,5,7,14,16;4,6,13.75,20,22.5589;10.8689,1.2900,19.099,…-4-3.5-3-2.5-2-1.5-1-0.50x 10-6P ole-Zero Map Real Axis (seconds -1)I m a g i n a r y A x i s (s e c o n d s -1)21.896,3;11,18.0898,25,2.356,9];abs(eig(F)') ans =63.7207 23.5393 12.4366 13.3231 19.7275分析:由以上信息可知,该离散系统的F 矩阵的所有特征根的模均大于1,因此该系统是不稳定的 【4】>> A=[-3 1 2 1;0 -4 -2 -1;1 2 -1 1;-1 -1 1 -2]; B=[1 0;0 2;0 3;1 1];C=[1 2 2 -1;2 1 -1 2];D=[0 0;0 0];G=ss(A,B,C,D); tzero(G)pzmap(G)ans =-3.6124-1.2765结论:∴可以得到该系统的 零点为-3.6124、-1.2765 分析:由以上信息可知,【5】>> s=tf('s');Gc=sscanform(G,'ctrl') Go=sscanform(G,'obsv') a =x1 x2 x3 x4 x1 0 1 0 0 x2 0 0 1 0 x3 0 0 0 1 x4 -0.4 -1.4 -4.3 -4.3 b =u1 x1 0 x2 0 x3 0 x4 1 c =x1 x2 x3 x4 y1 0.4 0.2 0 0 d =u1 y1 0Continuous-time state-space model. a =x1 x2 x3 x4x1 0 0 0 -0.4x2 1 0 0 -1.4x3 0 1 0 -4.3x4 0 0 1 -4.3b =u1x1 0.4x2 0.2x3 0x4 0c =x1 x2 x3 x4y1 0 0 0 1d =u1y1 0Continuous-time state-space model.【9】(1)>> num=[18 514 5982 36380 122664 222088 185760 40320];den=[1 36 546 4536 22449 67284 118124 109584 40320];[R1,P1,K1]=residue(num,[den 0]);[R1,P1]ans =-1.2032 -8.0000-1.0472 -7.00000.2000 -6.00000.7361 -5.0000-2.8889 -4.00002.2250 -3.0000-2.0222 -2.00003.0004 -1.00001.0000 0>> [n,d]=rat(R1);sym([n./d]')ans =[ -379/315, -377/360, 1/5, 53/72, -26/9, 89/40, -91/45, 7561/2520, 1][阶跃响应的解析解]y(t)=(-379/315)*e-8t+(-377/360)*e-7t+(1/5)*e-6t+(53/72)*e-5t+(-26/9)*e-4t+(89/40)*e-3t+ (-90/45)*e-2t+(7561/2520)*e-t+1(2) >> num=[18 514 5982 36380 122664 222088 185760 40320];den=[1 36 546 4536 22449 67284 118124 109584 40320];[R2,P2,K2]=residue(num,den);[R2,P2]ans =9.6254 -8.00007.3306 -7.0000-1.2000 -6.0000-3.6806 -5.000011.5556 -4.0000-6.6750 -3.00004.0444 -2.0000-3.0004 -1.0000>> [n,d]=rat(R2);sym([n./d]')ans =[ 3032/315, 887/121, -6/5, -265/72, 104/9, -267/40, 182/45, -7561/2520][脉冲响应的解析解]y(t)=(3032/315)*e-8t+(887/121)*e-7t+(-6/5)*e-6t+(-265/72)*e-5t+(104/9)*e-4t+(-267/40)*e-3t+(182/45)*e-2t+(-7561/2520)*e-t(3) >> syms t;u=sin(3*t+5);Us=laplace(u)Us =(3*cos(5) + s*sin(5))/(s^2 + 9)>> s=tf('s');Us=(3*cos(5)+s*sin(5))/(s^2+9);num=[18 514 5982 36380 122664 222088 185760 40320];den=[1 36 546 4536 22449 67284 118124 109584 40320];G=tf(num,den); Y=Us*G;num=Y.num{1}; den=Y.den{1};[R3,P3,K3]=residue(num,den); [R3,P3]ans =1.1237 -8.00000.9559 -7.0000-0.1761 -6.0000-0.6111 -5.00002.1663 -4.0000-1.1973 - 0.0010i 0.0000 + 3.0000i-1.1973 + 0.0010i 0.0000 - 3.0000i-1.3824 -3.00000.8614 -2.0000-0.5430 -1.0000>> [n,d]=rat(R3);sym([n./d]')ans =[109/97, 282/295, -59/335, -965/1579, 951/439, - 449/375 + (18*i)/17981, - 449/375 - (18*i)/17981, -1663/1203, 317/368, -82/151]Linear Simulation Results Time (seconds)A m p l i t u d e [正弦信号时域响应的解析解]y(t)=(109/97)*e -8t +(282/295)*e -7t +(-59/335)*e -6t +(-965/1579)*e -5t +(-449/375)*e -4t +(-1663/1203)*e -3t +(317/368)*e -2t +(-82/151)*e -t -2.3947sin(3t)[输出波形]>> num=[18 514 5982 36380 122664 222088 185760 40320];den=[1 36 546 4536 22449 67284 118124 109584 40320]; G=tf(num,den); t=[1:.1:20]';u=sin(3*t+5); lsim(G,u,t);分析:由解析解可知,输出信号的稳态部分是振荡的,并且其幅值与相位始终 在到达稳态的时候保持不变,因此 右图所示的输出波形与解析解所得的结论是一致的【10】(1)因为PI 或PID 控制器均含有Ki/s 节,则当Kp →∞,即|e(t)|一环节后,如果要求|e(t)|→0(2)不稳定系统能用PI 或PID 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
第二讲M A T L A B语言目录一、M A T L A B语言基础 (3)§2.1.1、M A T L A B的数据 (3)1、数值表示方式 (3)2、数值显示格式 (3)3、永久变量 (4)§2.1.2、M A T L A B的运算符 (4)1、算术运算符 (4)2、关系运算符 (5)3、逻辑运算符 (5)§2.1.3、M A T L A B的函数 (5)1、基本函数 (5)2、自定义函数 (6)§2.1.4、M A T L A B的矩阵产生 (6)1、矩阵的几种样式 (6)2、直接用数据产生矩阵 (6)3、利用增量产生矩阵 (7)4、利用函数产生矩阵 (7)5、利用矩阵产生矩阵 (7)§2.1.5、M A T L A B的矩阵操作 (8)1、寻访矩阵中的数据 (8)2、修改数据 (8)3、插入、重排、提取、拉长、置空 (8)4、矩阵的规模 (8)二M A T L A B语言应用 (9)§2.2.1、矩阵运算 (9)(1)概述 (9)(2)矩阵的加减法 (9)(3)矢量积与转置 (10)(4)复数的共轭与转置 (11)(5)矩阵的乘法 (11)(6)矩阵的除法 (13)(7)矩阵的乘幂 (14)(8)解线性方程 (15)§2.2.2、多项式运算 (16)04-1(1)多项式的表示 (16)(2)多项式的值 (16)(3)多项式的根 (17)(4)多项式的系数 (17)(5)多项式的积: (18)(6)多项式的商: (18)(7)多项式的导数 (18)(8)多项式的曲线拟合 (19)§2.2.3、字符运算 (19)(1)字符数组 (19)(2)字符与数值的转换 (20)(3)字符串比较 (20)§2.2.4、符号运算 (21)(1)符号定义 (21)(2)因式分解 (21)(3)简化 (22)(4)反函数 (22)(5)求和 (23)(6)d i f f(f,v,n)-求导 (23)(7)i n t(f,v,a,b)-积分 (24)§2.2.5、N O T E B O O K操作 (24)04-2【正文】基本语句:[变量1,变量2,...]=表达式(参数1,参数2,...)常量3e8、[1,2;3,4]数据变量A=[1,2,3;4,5,6]永久变量p i、i算术运算符+、-、*、/表达式运算符关系运算符>、<、=逻辑运算符&、|、~内部函数s i n、c o s函数工具箱扩展函数i m r e a d自定义函数m y f一、M A T L A B语言基础§2.1.1、M A T L A B的数据1、数值表示方式M A T L A B环境下的数值(矩阵的元素)一般采用十进制,可以带小数点和正负号,以下数值都是合法的:5、+10、-20.56、0.0045、-1000.、1.3e-4、100e20、-0.023e-0122、数值显示格式M A T L A B内部数据运算都按双精度数据格式进行运算,不必指定数据格式。