第1章 流体的性质
- 格式:ppt
- 大小:2.32 MB
- 文档页数:33
第1章流体的力学性质根据现代的科学观点,物质可区分为五种状态:固态、液态、气态、等离子态和凝聚态,其中,固、液、气三态是自然界和工程技术领域中常见的。
从力学的角度看,固态物质与液态和气态物质有很大的不同:固体具有确定的形状,在确定的剪切应力作用下将产生确定的变形,而液体或气体则没有固定的形状,且在剪切应力作用下将产生连续不断的变形——流动,因而液体和气体又通称为流体。
应用物理学基本原理研究流体受力及其运动规律的学科被称为流体力学。
流体力学作为宏观力学的重要分支,与固体力学一样同属于连续介质力学的范畴。
本章将首先阐述流体连续介质模型,在此基础上讨论流体的力学特性。
1.1 流体的连续介质模型1.1.1流体质点的概念流体是由分子构成的,根据热力学理论,这些分子(无论液体或气体)在不断地随机运动和相互碰撞着。
因此,到分子水平这一层,流体之间总是存在着间隙,其质量在空间的分布是不连续的,其运动在时间和空间上都是不连续的。
但是,在流体力学及与之相关的科学领域中,我们感兴趣的往往不是个别分子的运动,而是大量分子的统计平均特性,如密度、压力和温度等,而且,为了准确地描述这些统计特性的空间分布,需要在微分即“质点”的尺度上讨论问题,为此,必须首先建立流体质点的概念。
建立流体质点的概念可借助于物质物理量的分子统计平均方法。
以密度为例,在流体中任取体积为的微元,其质量为,则其平均密度可表示为:(1-1)显然,为了描述流体在“质点”尺度上的平均密度,应该取得尽量地小,但另一方面,的最小值又必须有一定限度,超过这一限度,分子的随机进出将显著影响微元体的质量,使密度成为不确定的随机值。
因此,两者兼顾,我们采用使平均密度为确定值(与分子随机进出无关)的最小微元作为质点尺度的度量,并将该微元定义为流体质点,其平均密度就定义为流体质点的密度:(1-2)推广到一般,所谓流体质点就是使流体统计特性为确定值(与分子随机进出无关)的最小微元,而流体质点的密度、压力和温度等均是指内的分子统计平均值。
流体复习整理资料第一章 流体及其物理性质1.流体的特征——流动性:在任意微小的剪切力作用下能产生连续剪切变形的物体称为流体。
也可以说能够流动的物质即为流体。
流体在静止时不能承受剪切力,不能抵抗剪切变形。
流体只有在运动状态下,当流体质点之间有相对运动时,才能抵抗剪切变形。
只要有剪切力的作用,流体就不会静止下来,将会发生连续变形而流动。
运动流体抵抗剪切变形的能力(产生剪切应力的大小)体现在变形的速率上,而不是变形的大小(与弹性体的不同之处)。
2.流体的重度:单位体积的流体所的受的重力,用γ表示。
g 一般计算中取9.8m /s 23.密度:=1000kg/,=1.2kg/,=13.6,常压常温下,空气的密度大约是水的1/8003. 当流体的压缩性对所研究的流动影响不大,可忽略不计时,这种流体称为不可压缩流体,反之称为可压缩流体。
通常液体和低速流动的气体(U<70m /s )可作为不可压缩流体处理。
4.压缩系数:弹性模数:21d /d pp E N m ρβρ==膨胀系数:)(K /1d d 1d /d TVV T V V t ==β5.流体的粘性:运动流体内存在内摩擦力的特性(有抵抗剪切变形的能力),这就是粘滞性。
流体的粘性就是阻止发生剪切变形的一种特性,而内摩擦力则是粘性的动力表现。
温度升高时,液体的粘性降低,气体粘性增加。
6.牛顿内摩擦定律: 单位面积上的摩擦力为:3/g N m γρ=p V V p V V p d d 1d /d -=-=β21d 1d /d d p V m NV p pρβρ=-=h U μτ=内摩擦力为: 此式即为牛顿内摩擦定律公式。
其中:μ为动力粘度,表征流体抵抗变形的能力,它和密度的比值称为流体的运动粘度ν τ值既能反映大小,又可表示方向,必须规定:公式中的τ是靠近坐标原点一侧(即t -t 线以下)的流体所受的内摩擦应力,其大小为μ du/dy ,方向由du/dy 的符号决定,为正时τ与u 同向,为负时τ与u 反向,显然,对下图所示的流动,τ>0, 即t —t 线以下的流体Ⅰ受上部流体Ⅱ拖动,而Ⅱ受Ⅰ的阻滞。