SPSS数据统计方法的选择
- 格式:pdf
- 大小:136.75 KB
- 文档页数:3
数据分析的统计方法选择小结目录数据分析的统计方法选择小结 (1)目录 (1)●资料1 (2)完全随机分组设计的资料 (2)配对设计或随机区组设计 (3)变量之间的关联性分析 (4)●资料2 (5)1.连续性资料 (5)1.1两组独立样本比较 (5)1.2两组配对样本的比较 (5)1.3多组完全随机样本比较 (6)1.4多组随机区组样本比较 (6)2.分类资料 (6)2.1四格表资料 (6)2.2 2×C表或R×2表资料的统计分析 (7)2.3 R×C表资料的统计分析 (7)2.4 配对分类资料的统计分析 (7)●资料3 (8)一、两个变量之间的关联性分析 (8)二、回归分析 (9)●资料4 (9)一.统计方法抉择的条件 (9)1.分析目的 (10)2.资料类型 (10)3.设计方法 (11)4.分布特征及数理统计条件 (12)二.数据资料的描述 (12)1.数值变量资料的描述 (13)2.分类变量资料的描述 (13)三.数据资料的比较 (14)1.假设检验的基本步骤 (14)2.假设检验结论的两类错误 (15)3.假设检验的注意事项 (15)4.常用假设检验方法 (16)四.变量间的相关分析 (17)1.数值变量(计量资料)的关系分析 (18)2.无序分类变量(计数资料)的相关分析 (18)3.有序分类变量(等级资料)等级相关 (18)●资料1完全随机分组设计的资料一、两组或多组计量资料的比较1.两组资料:1)大样本资料或服从正态分布的小样本资料(1)若方差齐性,则作成组t检验(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验2.多组资料:1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。
如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。
SPSS常用分析方法操作步骤一、单变量单因素方差分析例题:某个年级有三个班,现在对他们的一次数学考试成绩进行随机抽(见下表),试在显著性水平0.005下检验各班级的平均分数有无显著差异(数据文件:数学考试成绩.sav)。
(1)建立数学成绩数据文件。
(2)选择“分析”→“比较均值”→“单因素方差”,打开单因素方差分析窗口,将“数学成绩”移入因变量列表框,将“班级”移入因子列表框。
(3)单击“两两比较”按钮,打开“单因素ANOV A两两比较”窗口。
(4)在假定方差齐性选项栏中选择常用的LSD检验法,在未假定方差齐性选项栏中选择Tamhane’s检验法。
在显著性水平框中输入0.05,点击继续,回到方差分析窗口。
(5)单击“选项”按钮,打开“单因素ANOV A选项”窗口,在统计量选项框中勾选“描述性”和“方差同质性检验”。
并勾选均值图复选框,点击“继续”,回到“单因素ANOV A选项”窗口,点击确定,就会在输出窗口中输出分析结果。
二、单变量多因素方差分析研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异(数据文件:粘虫.sav)。
(1)建立数据文件“粘虫.sav”。
(2)选择“分析”→“一般线性模型”→“单变量”,打开单变量设置窗口。
(3)分析模型选择:此处我们选用默认;(4)比较方法选择:在窗口中单击“对比”按钮,打开“单变量:对比”窗口进行设置,单击“继续”返回;(5)均值轮廓图选择:单击“绘制”按钮,设置比较模型中的边际均值轮廓图,单击“继续”返回;(6)“两两比较”选择,用于设置两两比较检验,本例中设置为“温度”和“湿度”。
三、相关分析调查了29人身高、体重和肺活量的数据见下表,试分析这三者之间的相互关系。
(1)建立数据文件“学生生理数据.sav”。
(2)选择“分析”→“相关”→“双变量”,打开双变量相关分析对话框。
(3)选择分析变量:将“身高”、“体重”和“肺活量”分别移入分析变量框中。
SPSS相关统计学指标SPSS(Statistical Package for the Social Sciences)是一款统计学软件,广泛用于社会科学领域的数据分析和统计建模。
在SPSS中,有很多常用的统计学指标可以用来描述和解释数据。
本文将介绍一些常见的SPSS相关统计学指标。
1. 平均数(Mean):平均数是一组数据的数值总和除以数据个数的结果。
通过计算平均数,可以了解数据的中心趋势。
2. 中位数(Median):中位数将一组数据按照大小排序,然后取中间位置的数值作为中位数。
对于偏态数据集,中位数通常更适合表示数据的中心位置。
3. 众数(Mode):众数是一组数据中出现次数最多的数值。
众数可以用来表示数据的最常见取值。
4. 标准差(Standard Deviation):标准差是一组数据的离散程度的度量指标。
标准差越大,表示数据的离散程度越大。
5. 方差(Variance):方差是一组数据的离散程度的度量指标,计算方法为每个数据值与平均数之差的平方的平均数。
6. 百分位数(Percentiles):百分位数将一组数据从小到大排序后,按百分比划分数据的位置。
例如,第50百分位数即为中位数。
7. 四分位数(Quartiles):四分位数将一组数据从小到大排序后,将数据划分为四个等份。
第一四分位数将数据划分为25%、第二四分位数为50%(即中位数)、第三四分位数为75%。
8. 偏态(Skewness):偏态用来衡量数据分布的对称性。
正偏态表示数据右偏,负偏态表示数据左偏。
9. 峰度(Kurtosis):峰度用来衡量数据分布的峰态或尖锐程度。
正峰度表示数据分布比较尖锐,负峰度表示数据分布比较平坦。
10. 相关系数(Correlation coefficient):相关系数衡量两个变量之间的线性关系强度和方向。
相关系数的取值范围为-1到1,绝对值越接近1表示关系越强。
11. 回归系数(Regression coefficient):对于回归分析,回归系数表示自变量对因变量的影响程度。
spss数据分析教程SPSS是一种广泛应用于社会科学研究和企业决策分析的统计软件。
它提供了一系列强大的数据分析功能,可以处理大规模数据集,进行描述性统计、假设检验、回归分析、因子分析等多种统计方法。
本篇文章将为您介绍SPSS的常见数据分析方法和操作步骤。
首先,使用SPSS进行数据分析的第一步是导入数据。
SPSS支持多种数据格式,包括Excel、CSV、SPSS文件等。
在导入数据时,您需要确保数据被正确地放置在变量中。
变量分为数值型和分类型两种类型,数值型变量包括连续变量和离散变量,而分类型变量则是一些名称或类别。
在导入数据之后,下一步是进行描述性统计分析。
描述性统计是对数据进行整体性的描述和总结。
在SPSS中,您可以通过点击“分析”选项卡下的“描述性统计”来进行描述性统计分析。
该功能可以计算出数据的均值、标准差、最小值、最大值等统计指标,并绘制出直方图、箱线图等图表,以帮助您更好地了解数据的分布特征。
此外,SPSS还提供了很多常见的数据分析方法,如假设检验和回归分析。
假设检验用于检验样本数据与总体结论之间是否存在显著差异。
在SPSS中,您可以通过点击“分析”选项卡下的“比较手段”来进行假设检验。
根据需要选择合适的检验方法,如t检验、方差分析等,并输入相关变量和组别。
SPSS将会计算出检验结果,并给出统计显著性水平。
回归分析用于研究因变量与一个或多个自变量之间的关系。
在SPSS中,您可以通过点击“分析”选项卡下的“回归”来进行回归分析。
在回归分析对话框中,您需要选择适当的回归方法,如线性回归、多元回归等,并输入相关变量。
SPSS将会给出回归模型的参数估计、显著性检验和拟合优度等指标,帮助您理解自变量对因变量的影响程度。
另外,SPSS还支持因子分析、聚类分析、判别分析等多种高级数据分析方法。
因子分析用于确定一组观测变量与一组潜在因子之间的关系,聚类分析用于将样本根据某些相似性指标分成不同的群组,判别分析用于确定哪些变量最能用于区分不同的组别。
使用SPSS进行统计数据分析第一章:介绍统计数据分析的重要性统计数据分析在各个领域中扮演着重要的角色。
它帮助研究者从大量数据中找出规律、验证假设,并作出科学决策。
为了有效地进行统计数据分析,SPSS(Statistical Package for the Social Sciences)是一个常用的统计分析软件。
本文将重点介绍使用SPSS进行统计数据分析的方法和步骤。
第二章:数据清理和准备在进行统计数据分析之前,首先需要进行数据清理和准备。
这包括检查数据的完整性、解决缺失数据和异常值等问题。
SPSS提供了一系列功能,如数据筛选、数据变换和替代值等,可以帮助我们进行数据清理和准备。
第三章:描述性统计分析描述性统计分析是对数据进行总结和描述的过程,目的是了解数据的基本情况。
SPSS提供了一系列描述性统计方法,如频数、平均值、标准差和百分位数等。
通过这些统计指标,我们可以获取数据的分布情况、中心位置和变异程度等重要信息。
第四章:推断性统计分析推断性统计分析是通过样本数据对总体进行推断的过程。
在SPSS中,我们可以使用各种假设检验方法进行推断性统计分析,如t检验、方差分析和回归分析等。
这些方法可以帮助我们验证研究假设,比较群体差异和预测未来趋势。
第五章:相关性分析相关性分析是研究变量之间关系的一种方法。
在SPSS中,我们可以使用相关矩阵和散点图等工具来分析变量之间的相关性。
此外,SPSS还提供了Pearson相关系数和Spearman等非参数相关系数的计算,用以衡量变量之间的线性关系和排序关系。
第六章:多变量分析多变量分析是一种用于处理多个自变量和因变量的方法。
SPSS 提供了多个多变量分析方法,如因子分析、聚类分析和多元方差分析等。
这些方法可以帮助我们探索多个变量之间的关系,并进行变量的降维和分类。
第七章:时间序列分析时间序列分析是研究随时间变化的数据的一种方法。
在SPSS 中,我们可以使用时间序列图、自相关图和平稳性检验等工具来分析时间序列数据的特征和趋势。
SPSS分析调查问卷数据的方法当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以p为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量﹑数据录入﹑统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍.Sp处理:第一步:定义变量我们知道在p中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为:1.请问你的年龄属于下面哪一个年龄段()以上为问卷中常见的单项选择题型的变量设置,下面将对一些特殊情况的变量设置也作一下说明.1.开放式题型的设置:诸如你所在的省份是_____这样的填空题即为开放题,设置这些变量的时候只需要将Value、Miing两项不设置即可.2.多选题的变量设置:这类题型的设置有两种方法即多重二分法和多重分类法,在这里我们只对多重二分法进行介绍.这种方法的基本思想是把该题每一个选项设置成一个变量,然后将每一个选项拆分为两个选项项,即选中该项和不选中该项.现在举例来说明在p中的具体操作.比如如下一例:请问您通常获取新闻的方式有哪些()1报纸2杂志3电视4收音机5网络在p中设置变量时可为此题设置五个变量,假如此题为问卷第三题,那么变量名分别为3_1、3_2、3_3、3_4、3_5,然后每一个选项有两个选项选中和不选中,只需在Value一项中为每一个变量设置成1=选中此项、0=不选中此项即可.使用该窗口,我们可以把一个问卷中的所有问题作为变量在这个窗口中一次定义。
第二步:数据录入Sp数据录入有很多方式,大致有一下几种:1.读取SPSS格式的数据2.读取E某cel等格式的数据3.读取文本数据(Fi某ed和Delimiter)4.读取数据库格式数据(分如下两步)(1)配置ODBC(2)在SPSS中通过ODBC和数据库进行但是对于问卷的数据录入其实很简单,只要在p的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下.1.在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案.在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了.第三步:统计分析有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析方法,即调用哪个统计分析过程,是得到正确分析结果的关键。
SPSS统计策略(12):多组率、构成⽐⽐较的统计⽅法(卡⽅和Fisher法)多组率、构成⽐⽐较的统计分析从第11⽂开始,介绍实验性分类数据结局的统计分析⽅法。
第11⽂介绍了两组⼆分类结局的⽐较,即两组率的⽐较,俗称四格表资料的统计分析。
分类数据除了2*2的交叉表之外,还有诸多其他形式,⽐如多组率的⽐较、2组构成⽐的⽐较、甚⾄多组构成⽐的⽐较。
它们数据结构更为复杂,虽都采⽤卡⽅检验为主要⽅法,但细节⽅⾯与两组率的分析上有所区别。
实例分析案例1:某医院⽤三种⽅案治疗急性⽆黄疸型病毒肝炎254例,观察结果见下表,问三种⽅案治疗急性⽆黄疸型病毒肝炎的有效率是否不同?数据详见Hepatitis.sav案例2:为了解⾎型分布与胃癌及消化性溃疡病的关系,某单位进⾏了调查,试⽐较各组⾎型构成有⽆差别?案例3:为了不同孩⼦的意外伤害,分别⽐较了有⾏为问题的⼉童和⽆⾏为问题的⼉童的数据,请问两组⼉童意外伤害类型的分布上有⽆差异?1案情分析案例1结局为⼆上述3个例⼦结局均为分类数据(效果、⾎型、意外伤害类型),汇总数据形成的三线表称为多⾏多列交叉表或者⾏列表多⾏多列交叉表或者⾏列表。
区别就在于,案例组多分类结局。
因此,第1个例⼦为多个率的⽐较,第2个例⼦为多个构成⽐的⽐较,第3个例⼦则是2个构分类结局,案例2为多分类结局,案例3则是2组多分类结局。
成⽐的⽐较。
2统计分析策略多⾏多列交叉表数据的分析,或者说多个率、构成⽐,乃⾄两个构成⽐的⽐较,四格表资料的分析策略⼀样,均可以考虑卡⽅和均可以考虑卡⽅和Fisher确切概率⽅法进⾏。
但是细节⽅⾯,与四格表资料的分析策略有所不同。
第⼀,多⾏多列交叉表分析没有校正卡⽅。
具体应⽤条件如下:1.不超过20%单元格的理论频数(期望频数)T < 5时,可使⽤卡⽅检验进⾏⽐较。
不超过20%的T < 5,卡⽅检验2.如果超过20%单元格的理论频数(期望频数)T < 5,或者⾄少⼀个T<1,此时采⽤的是Fisher确切概率法。
统计描述方法计量资料:采用SPSS 13.0进行数据分析,实验数据采用 X ±s表示,Shapiro-Wilk 对数据进行正态分布检验,非正态分布数据进行对数变换。
计量资料多组间差异用完全随机设计方差分析,根据Levene方差齐性检验,组间两两比较采用LSD 检验分析。
两组间计量资料差异比较采用t检验。
检验水准α=0.05。
计数资料:采用SPSS 13.0进行数据分析,应用卡方检验(χ2检验)分析(寄养家庭的自身素质、对犬的管教、培训犬接触的社会环境、人与犬的互动时间)四因素对(导盲犬培训成功率)的影响。
P<0.05为差异有统计学意义。
对于数据分析,我们的实验数据包括计量资料及计数资料两种。
其中,计量资料指连续的数据,通常有具体的数值,是用仪器、工具或其它定量方法对每个观察单位的某项标志进行测量,并把测量结果用数值大小表示出来的资料,一般带有度量衡或其它单位。
如检测小鼠体质量和肝质量,需要称重,通常以克为单位,测得许多大小不一的质量值;计数资料每个观察单位之间没有量的差别,但各组之间具有质的不同,不同性质的观察单位不能归入一组。
对这类资料通常是先计算百分比或率等相对数,需要时做百分比或率之间的比较,也可做两事物之间相关的相关分析。
我们常采用SPSS软件进行数据分析。
计量资料统计方法一、数据的整理在应用SPSS软件对数据进行分析之前,需将数据整理到Excel表格里,以p-ERK蛋白检测的数据为例(计量资料),如下图所示(附件1):实验数据分为三组(Wt组(1.00),P组(2.00),T组(3.00)),所有数字均保留两位有效数字。
标明组别和数据字样,以利于后期统计分析。
二、正态分布检验保存并关闭Excel,打开SPSS软件,打开保存的数据。
在对数据进行统计之前先进行正态分布检验,正态分布检验包括小样本Shapiro-Wilk检验(2000以下)或大样本Kolmogorov-Smirnv检验(2000以上)。
学习使用SPSS进行数据分析和统计在今天的数字化时代,数据统计和分析已经成为各个领域不可或缺的技能和技术。
学习使用SPSS进行数据分析和统计,可以帮助我们更加深入地了解数据,同时也可以为我们解决问题和做出决策提供帮助。
一、SPSS的基本概念和用途SPSS全称是“Statistical Product and Service Solutions”,是一种统计分析软件。
它可以用来对数据进行分析、建模和预测,支持多种数据类型,包括文本、数字、日期等。
同时,SPSS也提供了各种图表和报表来展示数据分析结果,方便我们更好地理解和使用数据。
二、SPSS的基本功能和操作1. 数据输入和清洗:在使用SPSS进行数据分析之前,我们需要将数据输入到SPSS中并进行数据清洗。
数据输入可以通过手动输入、复制粘贴、导入文件等方式实现,数据清洗则可以通过数据筛选、去重、去除缺失值等方式实现。
2. 数据分析和统计:SPSS提供了丰富的统计分析方法,包括描述性统计、方差分析、回归分析、聚类分析等。
我们可以根据不同的数据类型和研究需求选择不同的统计方法。
3. 图表展示和报表输出:SPSS提供了多种图表和报表样式,可以很方便地将统计结果展示出来。
我们可以使用SPSS自带的报表或自定义报表来实现。
三、学习SPSS的途径和方法1. 在线课程和教程:通过网络搜索“SPSS入门教程”或“SPSS在线课程”,可以找到很多教程和课程资源来学习SPSS的基本操作和分析方法。
例如,在Coursera和edX等平台上,有很多SPSS课程可供选择。
2. 书籍和教材:学习SPSS最基础的方法是通过购买SPSS的官方教材并进行学习。
SPSS出版了一些很好的教材,例如《SPSS统计分析方法》和《SPSS数据分析入门与进阶》等。
同时,也有其他基础统计学分析的书籍可以参考。
3. 工作中的实践:SPSS的使用需要结合实际问题进行操作,因此在工作中实践是很重要的学习途径。
SPSS数据分析的统计方法选择SPSS(Statistical Package for the Social Sciences)是一款广泛应用于社会科学领域的统计分析软件。
在进行数据分析时,选择合适的统计方法非常重要,因为不同的问题需要不同的统计方法来解决。
下面是一些常用的统计方法及其在SPSS中的应用。
1.描述统计:描述统计是对数据的基本特征进行汇总和整理的方法。
SPSS提供了丰富的描述统计方法,如变量的均值、中位数、标准差、最小值、最大值、分位数等。
2.t检验:t检验用于比较两个群体均值是否有显著差异。
SPSS中提供了独立样本t检验和配对样本t检验两种方式来进行t检验。
3.方差分析:方差分析用于比较多个群体均值是否有显著差异。
SPSS 中的一元方差分析可以用于比较一个因变量在一个自变量有多个水平时的均值差异。
4. 相关分析:相关分析用于研究两个变量之间的关系。
在SPSS中,可以通过计算Pearson相关系数或Spearman等级相关系数来进行相关分析。
5.回归分析:回归分析用于研究因变量与自变量之间的关系和预测。
SPSS中提供了多种回归方法,包括线性回归、逐步回归、逐级回归等。
6.卡方检验:卡方检验用于检验观察频数与期望频数之间的差异。
SPSS中提供了卡方检验方法,包括卡方独立性检验和卡方拟合度检验。
7.方差分析:方差分析(ANOVA)是一种用于比较多个组均值的统计方法。
在SPSS中,可以进行一元方差分析或多元方差分析来评估组间差异的显著性。
8. 非参数检验:非参数检验用于在不满足正态分布假设的情况下比较群体差异。
SPSS中提供了一些非参数检验方法,如Wilcoxon符号秩检验、Mann-Whitney U检验、Kruskal-Wallis H检验等。
9.因素分析:因素分析用于降维和提取潜在变量。
在SPSS中,可以进行主成分分析或因子分析来研究变量之间的相关结构。
10.聚类分析:聚类分析用于将相似的个体或因素分组。
SPSS的描述性分析操作步骤第一步:打开并输入数据
SPSS的打开方式有以上几种选择“打开现有的数据库”点击确定。
结果如下图显示。
第二步:在菜单栏里选择分析—描述统计—描述如下:选择左侧栏里需要统计的变量双击到右侧变量栏里。
如下
在右上角的选项里选择你需要的统计量:如下点击继续—确定—就可以得到数据量如下图所示
单样本的T检验在选项里分析—比较均值—单样本T检验如下图所示在右上角的选项里可以选择置信区间如下
点击继续—确定就可以得到我们想要的单样本t检验
心理1203班周昱衡
20120223189
2014年6月10号。
统计学分析与常用SPSS方法统计学分析是利用统计学方法对收集的数据进行分析和解释的过程。
它广泛应用于各个领域,包括社会科学、医学、工程学、经济学等等。
在统计学分析中,借助于计算机软件工具,如SPSS,可以更快速、准确地进行数据整理、统计分析和结果呈现。
本文将介绍统计学分析的一些常用方法和SPSS软件的使用。
统计学分析的基本步骤包括:数据清理和整理、描述性统计分析、推断性统计分析和结果呈现。
首先,数据清理和整理是确保数据的完整性和一致性的重要步骤。
它包括去除缺失值、异常值和离群值,并进行数据转换或缩放,以满足统计分析的要求。
描述性统计分析是对数据的总体特征进行描述的方法。
常见的描述性统计量有均值、中位数、众数、标准差等。
这些统计量可以帮助我们理解数据的分布、集中趋势和离散程度。
此外,描述性统计图也是展示数据特征的重要工具,如直方图、箱线图、散点图等。
推断性统计分析是通过从样本中得出结论来推断总体特征的方法。
常用的推断性统计方法包括假设检验和置信区间估计。
假设检验用于判断样本数据是否与一些假设相符。
其中,显著性水平是一个重要的概念,它表示在零假设成立的情况下,观察到的差异发生的概率。
在假设检验中,常用的方法有t检验、方差分析、相关分析、回归分析等。
置信区间估计是对总体特征的一个区间范围的估计。
它表示我们对总体特征的不确定性。
SPSS(Statistical Package for the Social Sciences)是一个功能强大的统计分析软件。
它提供了丰富的统计分析功能和用户友好的操作界面。
SPSS中常用的方法包括数据的导入和导出、数据整理和变换、描述性统计分析、推断性统计分析、因子分析和聚类分析等。
在SPSS中,数据的导入包括从Excel、文本文件或数据库中导入数据。
数据整理和变换功能包括去除无效数据、添加变量、生成新变量和数据的转换等。
描述性统计分析功能可以计算数据的均值、中位数、标准差、众数、偏度和峰度等统计量,并展示相关的频数分布、累积百分比和分布图。
SPSS多项选择问题处理方法 多项选择题是定量问卷调查中常见的封闭式选择题,这种选择题的出现可以在确定的范围内更多的考察被调研对象的看法。
在针对消费者的调研中,这种选择题多是出现在针对品牌知名度,包括提示前知名度、第一提及率,提示后知名度的分析中。
î常见的分析方法一般的研究分析手段主要应用包括EXCEL与SPSS在内的频次分析,然后再将在不同数据字段同一类选项数据进行加总,然后再以被调研对象的总体数量为基数,二者相除来得到多项选择题中各选项在总体中的占有率,这种各选项占有率的加总大于1。
例如某类产品品牌知名度调查中,关于该类产品您能想起哪些品牌?01 品牌A 02品牌B 03品牌C 04品牌D 05品牌E 06品牌F 07其它品牌_____该问题在数据字段设计时最少要设计10个字段以供数据录入与分析。
按上面的数据分析方法,先在这10个字段中进行分别的频次计算,然后进行加总再除以总基数,得到该选项的总体占有比率。
以A选项为例:(01字段中A的占有率+02字段中A的占有率+ …… +06字段中A的占有率)/被调对象总数=A的占有率以此类推分别计算出其它品牌的占有率,频次计算次数与分类加和计算次数比较繁杂,其工作量在被选项较少时还算省事,但当被选项数量在十几个、二十几个甚至三十几个时,该分析方法则极大降低了分析人员的工作效率。
î高效率数据分析方法运用SPSS重组再分析的数据方法将极大提高数据分析效率并降低人为计算失误。
在SPSS数据库中运用 “Multiple Response”对多组数据进行组合再定义,这样会针对每个单一选择题定义出一个新的字段组,在新字段组中对变量区间进行定义,再针对新字段组进行频次分析。
当完成单一字段设置后,可运用程序段对其它多项选择题进行再利用分析,这样可以大大提高多项选择题数据分析效率。
分析程序例举:**************MULT RESPONSEGROUPS=$tsh '新字段组名称' (var00018 var00019 var00020 var00021var00022 var00013 var00014 var00015 var00016 var00017 (1,111))/FREQUENCIES=$tsh .*************多重应答数据深度分析方法及其SPSS操作多重应答数据深度分析方法及其SPSS操作出处:零点研究咨询集团 发布日期:2007年06月21日 15:39多重应答(Multiple Response),又称多选题,是市场调查研究中十分常见的数据形式。