薛薇_《SPSS统计分析方法及应用》第二章__数据录入与数据获取
- 格式:pptx
- 大小:412.79 KB
- 文档页数:10
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择“元素”菜单→选择总计拟合线→选择线性→应用→再选择元素菜单→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第2章SPSS数据文件的建立和管理1、SPSS中有哪两种基本的数据组织形式?各自的特点和应用场合是什么?SPSS中两个基本的数据组织方式:原始数据的组织方式和计数数据的组织方式。
●原始数据的组织方式:待分析的数据是一些原始的调查问卷数据,或是一些基本的统计指标。
●计数数据的组织方式:所采集的数据不是原始的调查问卷数据,而是经过分组汇总后的数据。
2、什么是SPSS的个案?什么SPSS的变量?个案:在原始数据的组织方式中,数据编辑器窗口中的一行称为一个个案或观测。
变量:数据编辑器窗口中的一列。
3、在定义SPSS数据结构时,默认的变量名和变量类型是什么?如果希望增强SPSS统计分析结果的易读性,还需要对数据结构的哪些方面进行必要说明?默认的变量名:VAR------;默认的变量类型:数值型。
变量名标签和变量值标签可增强统计分析结果的可读性。
4、收集到以下关于两种减肥产品试用情况的调查数据,请问在SPSS中应如何组织该份资料?产品类型体重变化情况明显减轻无明显变化第一种产品27 19第二种产品20 33问:在SPSS中应如何组织该数据?数据文件如图所示:5、什么是SPSS的用户缺失值?为什么要对用户缺失值进行定义?如何在SPSS中指定用户缺失值?缺失值分为用户缺失值(User Missing Value)和系统缺失值(System MissingValue)。
用户缺失值指在问卷调查中,将无回答的一些数据以及明显失真的数据当作缺失值来处理。
用户缺失值的编码一般用研究者自己能够识别的数字来表示,如“0”、“9”、“99”等。
系统缺失值主要指计算机默认的缺失方式,如果在输入数据时空缺了某些数据或输入了非法的字符,计算机就把其界定为缺失值,这时的数据标记为一个圆点“•”。
在变量视图中定义。
6、从计量尺度角度看,变量包括哪三种主要类型?请各举出一个相应的实际数据。
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy 导入X轴,将sex导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑在图表编辑器中,选择“元素”菜单→选择总计拟合线→选择线性→应用→再选择元素菜单→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
SPSS统计分析方法及应用《SPSS统计分析方法及应用(第三版)》是一本介绍SPSS软件统计分析方法和应用的专业书籍。
它详细介绍了SPSS的基本操作、数据准备、数据分析方法、结果解释和报告编写等内容,旨在帮助读者掌握SPSS软件的使用和常见统计分析方法的运用。
第二部分详细介绍了SPSS数据准备的方法和技巧。
它包括数据清洗、变量定义和分组、数据变换和缺失值处理等内容。
通过学习这些方法,读者可以了解如何对原始数据进行清洗和预处理,以适应后续的分析需求。
第三部分介绍了常见的统计分析方法和应用。
它包括描述性统计、推断统计、相关分析、方差分析、回归分析和因子分析等内容。
通过学习这些方法,读者可以了解不同统计分析方法的原理和适用条件,并掌握如何使用SPSS软件进行分析。
第四部分介绍了SPSS结果解释的方法和技巧。
它包括结果解释的基本原则、各种统计指标的解读和报告编写的要点等内容。
通过学习这些方法,读者可以正确理解统计分析结果,并将结果编写成符合学术规范的报告。
第五部分介绍了SPSS在实际研究中的应用。
它包括问卷调查数据分析、实验设计和数据分析、社会调查数据分析等内容。
通过学习这些应用案例,读者可以了解如何将SPSS软件应用到具体的研究项目中,并掌握相关的分析方法和技巧。
第六部分是对SPSS软件使用的一些进阶技巧和扩展功能的介绍。
它包括数据的图表展示、高级统计分析方法、数据挖掘和预测等内容。
通过学习这些技巧和功能,读者可以进一步提高SPSS软件的使用水平,并拓展统计分析的应用范围。
总之,《SPSS统计分析方法及应用(第三版)》是一本系统、全面且实用的SPSS统计分析教材,适用于统计学、社会科学、医学、教育学等相关专业的学生和研究人员。
通过学习本书,读者可以掌握SPSS软件的基本操作和常见统计分析方法的应用,从而提高数据分析的能力和水平。
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第9章SPSS的线性回归分析1、利用第2章第9题的数据,任意选择两门课程成绩作为解释变量和被解释变量,利用SPSS 提供的绘制散点图功能进行一元线性回归分析。
请绘制全部样本以及不同性别下两门课程成绩的散点图,并在图上绘制三条回归直线,其中,第一条针对全体样本,第二和第三条分别针对男生样本和女生样本,并对各回归直线的拟和效果进行评价。
选择fore和phy两门成绩体系散点图步骤:图形→旧对话框→散点图→简单散点图→定义→将fore导入Y轴,将phy导入X轴,将sex导入设置标记→确定。
接下来在SPSS输出查看器中,双击上图,打开图表编辑→点击子组拟合线→选择线性→应用。
分析:如上图所示,通过散点图,被解释变量y(即:fore)与解释变量phy有一定的线性关系。
但回归直线的拟合效果都不是很好。
2、请说明线性回归分析与相关分析的关系是怎样的?相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
线性回归分析是相关性回归分析的一种,研究的是一个变量的增加或减少会不会引起另一个变量的增加或减少。
3、请说明为什么需要对线性回归方程进行统计检验?一般需要对哪些方面进行检验?检验其可信程度并找出哪些变量的影响显著、哪些不显著。
主要包括回归方程的拟合优度检验、显著性检验、回归系数的显著性检验、残差分析等。
数据分析与软件应用第二讲SPSS统计软件基本操作及数据文件的整理SPSS统计软件是一款功能强大的数据分析工具,它提供了各种统计方法和分析技术,可以帮助用户进行数据处理、数据分析和结果展示等工作。
本文将介绍SPSS统计软件的基本操作和数据文件的整理方法。
一、SPSS统计软件基本操作:1. 导入数据:在SPSS软件中,可以通过多种方式导入数据,如手动输入数据、从Excel文件中导入数据、从文本文件导入数据等。
选择合适的导入方式,并根据导入数据的特点进行设置和调整。
2.数据清洗:导入数据后,需要对数据进行清洗,包括删除重复数据、删除无效数据、处理缺失数据等。
清洗数据可以提高数据分析的准确性。
4.数据转换:SPSS软件提供了多种数据转换的功能,如变量重编码、变量分组、变量排序等。
根据具体需求,可以选择合适的数据转换方法,对数据进行必要的处理和转换。
5.数据分析:SPSS软件提供了丰富的统计方法和分析技术,可以进行描述统计、频数分析、相关分析、回归分析、因子分析等。
选择合适的数据分析方法,对数据进行统计和分析,得出结论和结果。
6.结果展示:在SPSS软件中,可以将数据分析的结果进行展示和输出,如制作图表、生成报告、导出数据等。
通过合适的结果展示方式,可以直观地呈现数据分析的结果和结论。
二、数据文件的整理:在进行数据分析之前,需要对数据文件进行整理,以便于后续的数据处理和分析。
数据文件的整理主要包括以下几个步骤:1.数据收集:首先需要收集相关的数据,可以通过问卷调查、实验数据、实际观察等方式进行数据收集。
收集的数据应具备一定的代表性和可靠性。
2.数据录入:将收集到的数据进行录入,可以手动录入或者通过扫描仪等设备进行自动录入。
在录入过程中,需要注意录入的准确性和一致性。
3.数据清洗:在数据录入之后,需要对数据进行清洗,包括删除重复数据、删除无效数据、处理缺失数据等。
清洗数据可以提高数据的质量和准确性。
4.数据检查:对清洗后的数据进行检查,确保数据的有效性和完整性。
《统计分析与S P S S的应用(第五版)》课后练习答案(第4章)(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第4章SPSS基本统计分析1、利用第2章第7题数据采用SPSS频数分析,分析被调查者的常住地、职业和年龄分布特征,并绘制条形图。
分析——描述统计——频率,选择“常住地”,“职业”和“年龄”到变量中,然后,图表——条形图——图表值(频率)——继续,勾选显示频率表格,点击确定。
Statistics户口所在地职业年龄N Valid282282282Missing000户口所在地FrequencyPercent ValidPercentCumulativePercentVali d 中心城市200边远郊区82Total282职业FrequencyPercent ValidPercentCumulativePercentVali d 国家机关24商业服务业54文教卫生18公交建筑业15经营性公司18学校15一般农户35种粮棉专业户4种果菜专业户10工商运专业户34退役人员17金融机构35现役军人3 Total282年龄Frequency Percent ValidPercentCumulativePercentVali d 20岁以下4 20~35岁146 35~50岁91 50岁以上41 Total282分析:本次调查的有效样本为282份。
常住地的分布状况是:在中心城市的人最多,有200人,而在边远郊区只有82人;职业的分布状况是:在商业服务业的人最多,其次是一般农户和金融机构;年龄方面:在35-50岁的人最多。
由于变量中无缺失数据,因此频数分布表中的百分比相同。
2、利用第2章第7题数据,从数据的集中趋势、离散程度以及分布形状等角度,分析被调查者本次存款金额的基本特征,并与标准正态分布曲线进行对比。