大学物理 狭义相对论 相对论性动量和能量
- 格式:ppt
- 大小:1.20 MB
- 文档页数:20
授课章节第4章 狭义相对论教学目的1. 理解爱因斯坦狭义相对论的两条基本原理及洛伦兹坐标、速度变换式;2. 掌握狭义相对论的时空观:即理解同时的相对性、长度的收缩和时间的膨胀,并能进行相关的计算;3. 了解狭义相对论动力学的几个结论及其具体应用。
教学重点、难点1. 正确地理解相对论的时空观;2. 掌握洛伦兹变换的物理意义;3. 理解长度收缩效应只发生在运动方向上;4. 理解“时间膨胀”效应是指运动着的钟比静止的钟慢;5. 在相对论动力学中,动能不能用221mv 进行计算,只能用202c m mc E K -=进行计算;6. 在经典物理中能量守恒律与质量守恒律彼此独立。
而在相对论中通过质能关系式把两个定律统一起来了。
即在相对论中能量守恒与质量守恒总是同时成立的。
教学内容 备注第四章 狭义相对论相对论研究的内容:研究物质的运动与空间、时间的联系。
狭义相对论:研究自然定律在所有惯性系中都表示为相同的形式(数学)问题。
广义相对论:研究自然定律在所有参照系中都表示为相同的形式(数学)问题。
§4.1 伽利略变换和经典力学时空观一、伽利略变换 经典力学时空观1、伽利略坐标变换方程:如图,两个参照系的坐标轴互相平行,参照系S '相对于参照系S 沿x 轴的正方向以速度u 运动,时间0='=t t 时、两坐标系的原点o 和o '重合。
则某一空—时点的坐标变换方程为tt zz y y utx x ='='='-=' 或 t t z z y y t u x x '='='='+'= (1)2、经典力学时空观伽利略坐标变换方程已经对时间、空间性质作了两条假设:(1)t t'=,t t '∆=∆,即时间间隔与参考系的运动状态无关;(2)L L '∆=∆,即空间长度与参考系的运动状态无关。
(同时测量棒两端点的坐标值),总之,时间和空间是彼此独立的,互不相关,并且不受物质和运动的影响,这就是经典力学的时空观,也称绝对时空观。
⼤学物理上册(第五版)重点总结归纳及试题详解第⼗五章狭义相对论基础第⼗五章狭义相对论基础⼀、基本要求1. 理解爱因斯坦狭义相对论的两个基本假设。
2. 了解洛仑兹变换及其与伽利略变换的关系;掌握狭义相对论中同时的相对性,以及长度收缩和时间膨胀的概念,并能正确进⾏计算。
3. 了解相对论时空观与绝对时空观的根本区别。
4. 理解狭义相对论中质量和速度的关系,质量和动量、动能和能量的关系,并能分析计算⼀些简单问题。
⼆、基本内容1.⽜顿时空观⽜顿⼒学的时空观认为,物体运动虽然在时间和空间中进⾏,但时间的流逝和空间的性质与物体的运动彼此没有任何联系。
按⽜顿的说法是“绝对空间,就其本性⽽⾔,与外界任何事物⽆关,⽽永远是相同的和不动的。
”,“绝对的,真正的和数学的时间⾃⼰流逝着,并由于它的本性⽽均匀地与任何外界对象⽆关地流逝着。
”以上就构成了⽜顿的绝对时空观,即长度和时间的测量与参照系⽆关。
2.⼒学相对性原理所有惯性系中⼒学规律都相同,这就是⼒学相对性原理(也称伽利略相对性原理)。
⼒学相对性原理也可表述为:在⼀惯性系中不可能通过⼒学实验来确定该惯性系相对于其他惯性系的运动。
3. 狭义相对论的两条基本原理(1)爱因斯坦相对性原理:物理规律对所有惯性系都是⼀样的,不存在任何⼀个特殊的(例如“绝对静⽌”的)惯性系。
爱因斯坦相对论原理是伽利略相对性原理(或⼒学相对性原理)的推⼴,它使相对性原理不仅适⽤于⼒学现象,⽽且适⽤于所有物理现象。
(2)光速不变原理:在任何惯性系中,光在真空中的速度都相等。
光速不变原理是当时的重⼤发现,它直接否定了伽利略变换。
按伽利略变换,光速是与观察者和光源之间的相对运动有关的。
这⼀原理是⾮常重要的。
没有光速不变原理,则爱因斯坦相对性原理也就不成⽴了。
这两条基本原理表⽰了狭义相对论的时空观。
4. 洛仑兹变换()--='='='--='2222211c u xc u t t z z y y c u ut x x (K 系->'K 系)()-'+'='='=-'+'=2222211c u x c u t t z z y y c u t u x x (K 系->'K 系)令u c β=,γ=①当0→β,γ=1得ut x x -=',,',','t t z z y y ===洛仑兹变换就变成伽利略变换。
狭义相对论中力学的基本方程全文共四篇示例,供读者参考第一篇示例:狭义相对论是物理学中的一个分支,描述了高速运动的物体和引力场中的物体之间的相互作用。
在狭义相对论中,力学是一个重要的研究领域,它涉及物体的运动和受力情况。
在狭义相对论中,力学的基本方程是描述物体受力和运动的数学公式。
本文将介绍狭义相对论中力学的基本方程。
我们需要了解狭义相对论的基本原理。
狭义相对论是由爱因斯坦在1905年提出的,它与经典力学和牛顿力学有着本质上的不同。
在狭义相对论中,时间和空间是相互联系的,物体的运动速度越快,时间的流逝速度就越慢。
质量也受速度影响,质量随着速度的增加而增加。
这些原理对力学方程的推导和理解具有重要意义。
在狭义相对论中,最基本的力学公式是质点的动力学方程,即狭义相对论的牛顿第二定律。
这个方程描述了物体的加速度与受力之间的关系。
在经典力学中,牛顿第二定律可以写成F=ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。
在狭义相对论中,这个公式需要进行修正,考虑到了速度的影响。
质点的动力学方程可以写成:F = dp/dt其中F是物体所受的合力,p是物体的动量,t是时间。
这个方程描述了力对物体动量的影响。
在狭义相对论中,动量与速度有关,动量可以表示为p=mv,其中m是物体的质量,v是物体的速度。
动力学方程可以进一步展开为:F = d(mv)/dt = m(dv/dt) + v(dm/dt)这个方程描述了力对速度的影响,考虑了速度的变化对质量的影响。
当物体的速度接近光速时,质量变化会导致动量的变化,从而影响物体的受力情况。
除了动力学方程,狭义相对论中还有能量方程和动量守恒定律。
能量方程描述了物体的能量与受力之间的关系,可以写成:E = mc^2其中E是物体的能量,m是物体的质量,c是光速。
这个方程描述了质量和能量之间的等价关系,也是相对论力学中的基本方程之一。
动量守恒定律描述了物体在瞬时碰撞过程中动量守恒的原理。
《大学物理下》重要知识点归纳第一部分一、简谐运动的运动方程: 振幅A : 取决于初始条件 角频率ω:反映振动快慢,系统属性。
初相位ϕ: 取决于初始条件二、简谐运动物体的合外力: (k : 比例系数) 简谐运动物体的位移:简谐运动物体的速度: 简谐运动物体的加速度: 三、旋转矢量法(旋转矢量端点在x 轴上投影作简谐振动)矢量转至一、二象限,速度为负矢量转至三、四象限,速度为正四、振动动能: 振动势能: 简谐振动总能量守恒.....: 五、平面简谐波波函数的几种标准形式:][)(cos o u x t A y ϕω+= ][2 cos o x t A ϕλπω+=0ϕ:坐标原点处质点的初相位 x 前正负号反映波的传播方向六、波的能量不守恒...! 任意时刻媒质中某质元的 动能 = 势能 !)(cos ϕω+=t A x202)(ωv x A +=Tπω2=mk =2ω)(cos ϕω+=t A x )(sin ϕωω+-==t A dtdxv )(cos 222ϕωω+-==t A dtx d a kxF -=221kx E p=)(cos 21 22 ϕω+=t A k pk E E E +=2 21A k =)(sin 2121 222ϕω+==t kA mv E ka,c,e,g 点: 能量最大! b,d,f 点: 能量最小!七、波的相干条件:1. 频率相同;2. 振动方向相同;3.相位差恒定。
八、驻波:是两列波干涉的结果波腹点:振幅最大的点 波节点:振幅最小的点相邻波腹(或波节)点的距离:2λ相邻波腹与波节的距离:λ九、光程:nr L = n:折射率 r :光的几何路程光程是一种折算..,把光在介质中走的路程折算成相同时间....光在真空中走的路程即光程,所以,与光程或光程差联系在一起的波长永远是真空..中的波长0λ。
十、光的干涉:光程差:),2,1,0(2)12(⋅⋅⋅=⎪⎩⎪⎨⎧→+±→±=∆k k k 干涉相消,暗纹干涉相长,明纹λλ十一、杨氏双缝干涉相邻两条明纹(或暗纹)的间距:λndd x '=∆ d ´: 缝与接收屏的距离 d : 双缝间距 λ:光源波长 n :介质的折射率十二、薄膜干涉中反射光2、3的光程差:*22122)2(sin 2λ+-=∆i n n dd : 膜的厚度等号右侧第二项*)2(λ由半波损失引起,当2n 在三种介质中最大或最小时, 有这一项,否则没有这一项。