大连理工大学精品课程-材料力学性能-第一章-金属断裂(3)
- 格式:pptx
- 大小:3.69 MB
- 文档页数:3
第一章 单向静拉伸力学性能 一、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
13.比例极限:应力—应变曲线上符合线性关系的最高应力。
14.解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。
晶体学平面--解理面,一般是低指数、表面能低的晶面。
15.解理面:在解理断裂中具有低指数,表面能低的晶体学平面。
16.静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。
一、填空:1.提供材料弹性比功的途径有二,提高材料的__________________________ ,或降低 ___________ 。
2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是_____________ 具有的普遍现象。
3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为 _______________ 与_______________ ;按照晶体材料断裂时裂纹扩展的途径,分为 _________________ 和________________ ;按照微观断裂机理分为 _____________ 和___________ ;按作用力的性质可分为_________ 和_________ 。
4•滞弹性是指材料在_______ 范围内快速加载或卸载后,随时间延长产生附加的 _________ 现象,滞弹性应变量与材料—、__________ 有关。
5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力_______ ;反向加载,规定残余伸长应力__________ 的现象。
消除包申格效应的方法有 ____________ 和____________ 。
6. _______________________________ 单向静拉伸时实验方法的特征是、、 _____________________________________ 必须确定的。
7.过载损伤界越_____ ,过载损伤区越—,说明材料的抗过载能力越强。
8.依据磨粒受的应力大小,磨粒磨损可分为___________________ 、___________ 、 _____________________ 三类。
9. _________________________________ 解理断口的基本微观特征为____ 、 _________________________________________ 和____________ 。
2011年“材料力学”授课记录大连理工大学工程力学系王博(副教授)关于课程:课程名称:材料力学课程简介:材料力学是变形体力学的重要基础分支之一,是一门为设计工程实际构件提供必要理论基础的重要技术基础课程,也是一门理论与实验相结合的课程。
材料力学的任务是研究杆件在承受各种荷载时的变形等力学性能。
主讲教师:王博授课对象:机械、船舶、汽车、能动、航天09,及重修,共计165人课程性质:必修总学时数:讲课6411年材料力学第一次课 2011-02-22 10:24材料力学一年讲一次,一上来还真不适应。
但相对去年第一次的那种不适应,感觉能好些。
并且有意识地控制了自己的节奏,增加了些严谨的元素。
难道跟自己年纪变大了有关?今年是第一次全校工科混着选材料力学,使得我一百五十多人的课堂里有好多专业的学生:机械、船舶、汽车、航空航天、能源动力等等。
这给讲课带来了些与以往不同的考虑,以往课堂上准备的实例都是偏机械的,现在这类环节上不自然的会多说几句。
再有,150多人,确实太多了。
这节课下次上的话,可能更该强调两个知识点(材料力学的任务、基本假设)的本质、由来和之间关系,要有更为准确严谨的力学和数学描述。
不知道能不能有更大的激情去认识新学生了,一个朋友还提醒我认识的人多了头会变大。
但其实对我来说记住更多学生的名字几乎是越来越有挑战了。
衰老啊,天敌!!尽力吧~11年材料力学第二次课 2011-02-26 10:46前言的第二次课,主要掌握内力截面法、以及应力(正应力、切应力)、应变(线应变、切应变)和四种基本变形。
授课中应该注意以下四点:1,陈述外力形式、内力的基本概念时,授课内容会略显枯燥。
因此应该尝试讲授时应用一些新颖的实例;这次课应用高跟鞋与平底鞋理论计算时的算例(源自季天健博士(英)《Seeing and Touching Structural Concepts》),说明分布力和集中力是抽象的力学模型。
2,应力是用以评判强度的力学指标,一方面要强调这是因为源于工程经验发现构件的破坏总是在分布内力集度最大的地方破坏,因此引出“应力”的概念;另一方面要说明这样的定义(所谓单位面积上的内力)就觉得在结构设计中要非常重视接触构件间连接面积较小的地方(往往这里也是最危险的)也就是说承受力的杆件截面积越小应力越高。
一、填空:1.提供材料弹性比功的途径有二,提高材料的,或降低。
2.退火态和高温回火态的金属都有包申格效应,因此包申格效应是具有的普遍现象。
3.材料的断裂过程大都包括裂纹的形成与扩展两个阶段,根据断裂过程材料的宏观塑性变形过程,可以将断裂分为与;按照晶体材料断裂时裂纹扩展的途径,分为和;按照微观断裂机理分为和;按作用力的性质可分为和。
4.滞弹性是指材料在范围内快速加载或卸载后,随时间延长产生附加的现象,滞弹性应变量与材料、有关。
5.包申格效应:金属材料经过预先加载产生少量的塑性变形,而后再同向加载,规定残余伸长应力;反向加载,规定残余伸长应力的现象。
消除包申格效应的方法有和。
6.单向静拉伸时实验方法的特征是、、必须确定的。
7.过载损伤界越,过载损伤区越,说明材料的抗过载能力越强。
8. 依据磨粒受的应力大小,磨粒磨损可分为、、三类。
9.解理断口的基本微观特征为、和。
10.韧性断裂的断口一般呈杯锥状,由、和三个区域组成。
11.韧度是衡量材料韧性大小的力学性能指标,其中又分为、和。
12.在α值的试验方法中,正应力分量较大,切应力分量较小,应力状态较硬。
一般用于塑性变形抗力与切断抗力较低的所谓塑性材料试验;在α值的试验方法中,应力状态较软,材料易产生塑性变形,适用于在单向拉伸时容易发生脆断而不能充分反映其塑性性能的所谓脆性材料;13.材料的硬度试验应力状态软性系数,在这样的应力状态下,几乎所有金属材料都能产生。
14. 硬度是衡量材料软硬程度的一种力学性能,大体上可以分为、和三大类;在压入法中,根据测量方式不同又分为、和。
15. 国家标准规定冲击弯曲试验用标准试样分别为试样和试样,所测得的冲击吸收功分别用、标记。
16. 根据外加压力的类型及其与裂纹扩展面的取向关系,裂纹扩展的基本方式有、和。
17. 机件的失效形式主要有、、三种。
18.低碳钢的力伸长曲线包括、、、、断裂等五个阶段。
19.内耗又称为,可用面积度量。
第1章材料力学的基本概念 2、轴向拉伸及压缩 3、剪切 4、扭转 5、弯曲内力6、弯曲应力 7、弯曲变形 8、应力状态理论和强度理论 9、组合变形 10、压杆稳定11、能量法 1 2、静不定系统 13动栽荷 14、疲劳《材料力学》教学大纲(4.5 学分,72 学时。
课堂教学64学时,实验教学8学时)适用专业:过程装备与控制工程(必修)材料力学是过程装备与控制工程专业(即专业目录修订前的化工设备与机械专业)的一门重要技术基础课。
它是机械设计、过程机械、成套装备优化设计、压力容器安全评估、典型过程设备设计等各门后续专业课程的基础,并在许多工程技术领域中有着广泛的应用。
本课程的任务是使学生掌握材料力学的基本概念、基本知识;训练学生对基本变形问题进行力学建模和基本计算的能力;使学生熟悉材料力学分析问题的思路和方法;培养学生自觉运用力学观点看待工程和日常生活中实际事物的意识。
目的在于为学习本专业相关后继课程打好力学基础。
二、课程内容、基本要求与学时分配1.引言。
材料力学基本概念、教学任务、研究方法以及背景知识介绍。
(2学时)2.轴向拉伸和压缩。
熟练掌握轴向拉伸与压缩的内力计算,截面法,轴力,轴力图。
轴向拉伸(压缩)时横截面及斜截面上的应力。
拉(压)杆的变形计算,胡克定律,叠加原理,杆系结点的位移计算。
了解拉压杆的应变能及应变能密度的概念,材料在拉伸和压缩时的力学性质,掌握拉(压)杆的强度条件。
(6学时)3.剪切。
熟练掌握剪切胡克定律,学会画剪力图。
掌握用剪切强度和挤压强度条件进行简单设计和实用计算。
(3学时)4. 扭转。
熟练掌握薄壁圆筒的扭转,外力偶矩,扭矩,扭矩图,等直圆杆扭转时横截面上的应力,切应力互等定理,等直圆杆扭转时的变形计算,了解斜截面上的应力及应变能计算,掌握强度条件和刚度条件的建立。
(4学时)5.弯曲内力。
熟练掌握平面弯曲的概念,指定截面的剪力和弯矩计算,剪力方程和弯矩方程,剪力图和弯矩图,剪力-弯矩与分布荷载之间的微分关系,叠加法做弯矩图。