2013年初一级数学竞赛试卷
- 格式:doc
- 大小:506.50 KB
- 文档页数:2
2013年全国初中数学竞赛试题及参考答案(广东省3月17日复试)一.选择题(5×7'=35')1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ).A .0B .1C .3D .5【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C .2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2116.-≤≤-t D 【分析】2023235352<<-⇒⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x .注意到15=x 时,只有4个整数解.所以2116152314-≤<-⇒<-≤t t ,本题选C 3.已知关于x 的方程xx x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4【分析】422222222+-=⇒--=-+-x x a xx x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍);ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍);再考虑等根:ⅲ)对04222=-+-a x x ,270)4(84=→=--=∆a a ,当21,272,1==x a . 故27,8,4=a ,21,1,1-=x 共3个.本题选C .4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( ).A .3B .4C .5D .6【分析】设ABC ∆底边BC 上的高为h ,则DE CF CF BC h 121244848====,)(2121212121h h DE h DE h DE S S BDE ADE +⋅⋅=⋅⋅+⋅⋅=+∆∆ 本题选D .6122121=⋅⋅=⋅⋅=DE DE h DE5.在分别标有号码2,3,4,...,10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是( ).41.A 92.B 185.C 367.D 【分析】9236811291214==+++=C C C P 本题选B .二.填空题(5×7'=35')6.设33=a ,b 是a 2的小数部分,则3)2+b (的值为 .【分析】考虑到33=a ,则33333332292,29,327982,93=+-==<<===b b a 则9)9()2333==+b (7.一个质地均匀的正方体的六个面上分别标有数1、2、3、4、5、6.掷这个正方体三次,则其朝上的面的数的和为3的倍数的概率是 .【分析】对第一次向上面为1时,后面两次所得数字与1的和是3的倍数有111,114,123,126,132,135,141,144,153,156,162,165共12种;对于首次掷得向上的面是2,3,4,5,6的,后面两次与首次的和为3的倍数是轮换对称的,故和为3的倍数共有612⨯,而总次数是666⨯⨯次,则其概率为31666612=⨯⨯⨯=P .8.已知正整数a 、b 、c 满足a +b 2-2c -2=0,3a 2-8b +c=0,则abc 的最大值为 .【分析】先消去c ,再配方估算.24166)8()121(621662222+=-++⇒=-++b a b b a a观察易知上式中3≤a ,故3,2,1=a ,经试算,2,1=a 时,b 均不是整数;当3=a 时,11,5=b ,于是有)61,11,3(),13,5,3(),,(=c b a ,故201361113max =⨯⨯=abc .9. 实数a 、b 、c 、d 满足:一元二次方程x 2+cx +d=0的两根为a 、b ,一元二次方程x 2+ax +b=0的两根为c 、d ,则所有满足条件的数组(a 、b 、c 、d )为 .【分析】由根与系数关系知b cd d ab d b a d c c b a ===⇒=++=++,,0,然后可得(a 、b 、c 、d )=(1,-2,1,-2)本题在化简过程中,总感觉还有,此处仅给出一组,好像不严谨,期待官方答案.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,园珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔.【分析】设4元的卖x 支,7元的卖y 支,则350,201374<+=+y x y x 4125031820124201374++-=⇒++-=⇒=+y y x y y x y x 令1441-=⇒=+k y k y ,则k k k x 7505)14(2503-=+--=,又350≤+y x ,即523151350147505≥−−→−≥⇒≤-+-∈k k k k N k ,207152414=-⨯≥-=k y 即他至少卖了207支圆珠笔.三.解答题(4×20'=80')11.如图,抛物线y =ax 2+bx -3,顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OB=OC=3OA .直线131+-=x y 与y 轴交于点D ,求∠DBC -∠CBE .【分析】易知4)1(3222--=--=x x x y ,)4,1()3,0()0,3(),0,1(---D C B A ,,,作EF ⊥CO 于F ,连CE ,易知△OBC 、△CEF 都是等腰直角三角形,则△CBE 是直角三角形.分别在Rt △OBD 、Rt △BCE 中运用正切定义,即有31232tan 31tan =====BC CE ,OB OD βα,则βα= 从而可得∠DBC -∠CBE=45º.12.如图,已知AB 为圆O 的直径,C 为圆周上一点,D 为线段OB 内一点(不是端点),满足CD ⊥AB ,DE ⊥CO ,E 为垂足,若CE =10,且AD与DB 的长均为正整数,求线段AD 的长.【分析】设圆O 半径为r ,则由相似或三角函数或射影定理可知,)10(1022-=⇒⋅=r DE OE CE DE ,又r r DE CE CD 10)10(10102222=-+=+=由相交弦定理(考虑垂径时)或连AC 、BC 用相似或三角函数,易知r CD BD AD 102==⋅①,而r BD AD 2=+②令y BD x AD ==,,①/②即155210-=⇒==+y x y r r y x xy ,显然有x y <<0,则10<<x y ,即1051150<<⇒<-<y y ,y 为正整数,故9,8,7,6=y ,又x 也为正整数,经逐一试算,仅当30,6==x y 这一组是正整数,故30=AD .13.设a 、b 、c 是素数,记c b a z b a c y a c b x -+=-+=-+=,,,当2,2=-=y x y z 时,a 、b 、c能否构成三角形的三边长?证明你的结论. 【分析】281102222a z a z z y z a z y cb a z b ac y +±-=⇒=-+−−−→−==+⇒⎩⎨⎧-+=-+= a 、b 、c 是素数,则z c b a =-+为整数,则1281+=+k a ,k 为正整数.化简整理后,有a k k 2)1(=+⎩⎨⎧=+==+==⇒=+==+=⇒3121,2(121121,1a k k )a a k k 非质数 2,332811-=−−→−=+±-=z a a z ⅰ)112,2529,9,3=⇒=-=⇒=-==b b z x x x y z ,c b a b =<=+=+=1720173,17不能围成三角形;ⅱ)是合数9,16,4,2====b x y z综上所述,以a 、b 、c 不能围成三角形.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数) .求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,...,a n ,满足对任意一个正整数m ,在a 1,a 2,...,a n 中都至少有一个为m 的“魔术数”.【分析】考虑到魔术数均为7的倍数,又a 1,a 2,...,a n 互不相等,不妨设n a a a <<<...21,余数必为1、2、3、4、5、6,0,设t k a i i +=7,(6,5,4,3,2,1,0;,...,3,2,1==t n i ),至少有一个为m 的“魔术数”.因为m a k i +⋅10(k 是m 的位数),是7的倍数,当6≤i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6中的6个;当7=i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当7=i 时,依抽屉原理,k i a 10⋅与m 二者余数的和至少有一个是7,此时m a k i +⋅10被7整除,即n =7.。
海南省2013初中数学竞赛初赛试题参考答案答案提示:4、由三角形外角大于任何一个不相邻的内角与∠ACB 小于180°可知90°<6x <180°,由此可得 15°<x <30°,故选择B .5、a 是质数,b 是奇数,且20132=+b a ,所以a 、b 必是一奇一偶,所以可求得a =2,b=2009,所以a +b +2=2013.6、由数列3、7、12、18、25……可判断存在的规律为:第①个数为3,第②个数为3+4,第③个数为3+4+5,第④个数为3+4+5+6,第⑤个数为3+4+5+6+7……如此可断定第⑩个数为3+4+5+……+12=75,故选择C .7、设两码头之间的航程为S ,船在静水中的速度为a ,水流的速度为b ,则船顺水所需的时间为ba S+船逆水所需的时间为b a S -,则船往返一次所需的时间为b a S ++b a S -=222b a aS -由此可判断船在静水中的速度不变与水流的速度总小于船在静水中的速度的条件下,水流的速度b 越大,a 2-b 2越小,船往返一次所需的时间为222b a aS-就越大,故选择A .8、由矩形AOBC 的面积为8,可求矩形PEOF的面积为2, 又点P 在第一象限,所以K=2, 故选择B .9、如图,分别以大的正方形中间”十”字所在的直线为对称轴可画出2、3两图,分别以正方形对角线所在直线为对称轴可画出4、5两图,再加上第1幅图,总共有5个符合条件的三角形,故选择A .10、若点M 在圆上,点M 与圆心A 的距离等于圆的半径2,容易判断点(2,0)是圆A 与X 轴正半轴的交点、点(0,-2)是圆A 与y 轴负半轴的交点,另外,可以通过构造直角三角形判断点(2,-2)与圆心A 的距离等于2,也可以用两点公式求出点(2,-2)与圆心A 的距离等于2,因此A 、B 、C 三个选项中的点均在圆上,而点(1,-2)与圆心A 的距离等于1,小于圆A 的半径,点(1,-2)不在圆上,故选择D .二、填空题(本大题满分40分,每小题5分)11、(3x -2y )212、5- 13、2 14、3 15、2<x <716、13.5 17、1或7 18、5 答案提示:12、55255252)52(55252552-=-=---=---13、由128421=⋅+x x 得 721222=⋅+x x 所以有 72)1(=++x x 所以 x 的值为2.因为关于x 的方程x 2-4x +a =0的两个实数根为x 1、x 2,由根与系数的关系得x 1+x 2=4,所以⎩⎨⎧=+=-4032121x x x x ,解得⎩⎨⎧==3121x x ,所以a =3. 15、构造右图,延长中线AD 到A ’,使AD=A ’D , 可证△ABD ≌△A ’CD ,设AD=x ,A A ’=2 x ,由三角形三边不等关系可得 9-5<2x <9+5,从而有2<x <7.16、设直线AB 的解释式为y =3x+b , 由题意可知直线AB 过点(-3、0),故b=9,所以直线AB 与y 轴的交点为(0,9),则直线AB 与坐标轴所围成的三角形的面积为3×9÷2=13.5平方单位.17、如图7,把线段AM 绕点A 画弧,可见N 、C 两点的距离存在两种情况:①点N 在边BC 上,②点N 在边CB 的延长线上;可以证明△ADM ≌△ABN ≌△ABN ’,所以有BN=BN ’=DM=3,所以N 、C 两点的距离是:1或7.18、提示:可证AE=DE ,BE=DE ,由此得到DE 的长是5.三、解答题(本大题满分30分,每小题15分) 19、解:(1)设种植园应向海口供应的黄帝蕉有x 千克,则向海口供应的香牙蕉有2x 千克,根据题意列方程得:2x +x =15000,解得:x =5000,则2x =10000所以种植园供应文昌市的香牙蕉应为12000-10000=2000千克,植园供应文昌市的黄帝蕉应为5000-2000=3000千克.(2)设应安排m 千克香牙蕉在海口市销售,则在海口市销售的黄帝蕉为(15000-m )千克;在文昌市销售的香牙蕉与黄帝蕉分别为(12000-m )千克、(m-7000)千克,则这批香蕉的销售收入y 与m 的函数关系式为:y=4.8m+5(15000-m )+3.6(12000-m )+4.2(m-7000) 即y=0.4m+88800 (7000≤m ≤12000)从函数关系式看m 的值越大,销售收入y 就越大,即香牙蕉应尽可能多地安排在海口市销售,所以若要使销售收入最大,需安排12000千克香牙蕉与3000千克黄帝蕉在海口市卖,安排5000千克黄帝蕉图7ACBDN N ’M ACBDA ’在文昌市卖,最大销售收入为y=0.4×12000+88800=93600(元) . 20、解:(1)设直线OC 的解析式为y=k x ,∵直线OC 过点C (1、1),∴k=1, ∴直线OC 的解析式为y=x ∵直线MN 与OC 平行,∴可设直线MN 的解析式为y=x+b , ∵直线y=x+b 过点B (1,0),∴b=-1,∴直线MN 的函数解析式为y=x-1(此题也可以通过求点B 、D 的坐标,再利用待定系数法求直线MN 的解析式) (2)当点P 在x 轴的上方时 ∵四边形AOBC 是正方形∴OB=BC ,∠BCD=∠ACB=90°,∠BCO=45° 又MN 与OC 平行∴∠CBD= ∠BCO=∠BDC= 45°,∴BC=OB=CD 由AC ∥OB 知AD ∥OB ∴∠OBP = ∠CDQ∵CQ ∥OP ∴∠OPB = ∠CQD∴△OBP ≌△CDQ同理可知,若点P 运动到x 轴的下方,△OBP 与△CDQ 依然全等 (3)①设点P 的横坐标为(a ,b )因为点P 在直线y=x -1上,则点P 的坐标可表示为(a ,a -1) 若四边形OPQC 为菱形,则有OP=OC=2作PF ⊥x 轴于点F ,在Rt △OPF 中有 OF 2+PF 2=OP 2即2)1(22=-+a a解得:2311+=a ,2312-=a 则2131-=b ,2132+-=b 即当四边形OPQC 为菱形时,点P 的坐标为(231+,213-)或(231-,213+-)②由①知点P 存在两种情况使四边形OPQC 为菱形,即点P 在第一象限与第三象限 ⅰ)当点P 在第一象限时(如点P 1),方法一(如图9A):过点C 作CH ⊥MN 于点H , 则△C HQ 是直角三角形,由(2)的证明可知△BCD 是等腰直角三角形,且 BC=OB=CD=1 ∴CH=22,若四边形OPQC 为菱形,则有CQ=OC=2,∴CH=21OC ∴∠CQH=30° ∴∠P 1OC= 30° 方法二(如图9B ):连接AB 交OC 于点G ,过点P 1作P 1H ⊥OC 于点H 则△OP 1H 是直角三角形,在正方形AOBC 中有AB ⊥OC ,又MN ∥OC ,∴∠BGH= ∠P 1HG=∠GB P 1= 90° ∴四边形P 1BGH 是矩形, 又四边形OPQC 为菱形∴P 1H=BG=21AB=21OC =21O P 1∴∠P 1OC= 30°ⅱ)当点P 在第三象限时(如点P 2),令x =0,则y=x -1=-1,即直线MN 与y 轴的交点E 的坐标为(0,-1) 则OE=OB ,则∠OEB=∠OBE= 45°则∠OEP 2=∠OBP 1= 135°又四边形OPQC 为菱形∴O P 2=O P 1 =OC ∴∠O P 2E=∠O P 1B ∴△O P 2E ≌△O P 1B (AAS) ∴∠E O P 2=∠B O P 1∵∠B O P 1=∠B O C-∠P 1 OC=45°-30°=15° ∴∠E O P 2=15°,∴∠P 2OC=150°综合以上论述可知,当四边形OPQC 为菱形时,∠POC 的度数为30°或150°。
2013年全国高中数学联合竞赛一试试题参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准.填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次. 一、填空题:本大题共8小题,每小题8分,共64分.1. 设集合{}2,0,1,3A =,集合{}2|,2B x x A x A =-∈-∉.则集合B 中所有元素的和为. 答案-5解 易知{}2,0,1,3B ⊆---,当2,3x =--时,222,7x -=--,有22x A -∉;而当0,1x =-时,222,1x -=,有22x A -∈.因此,根据B 的定义可知{}2,3B =--.所以,集合B 中所有元素的和为-5.2. 在平面直角坐标系xOy 中,点A B 、在抛物线24y x =上,满足4OA OB ⋅=-,F 是抛物线的焦点.则OFA OFB S s ∆∆⋅= . 答案2.解 点F 坐标为()1,0.设()11,A x y ,()22,B x y ,则2114y x =,2224y x =,故()2121212121416OA OB x x y y y y y y -=⋅=+=+ ,即()21218016y y +=,故128y y =-. 212121112224OFA OFB S S OF y OF y OF y y ∆∆⎛⎫⎛⎫⋅=⋅⋅⋅=⋅⋅= ⎪ ⎪⎝⎭⎝⎭.3. 在ABC ∆中,已知sin 10sin sin A B C =,cos 10cos cos A B C =,则tan A 的值为 .答案11.解 由于()()s i n c o s 10s i n s i n c o s c o s 10c o s 10c o s A A B C BC B C A -=-=-+=,所以sin 11cos A A =,故tan 11A =.4. 已知正三棱锥P ABC -底面边长为1,则其内切球半径为 .答案解 如图,设球心O 在面ABC 与面ABP 内的射影分别为H 和K ,AB 中点为M ,内切球半径为r ,则P K M 、、共线,P O H 、、共线,2PHM PKO π∠=∠=,且OH OK r ==,PO PH OH r =-=,MH AB ==PM =, 于是有1sin 5OK MH KPO PO PM ==∠==,解得r =.5. 设,a b 为实数,函数()f x ax b =+满足:对任意[]0,1x ∈,有()1f x ≤.则ab 的最大值为 . 答案14. 解 易知()()10a f f =-,()0b f =,则()()()()()()()()()()222111101001112444ab f f f f f f f ⎛⎫=⋅-=--+≤≤ ⎪⎝⎭.当()()2011f f ==±,即12a b ==±时,14ab =.故ab 的最大值为14.6. 从1,2,…,20中任取5个不同的数,其中至少有两个是相邻数的概率为 .答案232323解 设12345a a a a a <<<<取自1,2,…,20,若12345,,,,a a a a a 互不相邻,则123451123416a a a a a ≤<-<-<-<-≤,由此知从1,2,…,20中取5个互不相邻的数的选法与从1,2,…,16中取5个不同的数的选法相同,即516C 种.所以,从1,2,…,20中任取5个不同的数,其中至少有两个是相邻数BCHMAOKP的概率为5552016165520202321323C C C C C -=-=. 7. 若实数,x y满足x -=,则x 的取值范围是 .答案{}[]04,20 .解a =(),0b a b =≥,此时()22x y x y a b =+-=+,且条件中等式化为 2242a b a b +-=,从而,a b 满足方程()()()22215,0a b a b -+-=≥.如图所示,在aOb 平面内,点(),a b 的轨迹是以()1,2为圆心,,0a b ≥的部分,即点O 与弧 ACB 的并集.因此{}0⎡⎣ ,从而{}[]2204,20x a b =+∈ . 8. 已知数列{}n a 共有9项,其中191a a ==,且对每个{}1,2,,8i ∈ ,均有112,1,2i i a a +⎧⎫∈-⎨⎬⎩⎭,则这样的数列的个数为 . 答案491解 令()118i i ia b i a +=≤≤,则对每个符合条件的数列{}n a 有 88191111i i i i i a a b a a +=====∏∏,且()12,1,182i b i ⎧⎫∈-≤≤⎨⎬⎩⎭.○1 反之,由符合条件○1的8项数列{}n b 可唯一确定一个符合题设条件的9项数列{}n a .记符合条件○1的数列{}n b 的个数为N .显然()18ib i ≤≤中有偶数个12-,即2k 个12-;继而有2k 个2,84k -个1.当给定k 时,{}n b 的取法有22882k kk C C -种,易见k 的可能值只有0,1,2,所以22448684112815701491N C C C C =++=+⨯+⨯=.因此,根据对应原理,符合条件的数列{}n a 的个数为491二、 解答题:本大题共3个小题,共56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)给定正数数列{}n x 满足12n n S S -≥,2,3,n = ,这里1n n S x x =++ .证明:存在常数0C >,使得2n n x C ≥⋅,1,2,n = .解 当2n ≥时,12n n S S -≥等价于11n n x x x -≥++ .○1 …………4分对常数114C x =,用数学归纳法证明:2n n x C ≥⋅,1,2,n = .○2 …………8分1n =时结论显然成立.又2212x x C ≥=⋅.对3n ≥,假设2k k x C ≥⋅,1,2,,1k n =- ,则由○1式知()121n n x x x x -≥+++()21122n x C C -≥+⋅++⋅()223122222n n C C -=++++=⋅ ,所以,由数学归纳法知,○2式成立. …………16分10. (本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为()222210x y a b a b +=>>,12A A 、分别为椭圆的左、右顶点,12F F 、分别为椭圆的左、右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中两个点Q R 、满足11QA PA ⊥,22QA PA ⊥,11RF PF ⊥,22RF PF ⊥,试确定线段QR 的长度与b 的大小关系,并给出证明.解 令c ,则()1,0A a -,()2,0A a ,()1,0F c -,()2,0F c .设()00,P x y ,()11,Q x y ,()22,R x y ,其中2200221x y a b+=,00y ≠.由11QA PA ⊥,22QA PA ⊥可知()()1110100AQ A P x a x a y y ⋅=+++= , ○1 ()()2210100A Q A P x a x a y y ⋅=--+=○2 …………5分将○1、○2相减,得()1020a x x +=,即10x x =-,将其代入○1,得220100x a y y -++=, 故22010x a y y -=,于是22000,x a Q x y ⎛⎫-- ⎪⎝⎭.…………10分根据11RF PF ⊥,22RF PF ⊥,同理可得22000,x c R x y ⎛⎫-- ⎪⎝⎭. …………15分因此2222200000x a x c b QR y y y --=-=, 由于(]00,y b ∈,故QR b ≥(其中等号成立的充分必要条件是0y b =,即点P 为()0,b ±).…………20分11. (本题满分20分)求所有的正实数对(),a b ,使得函数()2f x ax b =+满足:对任意实 数,x y ,有()()()()f xy f x y f x f y ++≥.解 已知条件可转化为:对任意实数,x y ,有()()()()()22222axy b a x y b ax b ay b ++++≥++.○1 先寻找,a b 所满足的必要条件.在○1式中令0y =,得()()22b ax b ax b b ++≥+⋅,即对任意实数x ,有 ()()2120b ax b b -+-≥.由于0a >,故2ax 可取到任意大的正值,因此必有10b -≥,即01b <≤.…………5分在○1式中再令y x =-,得()()242ax b b ax b ++≥+,即对任意实数x ,有 ()()2422220a a xabx b b --+-≥.○2将○2的左边记为()g x ,显然20a a -=(否则,由0a >可知1a =,此时()()2222g x bx b b =-+-,其中0b >,故()g x 可取到负值,矛盾),于是 ()()()()22222222ab ab g x a a x b b a a a a ⎛⎫=---+- ⎪--⎝⎭ ()()22222011b b a a x a b a a ⎛⎫=--+--≥ ⎪--⎝⎭ 对一切实数x 成立,从而必有20a a ->,即01a <<. …………10分进一步,考虑到此时01b a >-,再根据()2201b g a b a =--≥-,可得22a b +≤.至此,求得,a b 满足的必要条件如下:01b <≤,01a <<,22a b +≤.○3 …………15分下面证明,对满足○3的任意实数对(),a b 以及任意实数,x y ,总有○1成立,即 ()()()()()222222,122h x y a a x y a b x y axy b b =-+-+++-对任意,x y 取非负值.事实上,在○3成立时,有()10a b -≥,20a a ->,()2201ba b a--≥-,再结合222x y xy +≥-,可得()()()()()()()()()2222222222,12222222011h x y a a x y a b xy axy b b a a x y abxy b b b b a a xy a b a a ≥-+--++-=-++-⎛⎫=-++--≥ ⎪--⎝⎭综上所述,所求的正实数对(),a b 全体为(){},|01,01,22a b b a a b <≤<<+≤.…………20分。
2013年全国高中数学联赛一试试题一.填空题:本大题共8小题,每小题8分,共64分。
1.设集合{}3,1,0,2=A ,集合{}A x A x xB ∉-∈-=22,,则集合B 中所有元素的和为2.在平面直角坐标系xOy 中,点A 、B 在抛物线x y 42=上,满足4-=⋅,F 是抛物线的焦点,则OFB OFA S S ∆∆⋅=3.在ABC ∆中,已知C B A C B A cos cos 10cos ,sin sin 10sin ⋅=⋅=,则A tan 的值为4.已知正三棱锥ABC P -的底面边长为1,高为2,则其内切球半径为5.设a 、b 为实数,函数b ax x f +=)(满足:对任意]1,0[∈x ,有1)(≤x f ,则ab 的最大值为6.从20,,2,1⋅⋅⋅中任取5个不同的数,其中至少有2个是相邻数的概率为7.若实数x ,y 满足y x y x -=-24,则x 的取值范围是8.已知数列{}n a 共有9项,其中191==a a ,且对每个{}8,,2,1⋅⋅⋅∈i 均有⎭⎬⎫⎩⎨⎧-∈+21,1,21i i a a ,则这样的数列的个数为二.解答题:本大题共3小题,共56分。
解答应写出文字说明、证明过程或演算步骤。
9.(本题满分16分)给定正数数列{}n x 满足,,3,2,21⋅⋅⋅=≥-n S S n n 这里n n x x S +⋅⋅⋅+=1. 证明:存在常数0>C ,使得⋅⋅⋅=⋅≥,2,1,2n C x n n10.(本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为)0(12222>>=+b a by a x ,21,A A 分别为椭圆的左、右顶点,21,F F 分别为椭圆的左右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中有两个点R Q ,满足22112211,,,PF RF PF RF PA QA PA QA ⊥⊥⊥⊥,试确定线段QR 的长度与b 的大小关系,并给出证明。
2013年全国初中数学联赛初赛试卷(娄底市) 时间:2013年3月7日一、选择题(7×4=28分) 1、下列计算准确的是 A 、23622a a a•= B 、3629(3)a a = C 、623aa a÷= D 、362()a a --=2、曾两度获得若贝尔(物理、化学)的居里夫人发现了镭这种放射性元素。
已知1kg 镭完全衰变后,放出的热量相当于375000kg 煤燃烧放出的热量。
估计地壳内含有100亿kg 镭,这些镭完全衰变后放出的热量相当于 kg 煤燃烧所放出的热量。
A 、133.7510⨯B 、143.7510⨯C 、153.7510⨯D 、163.7510⨯3、直线y=2x -5与2(4)3y x m m =++-(m 为任意实数)的交点不可能在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4、实数b 满足b<3 ,并且有实数a 使a <b 恒成立,则a 的取值范围是A 、小于或等于3的实数B 、小于3的实数C 、小于或等于-3的实数D 、小于-3的实数5、一块手表每小时比准确时间慢3分钟,若在清晨4::30时与准确时间对准,则当天上午该手表时间是10:50时,准确时间应该是A 、 11:10B 、11:09C 、 11:08D 、 11:076、若直角三角形的斜边长为c ,内切圆半径r ,则内切圆的面积与三角形的面积之比是A 、2rc rπ+ B 、rc rπ+ C 、2rc rπ+ D 、22rcrπ+7、我们将 1×2×3×…n 记作n !(读作n 的阶乘),如:2!=1×2, 3!=1×2×3, 4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+……+2013×2013!,则S 除以2014的余数是 A 、0 B 、1 C 、1007 D 、2013 二、填空题(7×4=28分) 8、函数2y x =+ 的自变量x 的取值范围是9、设12,x x 是方程20x k x ++= 的两个实数根,若恰好2211222k x x x x ++= 成立,则k 的值等于10、已知二函数2y bx c x=++ 的图象上有三个点(-1,1y ),(1,2y )(3,3y )。
2013年全国初中数学竞赛(海南赛区)数 学 试 卷(本试卷共4页,满分120分,考试时间:3月10日8:30——10:30)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1、3-x 的相反数是-6,那么x 的值为A .-3B .3C .6D .92、从甲、乙两名男生和A 、B 两名女生中随机选出一名男生和一名女生,则恰好选中甲男生和A 女生的概率是 A .21 B .43 C .81 D . 413、如图1,∠AOB =180°,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线, 则下列各角中与∠COD 的互补的是 A .∠COEB .∠AOCC .∠AOD D .∠BOD4、如图2,在Rt △ADB 中,∠D =90°,C 为AD 上一点,∠ACB =6x ,则x 值可以是A .10°B .20°C .30°D .40°5、已知a 是质数,b 是奇数,且20132=+b a ,则a +b +2的值为A .2009B .2011C .2013D .20156、有这样的数列:3、7、12、18、25……,则第10个数是A .65B .70C .75D .807、轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大 (水流的速度总小于船在静水中的速度) 时,船往返一次所用的时间将图1ACBDEO图2CA .增多B .减少C .不变D .以上都有可能8、如图3,矩形AOBC 的面积为8,反比例函数xky =的图象经过矩形的对角线的交点P ,则反比例函数的解析式是A .x y 8=B .x y 2=C .x y 4=D .x y 1=9、 图4是由大小一样的小正方形组成的网格,△ABC 的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落在小正方形的顶点上,且与△ABC 成轴对称的三角形共有 A .5个 B .4个C .3个D .2个10、如图5是半径为2的圆,圆心A 坐标为(1,-1),点M 是圆上的动点,则点M 的坐标不可能为 A .(2,0)B .(0,-2)C .(2,-2)D .(1,-2)二、填空题(本大题满分40分,每小题5分)11、分解因式:9x 2-12xy +4y 2=_________________. 12、 计算:5252552---=__________.13、若128421=⋅+x x ,则x 的值为__________.14、已知关于x 的方程x 2-4x +a =0的两个实数根x 1、x 2满足3 x 1-x 2=0,则a =________. 15、在△ABC 中,AB =5,AC =9,则BC 边上的中线AD 的长的取值范围是__________. 16、如图6,在平面直角坐标系中,直线AB 由直线y =3x 沿x 轴向左平移3个单位长度所得,则直线AB 与坐标轴所围成的三角形的面积为__________. 17、如图7,已知正方形ABCD 中,点M 在边CD 上,且DM =3, MC =1,把线段AM 绕点A 顺时针旋转,使点M 落在BC 所在 的直线上的点N 处,则N 、C 两点的距离为__________. 18、如图8,在△ABC 中,AB =10, ∠BAC 的平分线图4C图7 ACBD M 图8ACBDEAD交BD于点D,且BD⊥AD,DE∥AC交AB于E,则DE的长是__________.三、解答题(本大题满分30分,每小题15分)19、海南省某种植园收获香蕉20000千克,其中香牙蕉12000千克、黄帝蕉8000千克,准.备.运往海口与文昌销售;根据市场供需,海口需要香蕉15000千克,文昌需要香蕉5000千克,海口与文昌两地的香蕉售价如下表所示:(1)若该种植园供应海口市的香牙蕉与黄帝蕉的比是2:1,请问该种植园供应文昌市的香牙蕉与黄帝蕉各是多少千克?(2)若海口与文昌的香蕉都能在保质期内销售完,请你设计一种销售方案,使销售的收入最大,并估算出获得的最大销售收入.20、如图9,在平面直角坐标系xoy内,正方形AOBC的顶点A、O、B、C的坐标分别为(0,1)、(0,0)、(1,0)、(1、1),过点B的直线MN与OC平行,AC的延长线交MN于点D,点P是直线MN上的一个动点,CQ∥OP交MN于点Q.(1)求直线MN的函数解析式;猜想:若点P运动到x轴的下方时,△OBP与△CDQ是否依然全等?((3)当四边形OPQC为菱形时,①请求出点P的坐标;②请求出∠POC的度数.海南省2013初中数学竞赛初赛试题参考答案一、选择题(本大题满分50分,每小题5分)答案提示:4、由三角形外角大于任何一个不相邻的内角与∠ACB 小于180°可知90°<6x <180°,由此可得15°<x <30°,故选择B .5、a 是质数,b 是奇数,且20132=+b a ,所以a 、b 必是一奇一偶,所以可求得a =2,b=2009,所以a +b +2=2013.6、由数列3、7、12、18、25……可判断存在的规律为:第①个数为3,第②个数为3+4,第③个数为3+4+5,第④个数为3+4+5+6,第⑤个数为3+4+5+6+7……如此可断定第⑩个数为3+4+5+……+12=75,故选择C .7、设两码头之间的航程为S ,船在静水中的速度为a ,水流的速度为b ,则船顺水所需的时间为b aS +船逆水所需的时间为b a S-,则船往返一次所需的时间为b a S ++b a S -=222ba aS-由此可判断船在静水中的速度不变与水流的速度总小于船在静水中的速度的条件下,水流的速度b 越大,a 2-b 2越小,船往返一次所需的时间为222b a aS-就越大,故选择A .8、由矩形AOBC 的面积为8,可求矩形PEOF 的面积为2, 又点P 在第一象限,所以K =2, 故选择B .9、 如图,分别以大的正方形中间”十”字所在的直线为对称轴可画出2、3两图,分别以正方形对角线所在直线为对称轴可画出4、5两图,再加上第1幅图,总共有5个符合条件的三角形,故选择A .10、若点M 在圆上,点M 与圆心A 的距离等于圆的半径2,容易判断点(2,0)是圆A 与X 轴正半轴的交点、点(0,-2)是圆A 与y 轴负半轴的交点,另外,可以通过构造直角三角形判断点(2,-2)与圆心A 的距离等于2,也可以用两点公式求出点(2,-2)与圆心A 的距离等于2,因此A 、B 、C 三个选项中的点均在圆上,而点(1,-2)与圆心A 的距离等于1,小于圆A 的半径,点(1,-2)不在圆上,故选择D .二、填空题(本大题满分40分,每小题5分)11、(3x -2y )212、5- 13、2 14、3 15、2<x <716、13.5 17、1或7 18、5 答案提示:12、55255252)52(55252552-=-=---=---13、由 128421=⋅+x x 得 721222=⋅+x x 所以有 72)1(=++x x 所以 x 的值为2.因为关于x 的方程x 2-4x +a =0的两个实数根为x 1、x 2,由根与系数的关系得x 1+x 2=4,所以⎩⎨⎧=+=-4032121x x x x ,解得⎩⎨⎧==3121x x ,所以a =3.15、构造右图,延长中线AD 到A ’,使AD =A ’D , 可证△ABD ≌△A ’CD ,设AD =x ,AA ’=2 x ,由三角形三边不等关系可得 9-5<2x <9+5,从而有2<x <7.16、设直线AB 的解释式为y =3x+b , 由题意可知直线AB 过点(-3、0),故b =9,所以直线AB 与y 轴的交点为(0,9),则直线AB 与坐标轴所围成的三角形的面积为3×9÷2=13.5平方单位.17、如图7,把线段AM 绕点A 画弧,可见N 、C 两点的距离存在两种情况:①点N 在边BCA CBDA ’上,②点N 在边CB 的延长线上;可以证明△ADM ≌△ABN ≌△ABN ’,所以有BN =BN ’=DM =3,所以N 、C 两点的距离是:1或7.18、提示:可证AE =DE ,BE =DE ,由此得到DE 的长是5.三、解答题(本大题满分30分,每小题15分) 19、解:(1)设种植园应向海口供应的黄帝蕉有x 千克,则向海口供应的香牙蕉有2x 千克,根据题意列方程得:2x +x =15000,解得:x =5000,则2x =10000所以种植园供应文昌市的香牙蕉应为12000-10000=2000千克,植园供应文昌市的黄帝蕉应为5000-2000=3000千克.(2)设应安排m 千克香牙蕉在海口市销售,则在海口市销售的黄帝蕉为(15000-m )千克;在文昌市销售的香牙蕉与黄帝蕉分别为(12000-m )千克、(m -7000)千克,则这批香蕉的销售收入y 与m 的函数关系式为:y =4.8m +5(15000-m )+3.6(12000-m )+4.2(m -7000) 即y =0.4m +88800 (7000≤m ≤12000)从函数关系式看m 的值越大,销售收入y 就越大,即香牙蕉应尽可能多地安排在海口市销售,所以若要使销售收入最大,需安排12000千克香牙蕉与3000千克黄帝蕉在海口市卖,安排5000千克黄帝蕉在文昌市卖,最大销售收入为y =0.4×12000+88800=93600(元) . 20、解:(1)设直线OC 的解析式为y =kx ,∵直线OC 过点C (1、1),∴k =1, ∴直线OC 的解析式为y =x ∵直线MN 与OC 平行,∴可设直线MN 的解析式为y =x +b , ∵直线y =x +b 过点B (1,0),∴b =-1,∴直线MN 的函数解析式为y =x -1(此题也可以通过求点B 、D 的坐标,再利用待定系数法求直线MN 的解析式) (2)当点P 在x 轴的上方时 ∵四边形AOBC 是正方形∴OB =BC ,∠BCD =∠ACB =90°,∠BCO =45°图7ACBDN N ’ M又MN 与OC 平行∴∠CBD = ∠BCO =∠BDC = 45°,∴BC =OB =CD 由AC ∥OB 知AD ∥OB ∴∠OBP = ∠CDQ ∵CQ ∥OP ∴∠OPB = ∠CQD ∴△OBP ≌△CDQ同理可知,若点P 运动到x 轴的下方,△OBP 与△CDQ 依然全等 (3)①设点P 的横坐标为(a ,b )因为点P 在直线y =x -1上,则点P 的坐标可表示为(a ,a -1) 若四边形OPQC 为菱形,则有OP =OC =2 作PF ⊥x 轴于点F ,在Rt △OPF 中有 OF 2+PF 2=OP 2即2)1(22=-+a a解得:2311+=a ,2312-=a 则2131-=b ,2132+-=b 即当四边形OPQC 为菱形时,点P 的坐标为(231+,213-)或(231-,213+-) ②由①知点P 存在两种情况使四边形OPQC 为菱形,即点P 在第一象限与第三象限 ⅰ)当点P 在第一象限时(如点P 1), 方法一(如图9A ):过点C 作CH ⊥MN 于点H , 则△CHQ 是直角三角形,由(2)的证明可知△BCD 是等腰直角三角形,且 BC =OB =CD =1 ∴CH =22,若四边形OPQC 为菱形,则有CQ =OC =2, ∴CH =21OC ∴∠CQH =30° ∴∠P 1OC = 30° 方法二(如图9B ):连接AB 交OC 于点G ,过点P 1作P 1H ⊥OC 于点H 则△OP 1H 是直角三角形,在正方形AOBC 中有AB ⊥OC ,又MN ∥OC ,∴∠BGH = ∠P 1HG =∠GB P 1= 90° ∴四边形P 1BGH 是矩形,又四边形OPQC 为菱形∴P 1H =BG =21AB =21OC =21O P 1∴∠P 1OC = 30°ⅱ)当点P 在第三象限时(如点P 2),令x =0,则y =x -1=-1,即直线MN 与y 轴的交点E 的坐标为(0,-1) 则OE =OB ,则∠OEB =∠OBE = 45°则∠OEP 2=∠OBP 1= 135° 又四边形OPQC 为菱形∴O P 2=O P 1 =OC ∴∠O P 2E =∠O P 1B ∴△O P 2E ≌△O P 1B (AAS ) ∴∠E O P 2=∠B O P 1∵∠B O P 1=∠B O C -∠P 1 OC =45°-30°=15° ∴∠E O P 2=15°,∴∠P 2OC =150°综合以上论述可知,当四边形OPQC为菱形时,∠POC的度数为30°或150°。
13届数学竞赛试题及答案一、选择题(每题5分,共20分)1. 若a和b是两个非零实数,且a + b = 5,求a² + b²的最小值。
A. 5B. 10C. 25D. 502. 一个圆的半径为r,其面积与半径平方的比值是多少?A. πB. 2πrC. πrD. r²3. 一个等差数列的首项是2,公差是3,第10项是多少?A. 23B. 29C. 32D. 354. 如果一个函数f(x) = ax² + bx + c,其中a ≠ 0,且f(0) = 1,f(1) = 2,f(-1) = 0,求a的值。
A. -1B. 1C. 2D. 3二、填空题(每题5分,共30分)5. 若一个多项式P(x) = x³ - 6x² + 11x - 6可以被分解为(x -1)(x - 2)(x - 3),那么P(4)的值是______。
6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是______。
7. 一个正六边形的内角是______度。
8. 如果一个数列的前三项分别为1, 1, 2,且每一项都是前两项的和,那么第5项的值是______。
三、解答题(每题25分,共50分)9. 证明:对于任意正整数n,n³ - n 总是能被6整除。
10. 解不等式:|x - 1| + |x - 4| ≥ 5。
答案一、选择题1. B(根据平方和公式a² + b² = (a + b)² - 2ab,代入得25 -10 = 15)2. A(圆的面积公式为πr²,所以面积与半径平方的比值为π)3. C(等差数列的通项公式为an = a1 + (n - 1)d,代入得2 + 9*3= 29)4. B(根据函数值代入求得a = 1)二、填空题5. 10(将x=4代入多项式P(x)中计算)6. 5(根据勾股定理3² + 4² = 5²)7. 120(正六边形的内角和为(n-2)*180°,代入n=6得720°,除以6得120°)8. 5(根据数列规律1, 1, 2, 3, 5...)三、解答题9. 证明:n³ - n = n(n² - 1) = n(n + 1)(n - 1),因为n, n+1, n-1是三个连续的整数,根据连续整数的性质,其中必有一个是6的倍数,所以n³ - n能被6整除。
2013初一第一学期数学竞赛试卷一、选择题(每小题4分,共24分)1、设a是最小的自然数,b是最大的负整数,c是绝对值最小的整数,则cba++的值为()A.-1 B.0 C.1 D.32、已知|x|=3,|y|=2,x、y异号,则x+y的值是( )A.5或1 B.-1或1 C.5或-5 D.-5或-13、某商品提价100%后要恢复原价,则应降价()A、30%B、50%C、75%D、100%4、客运列车在哈尔滨与A站之间运行,沿途要停靠5个车站,那么哈尔滨与A站之间需要安排( )种不同的车票。
A、6B、7C、21D、425、如图,在ABC∆中,ECBDCEACDEBCDBEABD∠=∠=∠∠=∠=∠,,若=∠BEC145°,则BDC∠等于()A.100°B.105°C.110°D.115°6、现有3×3的方格,每个小方格内均有数目不同的点图,要求方格内每一行、每一列以及每一条对角线上的三个点图的点数之和....均相等.图中给出了部分点图,则P()二、填空题(每小题4分,共32分)1、3点分时,时针和分针重合.2、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128……用你发现的规律写出22013的末位数字是_______。
3、一位同学在斜坡上练习骑自行车,上坡速度为m km/h,下坡速度为n km/h,则上下坡的平均速度为()km/h4、自然数n被3除余2,被4除余3,被5除余4,则n的最小值是A.B.C D5、若a 是有理数,则|)|(||||)(a a a a -+-++-的最小值是___. 6. 如图,∠AOB 是直角,i OP (i =1,2,3,4,5,6)是射线, 则图中共有锐角 个.7、整片牧场上的草长得一样密,一样地快。
已知70头牛在24天里把草吃完,而30头牛就得60天。
如果要在96天内把牧场的草吃完,那么有 头牛。
2013年全国初中数学竞赛(海南赛区)数 学 试 卷(本试卷共4页,满分120分,考试时间:3月10日8:30——10:30)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1、3-x 的相反数是-6,那么x 的值为A .-3B .3C .6D .92、从甲、乙两名男生和A 、B 两名女生中随机选出一名男生和一名女生,则恰好选中甲男生和A 女生的概率是 A .21 B .43 C .81 D . 413、如图1,∠AOB =180°,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线, 则下列各角中与∠COD 的互补的是 A .∠COEB .∠AOCC .∠AOD D .∠BOD4、如图2,在Rt △ADB 中,∠D =90°,C 为AD 上一点,∠ACB =6x ,则x 值可以是A .10°B .20°C .30°D .40°5、已知a 是质数,b 是奇数,且20132=+b a ,则a +b +2的值为A .2009B .2011C .2013D .20156、有这样的数列:3、7、12、18、25……,则第10个数是A .65B .70C .75D .807、轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大 (水流的速度总小于船在静水中的速度) 时,船往返一次所用的时间将图1ACBDEO图2CA .增多B .减少C .不变D .以上都有可能8、如图3,矩形AOBC 的面积为8,反比例函数xky =的图象经过矩形的对角线的交点P ,则反比例函数的解析式是A .x y 8=B .x y 2=C .x y 4=D .x y 1=9、 图4是由大小一样的小正方形组成的网格,△ABC 的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落在小正方形的顶点上,且与△ABC 成轴对称的三角形共有 A .5个 B .4个C .3个D .2个10、如图5是半径为2的圆,圆心A 坐标为(1,-1),点M 是圆上的动点,则点M 的坐标不可能为 A .(2,0)B .(0,-2)C .(2,-2)D .(1,-2)二、填空题(本大题满分40分,每小题5分)11、分解因式:9x 2-12xy +4y 2=_________________. 12、 计算:5252552---=__________.13、若128421=⋅+x x ,则x 的值为__________.14、已知关于x 的方程x 2-4x +a =0的两个实数根x 1、x 2满足3 x 1-x 2=0,则a =________. 15、在△ABC 中,AB =5,AC =9,则BC 边上的中线AD 的长的取值范围是__________. 16、如图6,在平面直角坐标系中,直线AB 由直线y =3x 沿x 轴向左平移3个单位长度所得,则直线AB 与坐标轴所围成的三角形的面积为__________. 17、如图7,已知正方形ABCD 中,点M 在边CD 上,且DM =3, MC =1,把线段AM 绕点A 顺时针旋转,使点M 落在BC 所在 的直线上的点N 处,则N 、C 两点的距离为__________. 18、如图8,在△ABC 中,AB =10, ∠BAC 的平分线图4C图7 ACBD M 图8ACBDEAD交BD于点D,且BD⊥AD,DE∥AC交AB于E,则DE的长是__________.三、解答题(本大题满分30分,每小题15分)19、海南省某种植园收获香蕉20000千克,其中香牙蕉12000千克、黄帝蕉8000千克,准.备.运往海口与文昌销售;根据市场供需,海口需要香蕉15000千克,文昌需要香蕉5000千克,海口与文昌两地的香蕉售价如下表所示:(1)若该种植园供应海口市的香牙蕉与黄帝蕉的比是2:1,请问该种植园供应文昌市的香牙蕉与黄帝蕉各是多少千克?(2)若海口与文昌的香蕉都能在保质期内销售完,请你设计一种销售方案,使销售的收入最大,并估算出获得的最大销售收入.20、如图9,在平面直角坐标系xoy内,正方形AOBC的顶点A、O、B、C的坐标分别为(0,1)、(0,0)、(1,0)、(1、1),过点B的直线MN与OC平行,AC的延长线交MN于点D,点P是直线MN上的一个动点,CQ∥OP交MN于点Q.(1)求直线MN的函数解析式;猜想:若点P运动到x轴的下方时,△OBP与△CDQ是否依然全等?((3)当四边形OPQC为菱形时,①请求出点P的坐标;②请求出∠POC的度数.海南省2013初中数学竞赛初赛试题参考答案一、选择题(本大题满分50分,每小题5分)答案提示:4、由三角形外角大于任何一个不相邻的内角与∠ACB 小于180°可知90°<6x <180°,由此可得15°<x <30°,故选择B .5、a 是质数,b 是奇数,且20132=+b a ,所以a 、b 必是一奇一偶,所以可求得a =2,b=2009,所以a +b +2=2013.6、由数列3、7、12、18、25……可判断存在的规律为:第①个数为3,第②个数为3+4,第③个数为3+4+5,第④个数为3+4+5+6,第⑤个数为3+4+5+6+7……如此可断定第⑩个数为3+4+5+……+12=75,故选择C .7、设两码头之间的航程为S ,船在静水中的速度为a ,水流的速度为b ,则船顺水所需的时间为b aS +船逆水所需的时间为b a S-,则船往返一次所需的时间为b a S ++b a S -=222ba aS-由此可判断船在静水中的速度不变与水流的速度总小于船在静水中的速度的条件下,水流的速度b 越大,a 2-b 2越小,船往返一次所需的时间为222b a aS-就越大,故选择A .8、由矩形AOBC 的面积为8,可求矩形PEOF 的面积为2, 又点P 在第一象限,所以K =2, 故选择B .9、 如图,分别以大的正方形中间”十”字所在的直线为对称轴可画出2、3两图,分别以正方形对角线所在直线为对称轴可画出4、5两图,再加上第1幅图,总共有5个符合条件的三角形,故选择A .10、若点M 在圆上,点M 与圆心A 的距离等于圆的半径2,容易判断点(2,0)是圆A 与X 轴正半轴的交点、点(0,-2)是圆A 与y 轴负半轴的交点,另外,可以通过构造直角三角形判断点(2,-2)与圆心A 的距离等于2,也可以用两点公式求出点(2,-2)与圆心A 的距离等于2,因此A 、B 、C 三个选项中的点均在圆上,而点(1,-2)与圆心A 的距离等于1,小于圆A 的半径,点(1,-2)不在圆上,故选择D .二、填空题(本大题满分40分,每小题5分)11、(3x -2y )212、5- 13、2 14、3 15、2<x <716、13.5 17、1或7 18、5 答案提示:12、55255252)52(55252552-=-=---=---13、由 128421=⋅+x x 得 721222=⋅+x x 所以有 72)1(=++x x 所以 x 的值为2.因为关于x 的方程x 2-4x +a =0的两个实数根为x 1、x 2,由根与系数的关系得x 1+x 2=4,所以⎩⎨⎧=+=-4032121x x x x ,解得⎩⎨⎧==3121x x ,所以a =3.15、构造右图,延长中线AD 到A ’,使AD =A ’D , 可证△ABD ≌△A ’CD ,设AD =x ,AA ’=2 x ,由三角形三边不等关系可得 9-5<2x <9+5,从而有2<x <7.16、设直线AB 的解释式为y =3x+b , 由题意可知直线AB 过点(-3、0),故b =9,所以直线AB 与y 轴的交点为(0,9),则直线AB 与坐标轴所围成的三角形的面积为3×9÷2=13.5平方单位.17、如图7,把线段AM 绕点A 画弧,可见N 、C 两点的距离存在两种情况:①点N 在边BCA CBDA ’上,②点N 在边CB 的延长线上;可以证明△ADM ≌△ABN ≌△ABN ’,所以有BN =BN ’=DM =3,所以N 、C 两点的距离是:1或7.18、提示:可证AE =DE ,BE =DE ,由此得到DE 的长是5.三、解答题(本大题满分30分,每小题15分) 19、解:(1)设种植园应向海口供应的黄帝蕉有x 千克,则向海口供应的香牙蕉有2x 千克,根据题意列方程得:2x +x =15000,解得:x =5000,则2x =10000所以种植园供应文昌市的香牙蕉应为12000-10000=2000千克,植园供应文昌市的黄帝蕉应为5000-2000=3000千克.(2)设应安排m 千克香牙蕉在海口市销售,则在海口市销售的黄帝蕉为(15000-m )千克;在文昌市销售的香牙蕉与黄帝蕉分别为(12000-m )千克、(m -7000)千克,则这批香蕉的销售收入y 与m 的函数关系式为:y =4.8m +5(15000-m )+3.6(12000-m )+4.2(m -7000) 即y =0.4m +88800 (7000≤m ≤12000)从函数关系式看m 的值越大,销售收入y 就越大,即香牙蕉应尽可能多地安排在海口市销售,所以若要使销售收入最大,需安排12000千克香牙蕉与3000千克黄帝蕉在海口市卖,安排5000千克黄帝蕉在文昌市卖,最大销售收入为y =0.4×12000+88800=93600(元) . 20、解:(1)设直线OC 的解析式为y =kx ,∵直线OC 过点C (1、1),∴k =1, ∴直线OC 的解析式为y =x ∵直线MN 与OC 平行,∴可设直线MN 的解析式为y =x +b , ∵直线y =x +b 过点B (1,0),∴b =-1,∴直线MN 的函数解析式为y =x -1(此题也可以通过求点B 、D 的坐标,再利用待定系数法求直线MN 的解析式) (2)当点P 在x 轴的上方时 ∵四边形AOBC 是正方形∴OB =BC ,∠BCD =∠ACB =90°,∠BCO =45°图7ACBDN N ’ M又MN 与OC 平行∴∠CBD = ∠BCO =∠BDC = 45°,∴BC =OB =CD 由AC ∥OB 知AD ∥OB ∴∠OBP = ∠CDQ ∵CQ ∥OP ∴∠OPB = ∠CQD ∴△OBP ≌△CDQ同理可知,若点P 运动到x 轴的下方,△OBP 与△CDQ 依然全等 (3)①设点P 的横坐标为(a ,b )因为点P 在直线y =x -1上,则点P 的坐标可表示为(a ,a -1) 若四边形OPQC 为菱形,则有OP =OC =2 作PF ⊥x 轴于点F ,在Rt △OPF 中有 OF 2+PF 2=OP 2即2)1(22=-+a a解得:2311+=a ,2312-=a 则2131-=b ,2132+-=b 即当四边形OPQC 为菱形时,点P 的坐标为(231+,213-)或(231-,213+-) ②由①知点P 存在两种情况使四边形OPQC 为菱形,即点P 在第一象限与第三象限 ⅰ)当点P 在第一象限时(如点P 1), 方法一(如图9A ):过点C 作CH ⊥MN 于点H , 则△CHQ 是直角三角形,由(2)的证明可知△BCD 是等腰直角三角形,且 BC =OB =CD =1 ∴CH =22,若四边形OPQC 为菱形,则有CQ =OC =2, ∴CH =21OC ∴∠CQH =30° ∴∠P 1OC = 30° 方法二(如图9B ):连接AB 交OC 于点G ,过点P 1作P 1H ⊥OC 于点H 则△OP 1H 是直角三角形,在正方形AOBC 中有AB ⊥OC ,又MN ∥OC ,∴∠BGH = ∠P 1HG =∠GB P 1= 90° ∴四边形P 1BGH 是矩形,又四边形OPQC 为菱形∴P 1H =BG =21AB =21OC =21O P 1∴∠P 1OC = 30°ⅱ)当点P 在第三象限时(如点P 2),令x =0,则y =x -1=-1,即直线MN 与y 轴的交点E 的坐标为(0,-1) 则OE =OB ,则∠OEB =∠OBE = 45°则∠OEP 2=∠OBP 1= 135° 又四边形OPQC 为菱形∴O P 2=O P 1 =OC ∴∠O P 2E =∠O P 1B ∴△O P 2E ≌△O P 1B (AAS ) ∴∠E O P 2=∠B O P 1∵∠B O P 1=∠B O C -∠P 1 OC =45°-30°=15° ∴∠E O P 2=15°,∴∠P 2OC =150°综合以上论述可知,当四边形OPQC为菱形时,∠POC的度数为30°或150°。
2013年全国初中数学竞赛试题参考答案一、选择题:(每题7分,共35分)1.】 2222222(234)(23)0.1()0().21.().2a b c a b c a b c a b c ab bc ca a b c ab bc ca A a b c ++=++-++=++=++=-++++=-++由已知可得,因此,,则:故,选12121212222121222222222121212222222122222000.11()22111120.(2)0.().x x x b c a x x x x x x c a ax x x x b ac a x x x x c x x cb ac a x x x x c cc x b ac x a B ≠+=-=≠≠+--+==⋅=--+=--+=由于关于的二次方程有两个非零实根、,则:,且,;且,从而又,因此,以、为实根的一元二次方程为:即,故,选 3. Rt ABC O AB CD AB AB D DE OC ∆⊥⊥如图,在中,为斜边中点,交于点,交.OC E AD DB CD ODOE DE AC 于点若、和的长度为有理数,则:线段、、和的长度中,不一定为有理数的是 【 】()()()().A OD B OE C DE D AC ;;;221().2...().AD DB CD OA OB OC AD DB OD OA DA OD OD DC OE DE OC OCAC AD AB AC D ===+=-⋅===⋅=由于、和为有理数,则:为有理数也是有理数又也是有理数;也是有理数而,则:故,选4. 24ABC D AC F BC ∆如图,已知的面积为,点在线段上,点在线段延长线上,4BC CF DCEF=且,四边形为平行四边形,则:图中阴影部分面积为 【 】()3()4()6()8.A B C D ;;;12121212121()2()2()424.26.().ADE BDE ABC S S S ADE BDE DE h h DE AB h h ABC BC S BC h h CF h h DE h h S S C ∆∆∆=+∆∆+∆=⋅+=⋅+=⋅+===图中阴影部分面积,设、中,底边上的高分别为、;由于,因此,为底边上的高.又因此,阴影部分的面积故,选 5. 2012**3*2的值为()C ()()323232233320132012433392745201320124339331646039239292455463201320123292.10360967m mm m m mm m ***=⨯+⨯+⨯+****=*==++++-⨯⨯+⨯⨯+⨯+****=*==+-设,则:,因此, 二、填空题:(每题7分,共35分)6. 2232322(2)9.a b ab b <=<=-⇒+=+=由于,因此, 7. 3FCD D E ABC AC AB BD CE F S ∆∆=如图,、分别是的边、上的点,、交于点,若,45________F B E F B C S S A E F D ∆∆==,,则:四边形的面积为312.551235.12454586412864204..65565134=FDE FCD FDE FEB FFBC ADE ACE ADE DEB BBCE AEFD AEF AEF BFE BCF AFD AFD S S DE S S S x S AE S x S x S EB S x S S S S BF S AF S S FD S ∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆==⇒=++====++==+=++==四边形【方法一】:连接,则:记,则:,即:因此,则:【方法二】:连接,则:5.33510896.41313204.13CDF AFD AFD CDF BCF AEF AFD AEF AEF BEF S S S CF S S S S S FE S AEFD ∆∆∆∆∆∆∆∆∆∆=++====⇒==,因此,四边形的面积为 8. 22220380.a b c a b c a b c +--=-+=已知正整数、、满足:,则:__________.abc 的最大值为 2222222212(1)220380(8)666666.1 3.(2)1(8)592(8)403(8)9511.351331161.311a b c a b c c b a a a a a a a b a b a b b b a b c a b c abc +--=-+=-++=⇒+≤≤≤=-==-==-=========⨯从,两式中消去可得:又为正整数,则,当时,,没有正整数解;当时,,没有正整数解;当时,,则:,而,当,时,;当,时,因此,的最大值为132013.⨯=9. 2200a b c d x cx d a b x ax b ++=++=实数、、、满足:方程的两根为、;方程()___________.a b a b c d =的两根为、,则满足条件的所有,,,..(1)0(2)01 2.()(1212)(00).a b c ab d b d c d a cd b b d a c b d a c b d a b c d k k +=-=⎧=⎨+=-=⎩===-=≠====-=---,根据题意可得,由此可得,,当时,;当时,,且因此,满足条件的所有,,,,,,或,,,10. 小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.min 472013.350201371(5032).144420134()343503204.207141.x y x y x y y y x y y x y y y y y x +=⎧⎨+<⎩-+==-+⇒+=++<⨯+⇒>==设小明卖出铅笔与圆珠笔分别为支和支,则:因此,为的倍数.而,因此,;此时。
2013年北京市中学生数学竞赛高中一年级初赛试题解答选择题答案填空题答案一、选择题〔总分值36分,每题只有一个正确答案,请将正确答案的英文字母代号填入第1页指定地方,答对得6分,答错或不答均计0分〕1.已知集合A={1, 2, 3, 4, 5},B={2, 3, 4, 5, 6},则集合C={(a, b)|a∈A, b∈B, 且关于x的方程x2+2ax+b2=0有实根}的元素个数为〔A〕7.〔B〕8.〔C〕9.〔D〕10.解当a>0,b>0时,x2+2ax+b2=0有实根的充要条件为a≥b.设集合D={(a, b)|a∈A, b∈B},D的元素个数为5×5=25个,而C是D的子集,因此,集合C的元素如右面的整点图中的黑点所示:因此, C的元素个数等于10.22=等于〔A〕7.〔B〕8.〔C〕9.〔D〕10.解2224882--===.3.如下图,矩形ABCD的对角线BD经过坐标原点O,矩形的边分别平行于坐标轴,点C在反比例函数31kyx+=的图像上,假设A点的坐标为(−2, −2),则k等于〔A〕2.〔B〕1.〔C〕0.〔D〕−1.解因为矩形的对角线平分矩形的面积,所以矩形CHOG的面积= 矩形OF AE的面积= |−2|×|−2|= 4.即3k+1=OG×GC= 4,因此k =1.4.定义在R 上的偶函数f (x ),满足f (x+1)=−f (x ),且在区间[−1, 0]上递增,则 〔A〕(3)(2)f f f <<. 〔B〕(2)(3)f f f <<. 〔C〕(3)(2)f f f <<. 〔D〕(2)(3)f f f <<.解 根据题意f (x )=−f (x+1) =−[−f (x+2)]= f (x+2),因为f (x )是偶函数,即f (a )= f (−a ), 则(3)(1)(1)f f f ==-,(2)(0)f f =,((22)f f f f ===. 而 −1−2<0,f (x )在区间[−1, 0]上递增,所以(3)(2)f f f <<.5.由1开始的连续n 个正整数相乘,简记为n !=1×2×…×n , 如3!=1×2×3=6,10!=1×2×3×4×5×6×7×8×9×10=3628800等等,则12345672!3!4!5!6!7!8!++++++等于〔A 〕719720.〔B 〕50395040.〔C 〕4031940320.〔D 〕4032140320.解 因为1111!!!(1)!!n n n n n n n -=-=--,所以 12345672!3!4!5!6!7!8!++++++ 213141516171812!2!3!3!4!4!5!5!6!6!7!7!8!8!⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111*********!2!3!3!4!4!5!5!6!6!7!7!8!⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1140319118!4032040320=-=-=.6.如图,正方形ABCD 内接于⊙O ,P 为劣弧CD 上一点,P A交BD 于点M ,PB 交AC 于点N ,记∠P AC =θ,假设MN ⊥P A ,则2cos 2θ−tan θ的值等于 〔A 〕1. 〔B〕2. 〔C 〕12. 〔D〕4. 解 ∵ 四边形ABCD 是正方形,∴ ∠ACB =45º,DB ⊥AC , ∴ ∠APB =∠ACB =45º, ∵ MN ⊥P A ,∴ ∠MNP =∠APB =45º,∴ MP =MN .∵ AC 为圆的直径,∴∠APC =90º,∴P 、M 、O 、C 四点共圆. ∴ AM ·AP = AO ·AC .因此2cos 2θ − tan θ 222AO MN AM AM =⋅-222AO AM MNAM ⋅-⋅= 2AO AC AM MN AM ⋅-⋅=2AM AP AM MNAM ⋅-⋅= AP MN AM -=1AP PM AM-==.二、填空题〔总分值64分,每题8分,请将答案填入第1页指定地方〕 1.求222222235753sin 30sin 35sin 40sin 45sin 50sin 55sin 60tan 36tan 39tan 42tan 45tan 48tan 51tan 54++++++⨯⨯⨯⨯⨯⨯的值.解 注意到sin 2α+sin 2(90º−α)= sin 2α+cos 2α=1,sin 245º=12,n 为正整数时,tan n α×tan n (90º−α)= tan n α×cot n α=(tan α×cot α)n =1,tan45º=1,则 222222235753sin 30sin 35sin 40sin 45sin 50sin 55sin 60tan 36tan 39tan 42tan 45tan 48tan 51tan 54++++++⨯⨯⨯⨯⨯⨯ 3.5=.2.f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),求f (−10)的值.解 因为f (x )为定义在R 上的奇函数,所以f (0)=0,即20+2×0+b =0,得b =−1.由奇函数的性质f (−x )=−f (x ),有假设x <0,即−x >0,则−f (x )= f (−x )=2−x −2x −1, 即f (x )= −2−x +2x +1 (x <0). 所以f (−10)= −210−2×10+1= −1043.3.假设实数x , y , z44x y z +-=,试确定(5x +3y −3z )2013的末位数字.解 易见x ≥7,则≥4,而4x y z+-≥0,又x , y , z 满足方程44x y z +-=,且4x y z+-=0.所以 x =7,x +y −z =0,(5x +3y −3z )2013 =142013,这个数的末位数字为4.4.如右图,正方形ABCD 被分成了面积相等的8个三角形,如果AG ABCD 面积的值.解 过F 作KL//DC ,取AB 的中点N ,延长GN 交AH 于P , 设正方形ABCD 的边长为a ,由于△DCI 、△ABH 的面积都是正方形ABCD 面积的18,所以CI =BH =14BC =4a.由△ADF 的面积=△DCL 的面积的2倍,得ABC D EFGIH AB C DE F PIH L KG N11222AD KF CD CI ⨯=⨯⨯ 所以KF =2CI 1.2a =所以F 为DI 中点. 易见,E 是AF 的中点,由△F AG 、△FHG 的面积相等,可得AP=PH ,即FP 为△F AH 的一条中线,因此F 、P ,N 是一条直线.同理可证,HG 的延长线必过AE 的中点E ,所以HE 为△F AH 的另一条中线,中线FP 与HE 的交点G 为△F AH 的重心,12GP FG =. 注意FP 为梯形AHID 的中位线,FP//BC ,所以 132224a aHI AD aFP ++===,所以134a GP FP ==,所以3488a a aGN GP PN =+=+=. 而AN =2a ,根据勾股定理,有22223252864a a a AG ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,即2255064a =,所以a 2=128.5.已知实数m 、n 满足m −n =10,m 2−3n 2为质数.假设m 2−3n 2的最大值为a ,最小值为b .试确定a −b 的值.解 设m 2−3n 2=p 〔p 为质数〕 ① 由m −n =10,得m =10+ n , ②把②式代入①式得(10+ n )2−3n 2= p ,整理得2n 2−210n +p −10=0, ∴ Δ=40−8p +80≥0,∴ p ≤15.∴ p 的最大值a =13,最小值b =2 , ∴ a −b =11.6.在△ABC 的边BC 上有一点D ,∠ADB 是锐角,P 、Q 分别是△ABD 、△ACD 的外心,且四边形APDQ 面积是△ABC 面积的34.求sin ∠ADB 的值. 解 连结PQ ,易证△AQP ≌△DQP , 由已知得38AQP ABCS S ∆∆=, 易证:△APQ ∽△ABC ,所以2AQP ABCS AQ S AC ∆∆⎛⎫= ⎪⎝⎭,所以322AQ AC =. 连结QC ,作QH ⊥AC 于H ,则11112222ADB ACD CAD AD CD ADC AQC AQH ∠=∠+∠=+==∠=∠. 所以 sin ∠ADB = sin ∠AQH == 7.S (x )表示自然数x 的数字和,试确定方程x +S (x )+S (S (x ))=2013的解集. 解 显然x <2013,而S (x )最大为28,S (S (x ))最大为10,因此x 最小为2013−38=1975.因此1975≤x <2013,容易试验得x =2003,S (2003)=5,S (S (2003))=5,2003+5+5=2013; x =1991,S (1991)=20,S (S (1991))=2,1991+20+2=2013; x =1985,S (1985)=23,S (S (1985))=5,1985+23+5=2013; x =1979,S (1979)=26,S (S (1979))=8,1979+26+8=2013. 除此之外的x 都不满足方程,所以解集是{1979, 1985, 1991, 2003}.8.直角△ABC 中,内切圆⊙O 切斜边AB 于D ,切BC 于E ,切CA 于F ,作DK ⊥AC 于K ,DP ⊥BC 于P ,已知AD =m ,BD =n ,试确定矩形CKDP 的面积〔用m ,n 来表示〕.解 设内切圆半径为r ,连接OD ,OE ,OF ,如图,则OD =OE =OF = r .由切线长定理得AD =AF =m ,BD =BE =n ,CE =CF =r .设△ABC 的半周长为p ,面积为S ,则p =r +m +n ,所以 ()()2r m r n S ++=.即 2S =r 2+rm +rn +mn =r (r +m +n )+mn =rp +mn . 因为S =rp ,代入上式得 S = mn . 因为DK //BC ,所以 △ADK ∽△ABC ,所以 223222()()()ADKABC m m m nS S mn m n m n m n ∆∆=⨯=⨯=+++, 同理可得223222()()()BDPABC n n mn S S mn m n m n m n ∆∆=⨯=⨯=+++,因此,矩形CKDP 的面积 = 33222222()()()m n mn m n mn m n m n m n --=+++.。
2013年全国初中数学联合竞赛试题及详解第一试一、选择题(本题满分42分,每小题7分)1.计算=( )(A 1 (B )1 (C (D )2【答案】(B )【解析】原式=1)3)1=-=,故选(B ). 2.满足等式()2221m m m ---=的所有实数m 的和为( )(A )3 (B )4(C )5 (D )6 【答案】(A )【解析】分三种情况进行讨论:(1)若21m -=,即1m =时,满足已知等式;(2)若21m -=-,即3m =时,()2242(1)1m m m ---=-=满足已知等式;(3)若21m -≠±,即1m ≠且3m ≠时,由已知,得22020m m m -≠⎧⎨--=⎩解得,1m =- 故满足等式()2221m m m ---=的所有实数m 的和13(1=3++-),故选(A ).3.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠=,ABC ∠的平分线交圆O于点D ,若CD =,则AB =( )(A )2 (B(C ) (D )3【答案】(A )【解析】连接OC ,过点O 作ON CD ⊥于点N ,则2CN DN ==,OC OA =,从而15OCA CAB ∠=∠=,由AB 是圆O 的直径,得90ACB ∠=,因CD 平分ACB ∠,故45ACD ∠=,30OCN ACD OCA ∠=∠-∠=,在Rt ONC ∆中,∵cos CN OCN OC ∠==,1OC =∴,∴22AB OC ==,故选(A ). 4.不定方程23725170x xy x y +---=的全部正整数解(,)x y 的组数为( )(A )1 (B )2(C )3 (D )4【答案】(B ) 【解析】由23725170x xy x y +---=,得2321775x x y x -++=-,因,x y 为正整数,故1,1x y ≥≥,从而750,x ->于是2321775x x x -++≥-,235220x x +-≤,即 (2)(311)0x x -+≤,由1x ≥,知3110x +>,故20x -≤,2x ≤,故1x =或2x =当1x =时,8y =;当2x =时,1y =.故原不定方程的全部正整数解(,)x y 有两组:(1,8),(2,1),故选(B ).5.矩形A B C D 的边长3,2AD AB ==,E 为AB 的中点,F 在线段BC上,12BF FC =∶∶,AF 分别与DE ,DB 交于点,M N ,则MN =( )(A )7 (B )14 (C )28(D )28【答案】(C )【解析】因12BF FC =,故 13BF BF DA BC ==,113BF AD ==,因BF AD ∥,故BNF DNA ∆∆∽,故13FN BF AN DA ==,故11313344FN AN AF AF ==⋅=.延长,D E C B 交于点G ,则由E 为AB 的中点,知ADE BGE ∆∆≌,故3BG AD ==,134FG BF BG =+=+=,因FG AD ∥,故AMD FMG ∆∆∽,故34AM AD FM FG ==,故3347AM FM AF ==,于是3197428MN AF AM FN AF AF AF AF =--=--===, 故选(C ). 6.设n 为正整数,若不超过n 的正整数中质数的个数等于合数的个数,则称n 为“好数”那么,所有“好数”之和为( )(A )33 (B )34 (C )2013 (D )2014【答案】(B )【解析】因1既不是质数,也不是合数,故“好数”一定是奇数.设不超过n 的正整数中,质数的个数为n a ,合数的个数为n b ,当15n ≤时,列表如下(只考虑n 为奇数的情况):由上表可知,1,9,11,13都是“好数”.因15152b a -=,当16n ≥时,在15n =的基础上,每增加2个数,其中必有一个为偶数,当然也是合数,即增加的合数的个数不会少于增加的质数的个数,故一定有2,n n b a -≥故当16n ≥时,n 不可能是“好数”.因此,所有的“好数”之和为19111334+++=,故选(B ).二、填空题(本题满分28分,每小题7分)1.已知实数,,x y z 满足4,129,x y z xy y +=+=+-则23x y z ++= .【答案】4【解析】由4,x y +=得4x y =-,代入129z xy y +=+-,得221(4)2969(3)0z y y y y y y +=-+-=-+-=--≥,故2(3)0y -≤,又2(3)0y -≥,故2(3)0y -=,故3,1,1y z x ==-=,于是234x y z ++=.2.将一个正方体的表面都染成红色,再切割成3(2)n n >个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n = .【答案】8【解析】只有一个面染成红色的小正方体的总数为26(2)n -个,任何面都不是红色的小正方体的总数为3(2)n -个,依题意有236(2)(2)n n -=-,解得8n =(2n =舍去). 3.在ABC ∆中,60,75,10A C AB ∠=∠==,,,D E F 分别在,,AB BC CA 上,则DEF ∆的周长最小值为 .【答案】【解析】分别作点E 关于,AB AC 的对称的,P Q .则,DE PD EF FQ ==.连接,,,,,AE AP AQ DP FQ PQ ,则120PAQ ∠=,且AP AE AQ ==,从而30APQ ∠=, 故12cos30PQAP =,PQ =,过点A 作AH BC ⊥于点H ,则 sin 10sin 455AH AB B =⋅=⨯=于是DEF ∆的周长为l DE DF EF PD DF FQ PQ =++=++≥==≥=当且仅当点E 与点H 重合,且,,,P D F Q四点共线时取得等号,即DEF ∆的周长min l =4.若实数,,x y z 满足()2228x y z x y y z z x ++-++=,用A 表示,,x y y z --z x -的最大值,则A 的最大值为 .【答案【解析】由已知,得222()()()16x y y z z x -+-+-=,不妨设A x y =-,则[]22222222()()()2()()216()2(16)A x y y x y z z x y z z x x y A ⎡⎤⎡⎤=-=-=-+-≤-+-=--=-⎣⎦⎣⎦解得A ≤.当且仅当x y y z z x -=-=-=时取等号. 故A. 第二试(A )一、(本题满分20分)已知实数,,,a b c d 满足()2222223236,a c b d a d b c +=+=-= 求()()2222a b c d ++的值.解:设2222,m a b n c d =+=+,则222223(23)(23)12.m n a c b d +=+++=因()()2223232424m n m n mn mn +=-+≥,即21224mn ≥,故6mn ≤ ○1 又因为()()()()22222222222222mn a b c d a c b d a d b c ac bd ad bc =++=+++=++- 故()26mn ad bc ≥-= ○2 由○1,○2可得 6.mn =即()()22226a b c d ++=注:符合条件的实数,,,a b c d 存在且不唯一,应满足2222222220(1)2233(2)23236(3)()6(4)ac bd a b c d a c b d ad bc +=⎧⎪+=+⎪⎨+=+=⎪⎪-=⎩ 由(1)得a b d c =-,令a b t d c=-=,则,a dt b ct ==-,代入(2)得t =t =,于是,a b ==或,a b ==,代入(3)或(4),得222c d +=, 故符合条件的实数,,,a b c d 存在且不唯一,如1,a b c d ====就是一组.又如1,122a b c d ==-==也是一组,当然还有很多组. 二、(本题满分25分)已知点C 在以AB 为直径的圆O 上,过点,B C 作圆O 的切线,交于点P ,连接AC ,若92OP AC =,求PB AC的值. 解:连接OC ,因为,PC PB 为圆O 的切线,所以POC POB ∠=∠因为OA OC =,所以OCA OAC ∠=∠,因为COB OCA OAC ∠=∠+∠,所以22POB OAC ∠=∠,所以POB OAC ∠=∠,所以OP AC ∥连接BC ,因AB 为圆O 的直径,PB 为圆O 的切线,故90ACB OBP ∠=∠=又POB OAC ∠=∠,所以BAC POB ∆∆∽,所以AC AB OB OP =. 又92OP AC =,2AB r =,OB r =(r 为圆O 的半径),代入,得23,3OP r AC r ==. 在Rt POB ∆中,由勾股定理,得PB ==,所以23PB AC r ==. 三、(本题满分25分)已知t 是一元二次方程210x x +-=的一个根,若正整数,,a b m 使得等式()()31at m bt m m ++=成立,求ab 的值.解:因为t 是一元二次方程210x x +-=的一个根,显然t 是无理数,且21t t =-.由()()31at m bt m m ++=,得()22310abt m a b t m m +++-=,将21t t =-代入,得 ()()21310ab t m a b t m m -+++-=,即()()2310.m a b ab t ab m m +-++-=⎡⎤⎣⎦因为,,a b m 是正整数,t 是无理数,所以()20310m a b a b a b m m ⎧+-=⎪⎨+-=⎪⎩,于是可得23131a b m ab m m+=-⎧⎨=-⎩ 因此,a b 是关于x 的一元二次方程()2231310x m x m m +-+-=的两个正整数根,该方程的判别式()()()()2231431313150.m m m m m ∆=---=--≥又因为,a b 是正整数,所以310a b m +=->,从而可得310.5m <≤又因为判别式∆是一个完全平方数,验证可知,只有6m =符合要求.把6m =代入,得231150.ab m m =-=第二试(B )一、(本题满分20分)已知1t =,若正整数,,a b m ,使()()17at m bt m m ++=成立,求ab 的值.解:因为1t =-,所以23t =-由()()17at m bt m m ++=,得()22170abt m a b t m m +++-=,将23t =-,得(())231170ab m a b m m -+++-=,整理得()()223170m a b ab ab m a b m m ⎡⎤+--++-=⎡⎤⎣⎦⎣⎦因为,,a b m 是正整数是无理数,所以2()203()170m a b ab ab m a b m m +-=⎧⎨-++-=⎩于是可得()221717a b m ab m m⎧+=-⎪⎨=-⎪⎩ 因此,a b 是关于x 的一元二次方程222(17)170x m x m m +-+-=的两个正整数根,该方程的判别式()()()()224174174171720.m m m m m ∆=---=--≥又因为,,a b m 是正整数,所以()2170a b m +=->,从而可得1702m <≤又因为判别式∆是一个完全平方数,验证可知,只有8m =符合要求.把8m =代入,得21772ab m m =-=.二、(本题满分25分)在ABC ∆中,AB AC >,O I 、分别是ABC ∆的外心和内心,且满足2AB AC OI -=, 求证:(1)OI ∥BC ;(2)2AOC AOB AOI S S S ∆∆∆-= .证明:(1)过点O 作OM BC ⊥于M ,过点I 作IN BC ⊥于N ,则OM ∥IN ,设,,BC a AC b AB c ===,由O I 、分别是ABC ∆的外心和内心,得 11,()22CM a CN a b c ==+-,所以1()2MN CM CN c b OI =-=-=, 又MN 恰好是两条平行线,OM IN 之间的垂线段,所以OI 也是两条平行线,OM IN 之间的垂线段,所以OI ∥MN ,所以OI ∥BC .(2)由(1)知OMNI 是矩形,连接,BI CI ,设OM IN r ==(即为ABC ∆的内切圆半径),则()()AOC AOB AOI COI AIC AIB AOI BOI S S S S S S S S ∆∆∆∆∆∆∆∆-=++---11112222221112()2()()2.222AOI BOI COI AIC AIB AOI AOI AOI AOI S S S S S S OI r OI r AC r AB r S r OI b c S r c b b c S ∆∆∆∆∆∆∆∆∆=+++-=+⋅⋅+⋅⋅+⋅⋅-⋅⋅⎡⎤⎡⎤=+⋅+-=+⋅-+-=⎢⎥⎢⎥⎣⎦⎣⎦ 三、(本题满分25分)若正数,,a b c 满足2222222222223222b c a c a b a b c bc ca ab ⎛⎫⎛⎫⎛⎫+-+-+-++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭求代数式222222222222b c a c a b a b c bc ca ab+-+-+-++的值. 解:由于,,a b c 具有轮换对称性,不妨设0.a b c <≤≤(1)若c a b >+,则0,0c a b c b a ->>->>,从而,得()2222211,22c b a b c a bc bc --+-=+>()2222211,22c a b c a b ca ca --+-=+>()2222211,22a b c a b c ab ab +-+-=-<-故2222222222223222b c a c a b a b c bc ca ab ⎛⎫⎛⎫⎛⎫+-+-+-++> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 这与已知条件矛盾.(2)若c a b <+,则0,0c a b c b a ≤-<≤-<,从而,得 ()22222011,22c b a b c a bc bc --+-<=+<()22222011,22c a b c a b ca ca --+-<=+< ()2222211,22a b c a b c ab ab +-+-=->-()22222011,22a b c a b c ab ab --+-<=+< 故2222222222223222b c a c a b a b c bc ca ab ⎛⎫⎛⎫⎛⎫+-+-+-++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,这与已知条件矛盾. 综合(1)(2)可知,一定有.c a b =+ 于是可得22222222()221,22()22b c a b a b a b ab bc b a b b ab+-++-+===++ 同理可得2221,2c a b ca+-=22212a b c ab +-=-. 故2222222221.222b c a c a b a b c bc ca ab+-+-+-++=。
2013年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c ,满足⎩⎪⎨⎪⎧a +2b+3c =02a +3b+4c =0则ab +bc +caa 2+b 2+c 2的值为( )(A )—12 (B )0 (C )12 (D )12.已知a ,b ,c 是实常数,关于x 的一元二次方程ax 2+bx +c =0有两个非零实根x 1,x 2,则下列关于x 的一元二次方程中,以1 x 12,1x 22为两个实根的是( )(A )c 2x 2+(b 2-2ac )x +a 2=0 (B )c 2x 2—(b 2-2ac )x +a 2=0 (C )c 2x 2+(b 2-2ac )x —a 2=0 (D )c 2x 2—(b 2-2ac )x —a 2=03.如图,在R t △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E ,若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ) (A )OD (B )OE (C )DE (D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC =4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( )(A )3 (B )4 (C )6 (D )85.对于任意实数x ,y ,z ,定义运算“*”为:x y *=3x 3y +3x 2y 2+xy 3+45(x +1)3+(y +1)3—60,且x y z=x y z ****(),则2013201232****…的值为( ) (A )607967 (B )1821 967 (C )5463 967 (D )16389967二、填空题(共5小题,每小题7分,共35分)6.设a ,b 是a 2的小数部分,则(b +2)3的值为____________.7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别为3,4,5,则四边形AEFD 的面积是____________.8.已知正整数a ,b ,c 满足a +b 2—2c —2=0,3a 2—8b +c =0,则abc 的最大值为__________.9.实数a ,b ,c ,d 满足:一元二次方程x 2+cx +d =0的两根为a ,b ,一元二次方程x 2+ax +b =0的两根为c ,d ,则所有满足条件的数组(a ,b ,c ,d )为___________________________________.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有卖完,但是他的销售收入恰好是2013元,则他至少卖出了__________支圆珠笔.三、解答题(共4题,每题20分,共80分)11.如图,抛物线y =ax 2+bx —3,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA ,直线y =—13x 2+1与y 轴交于点D ,求∠DBC -∠CBE .12.设△ABC 的外心,垂心分别为O ,H ,若B ,C ,H ,O 共圆,对于所有的△ABC ,求∠BAC 所有可能的度数.13.设a ,b ,c 是素数,记x =b +c -a ,y =c +a -b ,z =a +b -c ,当z 2=y ,x -y =2时,a ,b ,c 能否构成三角形的三边长?证明你的结论.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,(第4题)ABED (第7题)ACO DE (第3题)第 3 页 共 7 页把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,…,a n ,满足对任意一个正整数m ,在a 1,a 2,…,a n 中都至少有一个为m 的魔术数.2013年全国初中数学竞赛试题参考答案一、选择题1.【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12b x x a +=-,12cx x a=,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c --+=,即2222(2)0c x b ac x a --+=.3.【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 5.【答案】 C(第3题答题)(第4题答题)(第3题)(第4题)【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.【答案】9【解答】由于2123a a <<<<,故222b a =-=-,因此33(2)9b +==.7.【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9. 【答案】(1212),,,--,(00),,,-t t (t 为任意实数) 【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b(第7题答题)第 5 页 共 7 页由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC -∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B . 将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =CE BE =因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠.所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.(第11题答题)(第11题)因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
2013年广西“创新杯”数学竞赛高一初赛试题参考解答及评分标准一、选择题(每小题6分,共36分)1.已知实数c b a ,,两两不等,若a c zc b y b a x −=−=−,则实数=++z y x ( ). (A)-1 (B)0 (C)21(D)3答:B . 解析:设k ac z c b y b a x =−=−=−,则有)(),(),(a c k z c b k y b a k x −=−=−=,于是有0=++z y x .2.化简232532233232−−−−−=( ). (A)0 (B)1 (C)2 (D)3 答:A . 解析:分母有理化得:)232(10563)3223()23(2232532233232=+−×+−+=−−−−−3.已知集合},36|{Z x N xx A ∈∈−=,则集合A 中的元素个数为( ). (A)1 (B)2 (C)3 (D)4 答:D. 解析:}2,1,0,3{},36|{−=∈∈−=Z x N xx A . 4.从1,2,…7中选择若干个数,使得其中偶数之和等于奇数之和.则符合条件的取法有( )种.(A) 6 (B) 7 (C) 8 (D) 9 答:B. 解析:注意到,2+4+6=12,故所取出的数之和不大于24. 又12=2+4+6=5+7,10=4+6=3+7,8=2+6=1+7=3+5,6=6=2+4=1+5,4=4=1+3, 故有7种取法.5.若0,2<+∈a a R a ,那么22,,,a a a a −−的大小关系为( ).(A)a a a a −>−>>22 (B)a a a a >−>>−22 (C)22a a a a −>>>− (D)22a a a a −>>−> 答:B . 解析:由010)1(2<<−⇒<+=+a a a a a ,即2a a >−,又a a >−2,得B.6.观察下列各式:则234749,7343,72401===,…,则20137的末两位数字为( ). (A)01 (B)43 (C)07 (D)49答案:C.解析:x x f 7)(=,",16807)5(,2401)4(,343)3(,49)2(,7)1(=====f f f f f ,07)2013("=f 。
2013年全国初中数学竞赛(海南赛区)数 学 试 卷(本试卷共4页,满分120分,考试时间:3月10日8:30——10:30)一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内1、3-x 的相反数是-6,那么x 的值为A .-3B .3C .6D .92、从甲、乙两名男生和A 、B 两名女生中随机选出一名男生和一名女生,则恰好选中甲男生和A 女生的概率是 A .21 B .43 C .81 D . 413、如图1,∠AOB =180°,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线, 则下列各角中与∠COD 的互补的是 A .∠COEB .∠AOCC .∠AOD D .∠BOD4、如图2,在Rt △ADB 中,∠D =90°,C 为AD 上一点,∠ACB =6x ,则x 值可以是A .10°B .20°C .30°D .40°5、已知a 是质数,b 是奇数,且20132=+b a ,则a +b +2的值为A .2009B .2011C .2013D .20156、有这样的数列:3、7、12、18、25……,则第10个数是A .65B .70C .75D .807、轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的图1ACBDEO图2C水流速度增大 (水流的速度总小于船在静水中的速度) 时,船往返一次所用的时间将 A .增多B .减少C .不变D .以上都有可能8、如图3,矩形AOBC 的面积为8,反比例函数xky =的图象经过矩形的对角线的交点P ,则反比例函数的解析式是A .x y 8=B .x y 2=C .x y 4=D .x y 1=9、 图4是由大小一样的小正方形组成的网格,△ABC 的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落在小正方形的顶点上,且与△ABC 成轴对称的三角形共有 A .5个 B .4个C .3个D .2个10、如图5是半径为2的圆,圆心A 坐标为(1,-1),点M 是圆上的动点,则点M 的坐标不可能为 A .(2,0)B .(0,-2)C .(2,-2)D .(1,-2)二、填空题(本大题满分40分,每小题5分)11、分解因式:9x 2-12xy +4y 2=_________________. 12、 计算:5252552---=__________.13、若128421=⋅+xx ,则x 的值为__________.14、已知关于x 的方程x 2-4x +a =0的两个实数根x 1、x 2满足3 x 1-x 2=0,则a =________. 15、在△ABC 中,AB =5,AC =9,则BC 边上的中线AD 的长的取值范围是__________. 16、如图6,在平面直角坐标系中,直线AB 由直线y =3x 沿x 轴向左平移3个单位长度所得,则直线AB 与坐标轴所围成的三角形的面积为__________. 17、如图7,已知正方形ABCD 中,点M 在边CD 上,且DM =3, MC =1,把线段AM 绕点A 顺时针旋转,使点M 落在BC 所在图4C图7 ACBD M ACBDE的直线上的点N处,则N、C两点的距离为__________.18、如图8,在△ABC中,AB=10, ∠BAC的平分线AD交BD于点D,且BD⊥AD,DE∥AC交AB于E,则DE的长是__________.三、解答题(本大题满分30分,每小题15分)19、海南省某种植园收获香蕉20000千克,其中香牙蕉12000千克、黄帝蕉8000千克,准.备.运往海口与文昌销售;根据市场供需,海口需要香蕉15000千克,文昌需要香蕉5000千克,海口与文昌两地的香蕉售价如下表所示:(1)若该种植园供应海口市的香牙蕉与黄帝蕉的比是2:1,请问该种植园供应文昌市的香牙蕉与黄帝蕉各是多少千克?(2)若海口与文昌的香蕉都能在保质期内销售完,请你设计一种销售方案,使销售的收入最大,并估算出获得的最大销售收入.20、如图9,在平面直角坐标系xoy内,正方形AOBC的顶点A、O、B、C的坐标分别为(0,1)、(0,0)、(1,0)、(1、1),过点B的直线MN与OC平行,AC的延长线交MN于点D,点P是直线MN上的一个动点,CQ∥OP交MN于点Q.(1)求直线MN的函数解析式;猜想:若点P运动到x轴的下方时,△OBP与△CDQ是否依然全等?((3)当四边形OPQC为菱形时,①请求出点P的坐标;②请求出∠POC的度数.海南省2013初中数学竞赛初赛试题参考答案一、选择题(本大题满分50分,每小题5分)答案提示:4、由三角形外角大于任何一个不相邻的内角与∠ACB 小于180°可知90°<6x <180°,由此可得15°<x <30°,故选择B .5、a 是质数,b 是奇数,且20132=+b a ,所以a 、b 必是一奇一偶,所以可求得a =2,b=2009,所以a +b +2=2013.6、由数列3、7、12、18、25……可判断存在的规律为:第①个数为3,第②个数为3+4,第③个数为3+4+5,第④个数为3+4+5+6,第⑤个数为3+4+5+6+7……如此可断定第⑩个数为3+4+5+……+12=75,故选择C .7、设两码头之间的航程为S ,船在静水中的速度为a ,水流的速度为b ,则船顺水所需的时间为b a S +船逆水所需的时间为b a S-,则船往返一次所需的时间为b a S ++b a S -=222b a aS-由此可判断船在静水中的速度不变与水流的速度总小于船在静水中的速度的条件下,水流的速度b 越大,a 2-b 2越小,船往返一次所需的时间为222ba aS-就越大,故选择A .8、由矩形AOBC 的面积为8,可求矩形PEOF 的面积为2, 又点P 在第一象限,所以K =2, 故选择B .9、 如图,分别以大的正方形中间”十”字所在的直线为对称轴可画出2、3两图,分别以正方形对角线所在直线为对称轴可画出4、5两图,再加上第1幅图,总共有5个符合条件的三角形,故选择A .10、若点M 在圆上,点M 与圆心A 的距离等于圆的半径2,容易判断点(2,0)是圆A 与X 轴正半轴的交点、点(0,-2)是圆A 与y 轴负半轴的交点,另外,可以通过构造直角三角形判断点(2,-2)与圆心A 的距离等于2,也可以用两点公式求出点(2,-2)与圆心A 的距离等于2,因此A 、B 、C 三个选项中的点均在圆上,而点(1,-2)与圆心A 的距离等于1,小于圆A 的半径,点(1,-2)不在圆上,故选择D .二、填空题(本大题满分40分,每小题5分)11、(3x -2y )212、5- 13、2 14、3 15、2<x <716、13.5 17、1或7 18、5 答案提示:12、55255252)52(55252552-=-=---=---13、由 128421=⋅+x x 得 721222=⋅+x x 所以有 72)1(=++x x 所以 x 的值为2.因为关于x 的方程x 2-4x +a =0的两个实数根为x 1、x 2,由根与系数的关系得x 1+x 2=4,所以⎩⎨⎧=+=-4032121x x x x ,解得⎩⎨⎧==3121x x ,所以a =3.15、构造右图,延长中线AD 到A ’,使AD =A ’D , 可证△ABD ≌△A ’CD ,设AD =x ,AA ’=2 x ,由三角形三边不等关系可得 9-5<2x <9+5,从而有2<x <7.16、设直线AB 的解释式为y =3x+b , 由题意可知直线AB 过点(-3、0),故b =9,所以A CBDA ’直线AB 与y 轴的交点为(0,9),则直线AB 与坐标轴所围成的三角形的面积为3×9÷2=13.5平方单位.17、如图7,把线段AM 绕点A 画弧,可见N 、C 两点的距离存在两种情况:①点N 在边BC 上,②点N 在边CB 的延长线上;可以证明△ADM ≌△ABN ≌△ABN ’,所以有BN =BN ’=DM =3,所以N 、C 两点的距离是:1或7.18、提示:可证AE =DE ,BE =DE ,由此得到DE 的长是5.三、解答题(本大题满分30分,每小题15分)19、解:(1)设种植园应向海口供应的黄帝蕉有x 千克,则向海口供应的香牙蕉有2x 千克,根据题意列方程得:2x +x =15000,解得:x =5000,则2x =10000所以种植园供应文昌市的香牙蕉应为12000-10000=2000千克,植园供应文昌市的黄帝蕉应为5000-2000=3000千克.(2)设应安排m 千克香牙蕉在海口市销售,则在海口市销售的黄帝蕉为(15000-m )千克;在文昌市销售的香牙蕉与黄帝蕉分别为(12000-m )千克、(m -7000)千克,则这批香蕉的销售收入y 与m 的函数关系式为:y =4.8m +5(15000-m )+3.6(12000-m )+4.2(m -7000) 即y =0.4m +88800 (7000≤m ≤12000)从函数关系式看m 的值越大,销售收入y 就越大,即香牙蕉应尽可能多地安排在海口市销售,所以若要使销售收入最大,需安排12000千克香牙蕉与3000千克黄帝蕉在海口市卖,安排5000千克黄帝蕉在文昌市卖,最大销售收入为y =0.4×12000+88800=93600(元) . 20、解:(1)设直线OC 的解析式为y =kx ,∵直线OC 过点C (1、1),∴k =1, ∴直线OC 的解析式为y =x ∵直线MN 与OC 平行,∴可设直线MN 的解析式为y =x +b , ∵直线y =x +b 过点B (1,0),∴b =-1,∴直线MN 的函数解析式为y =x -1(此题也可以通过求点B 、D 的坐标,再利用待定系数法求直线MN 的解析式)图7ACBDN N ’ M(2)当点P 在x 轴的上方时 ∵四边形AOBC 是正方形∴OB =BC ,∠BCD =∠ACB =90°,∠BCO =45° 又MN 与OC 平行∴∠CBD = ∠BCO =∠BDC = 45°,∴BC =OB =CD 由AC ∥OB 知AD ∥OB ∴∠OBP = ∠CDQ ∵CQ ∥OP ∴∠OPB = ∠CQD ∴△OBP ≌△CDQ同理可知,若点P 运动到x 轴的下方,△OBP 与△CDQ 依然全等 (3)①设点P 的横坐标为(a ,b )因为点P 在直线y =x -1上,则点P 的坐标可表示为(a ,a -1) 若四边形OPQC 为菱形,则有OP =OC =2 作PF ⊥x 轴于点F ,在Rt △OPF 中有 OF 2+PF 2=OP 2即2)1(22=-+a a解得:2311+=a ,2312-=a 则2131-=b ,2132+-=b 即当四边形OPQC 为菱形时,点P 的坐标为(231+,213-)或(231-,213+-) ②由①知点P 存在两种情况使四边形OPQC 为菱形,即点P 在第一象限与第三象限 ⅰ)当点P 在第一象限时(如点P 1),方法一(如图9A ):过点C 作CH ⊥MN 于点H , 则△CHQ 是直角三角形,由(2)的证明可知△BCD 是等腰直角三角形,且 BC =OB =CD =1 ∴CH =22,若四边形OPQC 为菱形,则有CQ =OC =2, ∴CH =21OC ∴∠CQH =30° ∴∠P 1OC = 30° 方法二(如图9B ):连接AB 交OC 于点G ,过点P 1作P 1H ⊥OC 于点H 则△OP 1H 是直角三角形,在正方形AOBC 中有AB ⊥OC ,又MN ∥OC ,∴∠BGH = ∠P 1HG =∠GB P 1= 90° ∴四边形P 1BGH 是矩形,又四边形OPQC 为菱形∴P 1H =BG =21AB =21OC =21O P 1∴∠P 1OC = 30°ⅱ)当点P 在第三象限时(如点P 2),令x =0,则y =x -1=-1,即直线MN 与y 轴的交点E 的坐标为(0,-1) 则OE =OB ,则∠OEB =∠OBE = 45°则∠OEP 2=∠OBP 1= 135° 又四边形OPQC 为菱形∴O P 2=O P 1 =OC ∴∠O P 2E =∠O P 1B ∴△O P 2E ≌△O P 1B (AAS ) ∴∠E O P 2=∠B O P 1∵∠B O P1=∠B O C-∠P1OC=45°-30°=15°∴∠E O P2=15°,∴∠P2OC=150°综合以上论述可知,当四边形OPQC为菱形时,∠POC的度数为30°或150°。
2013年初一级数学竞赛试卷
班别 姓名 评分
1.(5分)下列图形中,不能..
经过折叠围成正方形的是( )
(A
) (B ) (C )
(D )
2.(5分)一个物体的三视图如图所示,该物体是( )
A 、圆柱
B 、圆锥
C 、棱锥
D 、棱柱
3.(5分)正视图、左视图和俯视图完全相同的几何体是( )
4.(5分)一个三棱柱的侧面数、顶点数分别为。
( )
A 、3,6
B 、4,10
C 、5,15
D 、6,15
5.(3分)从一个五边形的某个顶点出发,分别连接这个点与其余各个顶点,可以将这个五边形分割成________三角形。
( )
A 、2个
B 、3个
C 、4个
D 、5个
6.(15分)在有理数中:绝对值等于它本身的数是______;相反数是它本身的数有______;倒数是它本身的数有______;平方等于它本身的数有______;立方等于它本身的数有_______.
第1题图 第2题图
第3题图
7.(10分)想一想:如图所示图形表面分别标上字母A 、B 、C 、D 、E 、F ,问这个正方体各个面上的字母对面各是什么字母?
E C
D B A C F
D A
8.(12分)计算下列各题:
(1))3(3----. (2))124.0311(43+--⨯-
.
9·(10分)若要使得下图中平面展开图折叠成正方体后,相对面上的两个数之和为5,先写出x,y,z 的值,再求x+y+z 的值.
10.(30分)某商场国庆节搞促销活动,购物不超过200元不给优惠,超过200元而不足500元的优惠10%,超过500元的,其中500元按9折优惠,超过的部分按8折优惠,某人两次购物分别用了134元,466元。
(1)此人两次购物其物品实际值多少元?
(2)在这次活动中他节省了多少钱?
(3)若此人将这两次的钱合起来一次购物是更节省还亏损?说明你的理由。