【最新】湖南中考面对面新课标中考数学总复习 第7课时 一元二次方程及其应用含三年中考pdf
- 格式:pdf
- 大小:1.65 MB
- 文档页数:7
2021年中考数学真题分项汇编【全国通用】(第02期)专题7一元二次方程及应用姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·海南中考真题)用配方法解方程2650x x -+=,配方后所得的方程是( )A .2(3)4x +=-B .2(3)4x -=-C .2(3)4x +=D .2(3)4x -=【答案】D【分析】直接利用配方法进行配方即可.【详解】解:2650x x -+= 22223353x x -⨯+=-+()234x -=故选:D .【点睛】本题考查了配方法,解决本题的关键是牢记配方法的步骤,本题较基础,考查了学生对基础知识的掌握与基本功等.2.(2021·河南中考真题)若方程2x 2x m 0-+=没有实数根,则m 的值可以是( )A .1-B .0C .1 D【答案】D【分析】直接利用根的判别式进行判断,求出m 的取值范围即可.【详解】解:由题可知:“△<0”,∴()2240m --<,∴1m >,故选:D .【点睛】本题考查了一元二次方程根的判别式,解决本题的关键是掌握当“△<0”时,该方程无实数根,本题较基础,考查了学生对基础知识的理解与掌握.3.(2021·广西玉林市·中考真题)已知关于x 的一元二次方程:2x 2x m 0-+=有两个不相等的实数根1x ,2x ,则( )A .120x x +<B .120x x <C .121x x >-D .121x x < 【答案】D【分析】根据题意及一元二次方程根的判别式可得440m ->,然后再根据一元二次方程根与系数的关系可进行求解.【详解】解:∵关于x 的一元二次方程:2x 2x m 0-+=有两个不相等的实数根1x ,2x ,∴440m ->,解得:1m <, ∴由韦达定理可得:121220,1b c x x x x m a a+=-=>==<, ∴只有D 选项正确;故选D .【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.4.(2021·山东聊城市·中考真题)关于x 的方程x 2+4kx +2k 2=4的一个解是﹣2,则k 值为( ) A .2或4B .0或4C .﹣2或0D .﹣2或2 【答案】B【分析】把x =-2代入方程即可求得k 的值;【详解】解:将x =-2代入原方程得到:22-8+4=4k k ,解关于k 的一元二次方程得:k =0或4,故选:B .【点睛】此题主要考查了解一元二次方程相关知识点,代入解求值是关键.5.(2021·湖南怀化市·中考真题)对于一元二次方程22340x x -+=,则它根的情况为( ) A .没有实数根B .两根之和是3C .两根之积是2-D .有两个不相等的实数根 【答案】A【分析】先找出2,3,4a b c ==-=,再利用根的判别式判断根的情况即可.【详解】解:22340x x -+=∵2,3,4a b c ==-=∴2=4932230b ac ∆-=-=-<∴这个一元二次方程没有实数根,故A 正确、D 错误. ∵122c x x a==,故C 错误. 123+-2b x x a ==,故B 错误. 故选:A .【点睛】本题考查一元二次方程根的情况、根的判别式、根与系数的关系、熟练掌握∆<0,一元二次方程没有实数根是关键.6.(2021·湖北荆州市·中考真题)定义新运算“※”:对于实数m ,n ,p ,q ,有[][],,m p q n mn pq =+※,其中等式右边是通常的加法和乘法运算,如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根,则k 的取值范围是( )A .54k <且0k ≠B .54k ≤C .54k ≤且0k ≠D .54k ≥ 【答案】C【分析】按新定义规定的运算法则,将其化为关于x 的一元二次方程,从二次项系数和判别式两个方面入手,即可解决.【详解】解:∵[x 2+1,x ]※[5−2k ,k ]=0,∴()()21520k x k x ++-=. 整理得,()2520kx k x k +-+=. ∵方程有两个实数根,∴判别式0≥且0k ≠.由0≥得,()225240k k --≥, 解得,54k ≤. ∴k 的取值范围是54k ≤且0k ≠. 故选:C【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点,正确理解新定义的运算法则是解题的基础,熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制,要引起高度重视.7.(2021·山东济宁市·中考真题)已知m ,n 是一元二次方程220210x x +-=的两个实数根,则代数式22m m n ++的值等于( )A .2019B .2020C .2021D .2022 【答案】B【分析】根据一元二次方程根的定义得到22021m m +=,则22=2021+m m n m n +++,再利用根与系数的关系得到1m n +=-,然后利用整体代入的方法计算.【详解】解:∵m 是一元二次方程220210x x +-=的实数根,∴220210m m +-=,∴22021m m +=,∴2222021m m n m m m n m n ++=+++=++,∵m 、n 是一元二次方程220210x x +-=的两个实数根,∴1m n +=-,∴22202112020m m n ++=-=,故选:B .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程20(a 0)++=≠ax bx c 的两根时,12b x x a+=-,12c x x a=.也考查了一元二次方程的解. 8.(2021·黑龙江鹤岗市·中考真题)有一个人患了流行性感冒,经过两轮传染后共有144人患了流行性感冒,则每轮传染中平均一个人传染的人数是( )A .14B .11C .10D .9【答案】B【分析】设每轮传染中平均一个人传染了x 个人,由题意可得()11144x x x +++=,然后求解即可.【详解】解:设每轮传染中平均一个人传染了x 个人,由题意可得: ()11144x x x +++=,解得:1211,13x x ==-(舍去),故选B .【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.9.(2021·内蒙古通辽市·中考真题)随着互联网技术的发展,我国快递业务量逐年增加,据统计从2018年到2020年,我国快递业务量由507亿件增加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x ,则可列方程为( )A .()50712833.6x +=B .()50721833.6x ⨯+=C .()25071833.6x +=D .()()250750715071833.6x x ++++=【答案】C【分析】根据题意,业务量由507亿件增加到833.6亿件,2020年快递业务量为833.6亿件,逐年分析即可列出方程.【详解】设从2018年到2020年快递业务量的年平均增长率为x ,2018年我国快递业务量为:507亿件,2019年我国快递业务量为:507507x +=507(1)x +亿件,2020年我国快递业务量为:507(1)x ++2507(1)=507(1)x x x ++,根据题意,得:()25071833.6x +=故选C .【点睛】本题考查了一元二次方程的应用,解题的关键是:找准等量关系,正确列出一元二次方程.10.(2021·内蒙古通辽市·中考真题)关于x 的一元二次方程()2310x k x k ---+=的根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定【答案】A【分析】先计算判别式,再根据一元二次方程根与判别式的关系即可得答案.【详解】△=[-(k -3)]2-4(-k +1)=k 2-6k +9+4k -4=(k -1)2+4,∵(k -1)2≥0,∴(k -1)2+4≥4,∴方程有两个不相等的实数根,故选:A .【点睛】本题考查的是根的判别式,对于一元二次方程ax 2+bx +c =0(a ≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.11.(2021·湖南张家界市·中考真题)对于实数,a b 定义运算“☆”如下:2a b ab ab =-☆,例如23336222⨯-⨯==☆,则方程12x =☆的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【答案】D【分析】本题根据题目所给新定义将方程12x =☆变形为一元二次方程的一般形式,即20ax bx c ++=的形式,再根据根的判别式24b ac ∆=-的值来判断根的情况即可.【详解】解:根据题意由方程12x =☆得: 22x x -=整理得:220x x --=根据根的判别式2141(2)90∆=-⨯⨯-=>可知该方程有两个不相等实数根.故选D .【点睛】本题主要考查了根的判别式,根据题目所给的定义对方程进行变形后依据∆的值来判断根的情况,注意0∆>时有两个不相等的实数根;0∆=时有一个实数根或两个相等的实数根;∆<0时没有实数根. 12.(2021·福建中考真题)某市2018年底森林覆盖率为63%.为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力开展植树造林活动,2020年底森林覆盖率达到68%,如果这两年森林覆盖率的年平均增长率为x ,那么,符合题意的方程是( )A .()0.6310.68x +=B .()20.6310.68x += C .()0.63120.68x +=D .()20.63120.68x += 【答案】B【分析】设年平均增长率为x ,根据2020年底森林覆盖率=2018年底森林覆盖率乘()21x +,据此即可列方程求解.【详解】解:设年平均增长率为x ,由题意得:()20.6310.68x +=,故选:B .【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可. 13.(2021·吉林长春市·中考真题)关于x 的一元二次方程260x x m -+=有两个不相等的实数根,则m 的值可能是( )A .8B .9C .10D .11 【答案】A【分析】先根据判别式>0,求出m 的范围,进而即可得到答案.【详解】解:∵关于x 的一元二次方程260x x m -+=有两个不相等的实数根,∴()26410m ∆=--⨯⨯>,解得:m <9,m 的值可能是:8.故选:A.【点睛】本题主要考查一元二次方程根的判别式与根的情况的关系,掌握一元二次方程有两个不等的实数解,则240b ac ∆=->,是解题的关键.14.(2021·四川宜宾市·中考真题)若m 、n 是一元二次方程x 2+3x ﹣9=0的两个根,则24m m n ++的值是( )A .4B .5C .6D .12【答案】C【分析】由于m 、n 是一元二次方程x 2+3x −9=0的两个根,根据根与系数的关系可得m +n =−3,mn =−9,而m 是方程的一个根,可得m 2+3m −9=0,即m 2+3m =9,那么m 2+4m +n =m 2+3m +m +n ,再把m 2+3m 、m +n 的值整体代入计算即可.【详解】解:∵m 、n 是一元二次方程x 2+3x −9=0的两个根,∴m +n =−3,mn =−9,∵m 是x 2+3x −9=0的一个根,∴m 2+3m −9=0,∴m 2+3m =9,∴m 2+4m +n =m 2+3m +m +n =9+(m +n )=9−3=6.故选:C .【点睛】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程ax 2+bx +c =0(a ≠0)两根x 1、x 2之间的关系:x 1+x 2=−b a -,x 1•x 2=c a. 15.(2021·湖北襄阳市·中考真题)随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( )A .()2500014050x +=B .()2405015000x += C .()2500014050x -=D .()2405015000x -= 【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得: ()25000-x =40501故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.16.(2021·山东菏泽市·中考真题)关于x 的方程()()2212110k x k x -+++=有实数根,则k 的取值范围是( )A .14k >且1k ≠B .14k ≥且1k ≠C .14k >D .14k ≥【答案】D【分析】根据方程有实数根,利用根的判别式来求k 的取值范围即可.【详解】解:当方程为一元二次方程时,∵关于x 的方程()()2212110k x k x -+++=有实数根,∴()()22121410k k ∆=+-⨯⨯≥-,且 1k ≠, 解得,14k ≥且1k ≠, 当方程为一元一次方程时,k =1,方程有实根 综上,14k ≥故选:D .【点睛】本题考查了一元二次方程方程的根的判别式,注意一元二次方程方程中0a ≠,熟悉一元二次方程方程的根的判别式的相关性质是解题的关键.二、填空题17.(2021·江苏南京市·中考真题)设12,x x 是关于x 的方程230x x k -+=的两个根,且122x x =,则k =_______.【答案】2【分析】先利用根与系数的关系中两根之和等于3,求出该方程的两个根,再利用两根之积得到k 的值即可.【详解】 解:由根与系数的关系可得:123x x +=,12·x x k =, ∵122x x =,∴233x =,∴21x =,∴12x =,∴122k =⨯=; 故答案为:2. 【点睛】本题考查了一元二次方程根与系数之间的关系,解决本题的关键是牢记公式,即对于一元二次方程()200ax bx c a ++=≠,其两根之和为 b a -,两根之积为ca.18.(2021·湖北十堰市·中考真题)对于任意实数a 、b ,定义一种运算:22a b a b ab ⊗=+-,若()13x x ⊗-=,则x 的值为________.【答案】1-或2 【分析】根据新定义的运算得到()()()221113x x x x x x ⊗-=+---=,整理并求解一元二次方程即可. 【详解】解:根据新定义内容可得:()()()221113x x x x x x ⊗-=+---=, 整理可得220x x --=, 解得11x =-,22x =,故答案为:1-或2. 【点睛】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键.19.(2021·青海中考真题)已知m 是一元二次方程260x x +-=的一个根,则代数式2m m +的值等于______. 【答案】6 【分析】利用一元二次方程的解的定义得到m 2+m =6即可. 【详解】解:∵m 为一元二次方程260x x +-=的一个根. ∴m 2+m -6=0, ∴m 2+m =6, 故答案为6.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 20.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 【答案】23- 【分析】根据非负性求得a 、b 的值,再根据一元二次方程根与系数关系求得1x +2x 、1x 2x ,代入12121211=x x x x x x ++求解即可. 【详解】解:∵实数a 、b30b +=, ∴a ﹣2=0,b +3=0, 解得:a =2,b =﹣3, ∴2230x x --=,∵一元二次方程2230x x --=的两个实数根分别为1x 、2x , ∴1x +2x =2,1x 2x =﹣3,∴12121211=x x x x x x ++=23-,故答案为:23-. 【点睛】本题考查代数式求值、二次根式被开方数的非负性、绝对值的非负性、一元二次方程根与系数,熟练掌握非负性和一元二次方程根与系数关系是解答的关键.21.(2021·黑龙江绥化市·中考真题)已知,m n 是一元二次方程2320x x --=的两个根,则11m n+=__________. 【答案】32-运用一元二次方程根与系数的关系求解即可. 【详解】解: ∵,m n 是一元二次方程2320x x --=的两个根, 根据根与系数的关系得:3b m n a +=-=,2cmn a==-, ∴211=3m n m n mn +-+=, 故答案为:32-.【点睛】本题主要考查一元二次方程根与系数的关系,熟知1212a x cx a x x b +=-=,是解题关键.22.(2021·湖南娄底市·中考真题)已知2310t t -+=,则1t t+=________.【答案】3. 【分析】先将要求解的式子进行改写整理再利用已知方程进行求解即可. 【详解】解:22111t t t t t t t++=+=,又∵2310t t -+=, ∴213t t +=,则2113=3t tt t t t++==,故答案为:3. 【点睛】本题是一元二次方程求对应解的题目,解题的关键是将求解式子进行变形再利用已知方程进行简便运算. 23.(2021·湖北中考真题)关于x 的方程2220x mx m m -+-=有两个实数根,αβ.且111αβ+=.则m =_______. 【答案】3先根据一元二次方程的根与系数的关系可得22,m m m αβαβ+==-,再根据111αβ+=可得一个关于m的方程,解方程即可得m 的值. 【详解】解:由题意得:22,m m m αβαβ+==-,111αβαβαβ++==, 221mm m∴=-,化成整式方程为230m m -=, 解得0m =或3m =,经检验,0m =是所列分式方程的增根,3m =是所列分式方程的根, 故答案为:3. 【点睛】本题考查了一元二次方程的根与系数的关系、解分式方程,熟练掌握一元二次方程的根与系数的关系是解题关键.24.(2021·江苏盐城市·中考真题)劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为________.【答案】2300(1)363x += 【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程. 【详解】解:设平均每年增产的百分率为x ; 第一年粮食的产量为:300(1+x );第二年粮食的产量为:300(1+x )(1+x )=300(1+x )2; 依题意,可列方程:300(1+x )2=363;故答案为:300(1+x )2=363. 【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .25.(2021·四川宜宾市·中考真题)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x ,则可列方程__________.【答案】()26521960x += 【分析】根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值,按照数量关系列方程即可得解. 【详解】解:根据题意,第一季度地区生产总值(1⨯+平均增长率2)=第三季度地区生产总值列方程得:()26521960x +=, 故答案为:()26521960x +=. 【点睛】本题主要考查了增长率的实际问题,熟练掌握相关基本等量关系是解决本题的关键.26.(2021·山东枣庄市·中考真题)若等腰三角形的一边长是4,另两边的长是关于x 的方程260x x n -+=的两个根,则n 的值为______. 【答案】8或9 【分析】分4为等腰三角形的腰长和4为等腰三角形的底边长两种情况,再利用一元二次方程根的定义、根的判别式求解即可得. 【详解】解:由题意,分以下两种情况:(1)当4为等腰三角形的腰长时,则4是关于x 的方程260x x n -+=的一个根, 因此有24640-⨯+=n ,解得8n =,则方程为2680x x -+=,解得另一个根为2x =,此时等腰三角形的三边长分别为2,4,4,满足三角形的三边关系定理;(2)当4为等腰三角形的底边长时,则关于x 的方程260x x n -+=有两个相等的实数根, 因此,根的判别式3640n ∆=-=, 解得9n =,则方程为2690x x -+=,解得方程的根为123x x ==,此时等腰三角形的三边长分别为3,3,4,满足三角形的三边关系定理; 综上,n 的值为8或9, 故答案为:8或9. 【点睛】本题考查了一元二次方程根的定义、根的判别式、等腰三角形的定义等知识点,正确分两种情况讨论是解题关键.需注意的是,要检验三边长是否满足三角形的三边关系定理.27.(2021·辽宁本溪市·中考真题)若关于x 的一元二次方程2320x x k --=有两个相等的实数根,则k 的值为________. 【答案】13-. 【分析】根据关于x 的一元二次方程2320x x k --=有两个相等的实数根,得出关于k 的方程,求解即可. 【详解】∵关于x 的一元二次方程2320x x k --=有两个相等的实数根, ∴△=()()2243k --⨯⨯-=4+12k =0, 解得k =13-. 故答案为:13-. 【点睛】本题考查了运用一元二次方程根的判别式,当△>0时,一元二次方程有两个不相等的实数根;当△=0时,一元二次方程有两个相等的实数根;当△< 0时,一元二次方程没有实数根.28.(2021·辽宁营口市·中考真题)已知关于x 的一元二次方程2210x x m +-+=有两个实数根,则实数m 的取值范围是_________. 【答案】2m ≤ 【分析】利用一元二次方程根的判别式即可求解. 【详解】解:∵一元二次方程2210x x m +-+=有两个实数根, ∴()4410m ∆=--+≥,解得2m ≤, 故答案为:2m ≤. 【点睛】本题考查一元二次方程根的情况,掌握一元二次方程根的判别式是解题的关键.29.(2021·江苏宿迁市·中考真题)若关于x 的一元二次方程x 2 +ax -6=0的一个根是3,则a = 【答案】-1 【分析】把x =3代入一元二次方程即可求出a . 【详解】解:∵关于x 的一元二次方程x 2 +ax -6=0的一个根是3, ∴9+3a -6=0, 解得a =-1. 故答案为:-1 【点睛】本题考查了一元二次方程的根的意义,一元二次方程方程的解又叫一元二次方程的根,熟知一元二次方程根的意义是解题的关键.三、解答题30.(2021·湖北荆州市·中考真题)已知:a 是不等式()()528617a a -+<-+的最小整数解,请用配方法解关于x 的方程2210x ax a +++=.【答案】1x =2x =【分析】先解不等式,结合已知得出a 的值,然后利用配方法解方程即可 【详解】解:∵()()528617a a -+<-+; ∴5108667a a -+<-+; ∴3a -<; ∴-3a >;∵a 是不等式()()528617a a -+<-+的最小整数解, ∴=-2a ;∴关于x 的方程2-4-10x x =; ∴2-4+45x x =; ∴()2-25x =;∴-2=x∴1x =2x = 【点睛】本题考查了解不等式以及解一元二次方程,熟练掌握相关的运算方法是解题的关键.31.(2021·湖南永州市·中考真题)若12,x x 是关于x 的一元二次方程20ax bx c ++=的两个根,则1212,b cx x x x a a+=-⋅=.现已知一元二次方程220px x q ++=的两根分别为m ,n .(1)若2,4m n ==-,求,p q 的值;(2)若3,1p q ==-,求m mn n ++的值. 【答案】(1)1,8p q ==-;(2)-1. 【分析】根据一元二次方程根与系数的关系得到2,qmn p m n p+=-=. (1)把2,4m n ==-,代入2,qmn p m n p+=-=,即可求出,p q 的值;(2)把3,1p q ==-,代入2,q mn p m n p +=-=,得到,2133m n mn +=-=-.利用整体代入即可求解. 【详解】解:∵已知一元二次方程220px x q ++=的两根分别为m ,n , ∴2,qmn p m n p+=-=. (1)当2,4m n ==-时,2,28qp p-=-=-, 解得1,8p q ==-,经检验,1,8p q ==-是方程的根, ∴1,8p q ==-; (2)当3,1p q ==-时,,2133m n mn +=-=-.∴21133m mn n m n mn ++=++=--=-. 【点睛】本题考查了一元二次方程根与系数的关系,根据题意得到2,qmn p m n p+=-=是解题关键. 32.(2021·北京)已知关于x 的一元二次方程22430x mx m -+=. (1)求证:该方程总有两个实数根;(2)若0m >,且该方程的两个实数根的差为2,求m 的值. 【答案】(1)见详解;(2)1m = 【分析】(1)由题意及一元二次方程根的判别式可直接进行求证;(2)设关于x 的一元二次方程22430x mx m -+=的两实数根为12,x x ,然后根据一元二次方程根与系数的关系可得212124,3x x m x x m +=⋅=,进而可得()2124x x -=,最后利用完全平方公式代入求解即可.【详解】(1)证明:由题意得:21,4,3a b m c m ==-=,∴22224164134b ac m m m ∆=-=-⨯⨯=, ∵20m ≥, ∴240m ∆=≥,∴该方程总有两个实数根;(2)解:设关于x 的一元二次方程22430x mx m -+=的两实数根为12,x x ,则有:212124,3x x m x x m +=⋅=, ∵122x x -=,∴()()2222121212416124x x x x x x m m -=+-=-=, 解得:1m =±, ∵0m >, ∴1m =. 【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.33.(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人. (1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少? 【答案】(1)10%;(2)13.31万 【分析】(1)设这两个月参观人数的月平均增长率为x ,根据题意列出等式解出x 即可; (2)直接利用(1)中求出的月平均增长率计算即可. 【详解】(1)解:设这两个月参观人数的月平均增长率为x , 由题意得:210(1)12.1x +=, 解得:110%x =,22110x =-(不合题意,舍去),答:这两个月参观人数的月平均增长率为10%.(2)12.1(110%)13.31⨯+=(万人),答:六月份的参观人数为13.31万人.【点睛】本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.34.(2021·山东东营市·中考真题)“杂交水稻之父”——袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水箱亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.【答案】(1)20%;(2)能【分析】(1)设亩产量的平均增长率为x ,依题意列出关于x 的一元二次方程,求解即可;(2)根据(1)求出的平均增长率计算第四阶段亩产量即可.【详解】解:(1)设亩产量的平均增长率为x ,根据题意得:()270011008x +=,解得:10.220%x ==,2 2.2x =-(舍去),答:亩产量的平均增长率为20%.(2)第四阶段的亩产量为()1008120%1209.6⨯+=(公斤),∵1209.61200>,∴他们的目标可以实现.【点睛】本题主要考查由实际问题抽象出一元二次方程,掌握2次变化的关系式是解决本题的关键.35.(2021·山西中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).【答案】5【分析】根据日历上数字规律得出,圈出的四个数最大数与最小数的差值为8,设最小数为x ,则最大数为+8x ,结合已知,利用最大数与最小数的乘积为65列出方程求解即可.【详解】解:设这个最小数为x .根据题意,得()865x x +=.解得15=x ,213x =-(不符合题意,舍去).答:这个最小数为5.【点睛】此题主要考察了由实际问题抽象出一元二次方程,掌握日历的特征,根据已知得出的最大数与最小数的差值是解题的关键.36.(2021·黑龙江齐齐哈尔市·中考真题)解方程:(7)8(7)x x x -=-.【答案】17x =,28x =-【分析】先移项再利用因式分解法解方程即可.【详解】解:∵(7)8(7)x x x -=-,∴(7)8(7)0x x x -+-=,∴(7)(8)0x x -+=,∴17x =,28x =-.【点睛】本题考查了解一元二次方程-因式分解法,解题的关键是找准公因式.37.(2021·湖北黄石市·中考真题)已知关于x 的一元二次方程2220x mx m m +++=有实数根. (1)求m 的取值范围;(2)若该方程的两个实数根分别为1x 、2x ,且221212x x +=,求m 的值.【答案】(1)0m ≤;(2)2m =-【分析】(1)根据方程有实数根的条件,即0∆≥求解即可;(2)由韦达定理把12x x +和12x x 分别用含m 的式子表示出来,然后根据完全平方公式将221212x x +=变形为()21212212x x x x +-=,再代入计算即可解出答案.【详解】(1)由题意可得:()()22240m m m ∆=-+≥ 解得:0m ≤即实数m 的取值范围是0m ≤.(2)由221212x x +=可得:()21212212x x x x +-=∵122x x m +=-;212x x m m =+ ∴()()222212m m m --+= 解得:3m =或2m =-∵0m ≤∴2m =-即m 的值为-2.【点睛】本题主要考查的是根的判别式、根与系数的关系,要牢记:(1)当0∆≥时,方程有实数根;(2)掌握根与系数的关系,即韦达定理;(3)熟记完全平方公式等是解题的关键.38.(2021·辽宁本溪市·中考真题)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个.(1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?【答案】(1)y =-2x +220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【分析】(1)根据题意中销售量y (个)与售价x (元)之间的关系即可得到结论;(2)根据题意列出方程(-2x +220)(x -40)=2400,解方程即可求解;(3)设每星期利润为w 元,构建二次函数模型,利用二次函数性质即可解决问题.【详解】(1)由题意可得,y =100-2(x -60)=-2x +220;(2)由题意可得,(-2x +220)(x -40)=2400,解得,170x =,280x =,∴当销售单价是70元或80元时,该网店每星期的销售利润是2400元.答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元.(3)设该网店每星期的销售利润为w 元,由题意可得w =(-2x +220)(x -40)=223008800-+-x x , 当752b x a=-=时,w 有最大值,最大值为2450, ∴当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元.【点睛】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题.。
专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .98k <B .98k ≤C .98k ≥D .98k <-3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .14.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=09.(2024·安徽·中考真题)解方程:223x x -=10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .9k <B .98k ≤C .98k ≥D .98k <-【答案】B【分析】本题考查了判别式与一元二次方程根的情况,熟知一元二次方程有实数根的条件是解题的关键.根据一元二次方程有实数根的条件是0∆≥,据此列不等式求解即可.【详解】解:∵关于x 的一元二次方程2230x x k -+=有实数根,∴()2Δ3420k =--⨯≥,解得98k ≤.故选B .3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .4.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.【答案】-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.9.(2024·安徽·中考真题)解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.【答案】(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。
考向07一元二次方程、分式方程的解法及应用—基础巩固【知识梳理】考点一、一元二次方程1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =. (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.方法指导:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.方法指导: △≥0⇔方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a c x x a b x x 2121=⋅-=+,.考点二、分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.方法指导:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.方法指导:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方法指导:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【基础巩固训练】一、选择题1. 用配方法解方程2250x x--=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25 3.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k≥﹣1C .k≠0D .k <1且k≠04.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A. S a b + B. S av b - C. S av a b -+ D. 2S a b+ 二、填空题7.方程﹣=0的解是 . 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9. 某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m = m 有实数根,则 m 的取值范围是 .三、解答题13. (1)解方程:x x x x 4143412+-=---;(2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根,(1)求m 的取值范围;(2)若方程的一个根为1,求m 的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?答案与解析一、选择题1.【答案】B;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方, 整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】D ;【解析】依题意列方程组,解得k <1且k≠0.故选D .4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x .6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为()S av -千米。
一元二次方程中考面对面一元二次方程是初中数学的重点之一,又是各级各类考试的热点.近几年来,不仅注重基础知识的考查,也注重综合能力的考查.现以中考题为例,将考点归类如下:一、考查一元二次方程或根的定义例1若关于x 的一元二次方程(m -1)x 2+3x +m 2-1=0的常数项为0,则m 的值等于 ( )A .±1;B .1 ;C .-1;D .0.析解:根据一元二次方程的有关概念知,m 2-1=0且m -1≠0,解得m=±1且m≠1,所以m=-1.故应选C.例2关于x 的一元二次方程2x 2-3x -a 2+1=0的一个根为2,则a 的值是( )A .1B .3C .-3D .±3 .析解:根据一元二次方程根的定义可知,当x=2时,8-6-a 2+1=0,即a 2=3,所以a=±3.故应选D.二、考查解方程的能力例3解方程:2410x x +-=.析解:观察方程的特点,运用配方法较为简便.配方,得x 2+4x +22=1+22,即2(2)5x +=.直接开平方,得2x -=所以,原方程的根为12x =-,22x =-注意:你觉得还可以用什么解法?请自己完成.三、考查一元二次方程根的情况例4关于x 的一元二次方程()220x mx m -+-=的根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .没有实数根;D .无法确定.析解:判断方程根的情况,只需判断b 2-4ac 的大小即可.∵b 2-4ac=(-m )2-4×1×(m -2)=m 2-4m +8=(m -2)2+4,又∵m -2)2≥0,∴(m -2)2+4>0.∴b 2-4ac>0,即方程有两个不相等的实数根.故应选A.例5已知关于x 的一元二次方程(k +1)x 2+2x -1=0有两个不相同的实数根,则k 的取值范围是 .析解:根据方程根的情况,由b 2-4ac 决定.当a≠0,b 2-4ac>0时,方程有两个不相同的实数根,即k +1≠0,b 2-4ac=22-4(k +1)×(-1)=8+4k>0,∴k ≠-1,k>-2.∴k 的取值范围是k>-2且k ≠-1.四、考查根与系数的关系例6阅读材料:如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b c x x x x a a+=-=. 这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x 1,x 2是方程x 2+6x -3=0的两根,求x 12+x 22的值.解法可以这样:∵x 1+x 2=-6,x 1x 2=-3则x 12+x 22=(x 1+x 2)-2x 1x 2=(-6)2-2×(-3)=42.. 请你根据以上解法解答下题:已知12,x x 是方程2420x x -+=的两根,求:(1)1211x x +的值;(2)212()x x -的值.析解:根据题目所提供的阅读材料可知,x 1+x 2=4,x 1x 2=2.(1)12121211422x x x x x x ++=== (2)222121212()()44428x x x x x x -=+-=-⨯=五、考查方程的实际应用例7某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A 市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A 市三年共投资“改水工程”多少万元?析解:本题是利用一元二次方程解决两次增长率问题.(1)设A 市投资“改水工程”年平均增长率是x ,则600(1+x )2=1176..解之,得x=0.4或x=-2.4(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.。
2019-2020年中考数学复习考点精练:第7课时一元二次方程及其应用命题点1 解一元二次方程(近3年39套卷,2015年考查3次,2014年考查3次,2013 年考查3次)1. (2015徐州20(1)题5分)解方程:x2-2x-3=0.2. (2014徐州20(1)题5分)解方程:x2+4x-1=0.3. (2014泰州17(2)题6分)解方程:2x2-4x-1=0.命题点2 一元二次方程根的判别式及根与系数的关系(近3年39套卷,2015年考查6次,2014年考查6次,2013年考查5次)1. (2014苏州7题3分)下列关于x的方程有实数根的是()A.x2-x+1=0B.x2+x+1=0C. (x-1)(x+2)=0D. (x-1)2+1=02. (2015连云港6题3分)已知关于x的方程x2-2x+3k=0有两个不相等的实数根,则k的取值范围是()A. k<13B.k>-13C. k<13且k≠0 D. k>-13且k≠03. (2013镇江8题2分)写一个你喜欢的实数m的值_______,使关于x的一元二次方程x2-x+m=0有两个不相等的实数根.4. (2015南通12题3分)已知方程2x2+4x-3=0的两根分别为x1和x2,则x1+x2的值等于_______.5. (2015南京12题2分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m 的值是________.6. (2015镇江9题2分)关于x的一元二次方程x2+a=0没有实数根,则实数a的取值范围是________.7. (2015徐州13题3分)已知关于x的方程x2x-k=0有两个相等的实数根,则k的值为_________.8. (2014扬州17题3分)已知a、b是方程x2-x-3=0的两个根,则代数式2a3+b2+3a2-11a-b+5的值为.9. (2015泰州18题8分)已知:关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.命题点3 一元二次方程的应用(近3年39套卷,2015年考查2次,2014年考查1次, 2013年考查3次)1. (2013南京14题2分)已知如图所示的图形的面积为24,根据图中的条件,可列出方程:__________.第1题图2. (2014南京22题8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长.已知该养殖户第1年的可变成本为2.6万元.设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为_______万元;(2)如果该养殖户第3年的养殖成本....为7.146万元,求可变成本平均每年增长的百分率x.3. (2013连云港23题10分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能...等于48 cm2.”他的说法对吗?请说明理由.4. (2015淮安26题10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x元,则每天的销售是_______斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?【答案】命题点1 解一元二次方程 1. 解:因式分解得:(x +1)(x -3)=0,…………………………………………………………(3分)即x +1=0或x -3=0,…………………………………………………………………………(4分)解得:x 1=-1 ,x 2=3.……………………………………………………………………………(5分)2. 解:原式可化为(x 2+4x +4-4)-1=0,即(x +2)2=5,…………………………………(3分)两边开方得,x +2=4分)解得x 1x 2.…………………………………………………………………(5分)3. 解:这里a =2,b =-4,c =-1,……………………………………………………………(2分)∵b 2-4ac =16+8=24,…………………………………………………………………………(4分)∴x =424b a -±±=.即x 1,x 2=22-.…………………………………………………………………(6分)命题点2 一元二次方程根的判别式及根与系数的关系1. C 【解析】A .b 2-4ac =(-1)2-4×1×1=-3<0,方程没有实数根,所以A 选项错误;B .b 2-4ac =12-4×1×1=-3<0,方程没有实数根,所以B 选项错误;C .x -1=0或x +2=0,则x 1=1,x 2=-2,所以C 选项正确;D .(x -1)2+1=0,方程左边为正数,方程右边为0,所以方程没有实数根,所以D 选项错误.2. A 【解析】∵方程x 2-2x +3k =0有两个不相等的实数根,∴b 2-4ac >0,即(-2)2-4×3k >0,解得k <13. 3. 0(答案不唯一)【解析】根据题意得:b 2-4ac =1-4m >0,解得:m <14,则m 可以为0,答案不唯一. 4. -2【解析】本题考查了一元二次方程根与系数的关系,∵a =2,b =4,c =-3,∴x 1+x 2=ba=-2. 5. 3,-4【解析】由题意及一元二次方程根与系数的关系知x 1x 2=3,得另一根为3,再由x 1+x 2=-m ,得m =-4.6. a >0【解析】本题考查了一元二次方程根的判别式,本题中的判别式b 2-4ac =-4a ,∵方程没有实数根,则-4a <0,∴a >0.7. -3【解析】本题考查了一元二次方程根的判别式,由于方程有两个相等的实数根,则)2-4×1×(-k )=0,解得k =-3.8. 23【解析】∵a ,b 是方程x 2-x -3=0的两个根,∴a 2-a -3=0,b 2-b -3=0,即a 2=a +3,b 2=b +3,∴2a 3+b 2+3a 2-11a -b +5=2a (a +3)+b +3+3(a +3)-11a -b +5=2a 2-2a +17=2(a +3)-2a +17=2a +6- 2a +17=23. 9. 解:(1)∵a =1,b =2m ,c =m 2-1,……………………………………………………………(1分)∴b 2-4ac =(2m )2-4×1×(m 2-1)=4>0,………………………………………………………(3分)∴方程x 2+2mx +m 2-1=0有两个不相等的实数根;…………………………………………(4分)(2)∵x 2+2mx +m 2-1=0有一个根是3,∴32+2m ×3+m 2-1=0,…………………………………………………………………………(6分)解得,m =-4或m =-2.…………………………………………………………………………(8分)命题点3 一元二次方程的应用1. (x +1)2=25(本题答案不唯一)【解析】解法一:分割法,如解图①,将图形分割成两个长方形,由题意,x (x +1)+x ×1=24即x 2+2x =24,∴x 2+2x -24=0.解法二:补图法,如解图②,将图形补成一个正方形,由题意,(x +1)2-1=24,∴(x +1)2=25.第1题解图2.4分)(2)【思路分析】由题意,等量关系为第三年养殖成本4+2.6(1+x )2万元等于7.146万元,可解方程得结论.解:根据题意,得4+2.6(1+x )2=7.146.解方程,得x 1=0.1,x 2=-2.1(不合题意,舍去). 答:可变成本平均每年增长的百分率是10%.……………………………………………(8分)3. (1)【思路分析】设剪成的较短的一段为x cm ,较长的一段就为(40-x )cm .就可以分别表示出这两个正方形的面积,根据两个正方形的面积之和等于58 cm 2建立方程求出其解即可.解:设剪成的较短的一段为xcm ,较长的一段则为(40-x ) cm ,由题意,得:(4x )2+(404x -)2=58, ………………………………………………………………………………………………(2分)解得:x 1=12,x 2=28,当x =12时,较长的为40-12=28 cm ,………………………………………………………(3分)当x =28时,较长的为40-28=12<28(舍去),…………………………………………(4分)∴较短的一段为12 cm ,较长的一段为28 cm .……………………………………………(5分)(2)【思路分析】设剪成的较短的一段为m cm ,较长的一段则为(40-m ) cm .就可以分别表示出这两个正方形的面积,根据两个正方形的面积之和等于48 cm 2建立方程,如果方程有解就说明小峰的说法错误,否则正确.解:设剪成的较短的一段为m cm ,较长的一段则为(40-m ) cm ,由题意,得: (4m )2+(404m -)2=48,……………………………………………………………………(7分)变形为:m 2-40m +416=0, ∵b 2-4ac =(-40)2-4×416=-64<0, ∴原方程无实数根,…………………………………………………………………………(9分)∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.……………………(10分)4. (1)【思路分析】因为售价每降低0.1元,每天可多售出20斤,售价降低x 元,每天可多售出20×0.1x 斤,每天销售量为100+20×0.1x =(200x +100)(斤). 解:200x +100;………………………………………………………………………………(2分)(2)【思路分析】根据:每天销售利润=(原销售价-成本价-销售价降低部分)×每天销售量,建立方程求解.解:根据题意,得(200x+100)(4-2-x)=300,………………………………………………………………(4分)整理,得2x2-3x+1=0,………………………………………………………………………(6分)(x-1)(2x-1)=0,解得x1=1,x2=0.5,…………………………………………………………………………(8分)当x=0.5时,每天销售量为200×0.5+100=200<260,不合题意,舍去.………………(9分)答:销售这种水果要想每天销售盈利300元,张阿姨需将每斤销售价降低1元.……(10分)2019-2020年中考数学复习考点精练:第8课时分式方程及其应用命题点1 解分式方程(近3年39套卷,2015年考查5次,2014年考查7次,2013年考查9次)解分式方程考查的题型有选择题、填空题和解答题,其中以解答题为主,所给的分式方程有3种形式:①等号两边均为分式;②等号左边为分式,等号右边为常数项或分式与常数项的和或差;③等号左边为两个分式或常数项与分式,等号右边为常数项.1. (2015淮安9题3分)方程1x-3=0的解是__________.2. (2015宿迁12题3分)方程3x-22x-=0的解为________.3. (2015镇江19(1)题5分)解方程:3+4xx-=12.4. (2015南通19(2)题5分)解方程12x=1+5x.5. (2014苏州22题6分)解分式方程:2311xx x+=--.6. (2014连云港19题6分)解方程21322x x x-+=--.7. (2013泰州18题8分)解方程:22 222222x x xx x x x++--=--.命题点2 分式方程的应用(近3年39套卷,2015年考查3次,2014年考查2次,2013年考查2次)1. (2015苏州22题6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?2. (2015扬州24题10分)扬州建城2500年之际,为了加速美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?3. (2013扬州24题10分)某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况.(Ⅰ)九(1)班班长说:“我们班捐款总额为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总额也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.4. (2015连云港23题10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.【答案】命题点1 解分式方程1. x=13【解析】去分母得1-3x=0,移项得-3x=-1,系数化成1得x=13,因为x=13≠0,所以x =13是方程1x-3=0的解. 2. x =6【解析】给分式方程两边同时乘以x (x -2),得3(x -2)-2x =0,解得x =6,经检验x =6是原分式方程的根.3. 解:去分母,得6+2x =4-x ,……………………………………………………………(2分)解得x =-23,……………………………………………………………………………………(4分) 经检验,x =-23是原方程的解.所以,原方程的解为x =-23.………………………………………………………………(5分)4. 解:方程两边同时乘以2x (x +5),得x +5=6x ,………………………………………(2分) 解得x =1,……………………………………………………………………………………(3分) 检验:当x =1时,2x (x +5)≠0,……………………………………………………………(4分) 所以,原分式方程的解为x =1.………………………………………………………………(5分)5. 解:去分母得:x -2=3x -3, ………………………………………………………………(2分)解得:x =12,…………………………………………………………………………………(4分) 经检验x =12是分式方程的解.∴原分式方程的解为x =21. ………………………………………………………………(6分)6. 【思路分析】按照解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数 化为1求解.在去分母时,不要漏掉乘常数项,最后检验.解:去分母,得 2+3(x -2)=-(1-x ),……………………………………………………(2分) 去括号,得2+3x -6=-1+x , 移项,得3x -x =-1+6-2, 合并同类项,得2x =3,系数化为1,得x =32.………………………………………………………………………(4分) 检验:将x =32代入公分母x -2中,得x -2=32-2=-12≠0,……………………………(5分)∴原分式方程的解为x =32.…………………………………………………………………(6分)7. 解:方程两边同时乘以x (x -2)得:(2x +2)(x -2)-x (x +2)=x 2-2,……………(2分) 化简得:-4x =2,解得:x=-12,………………………………………………………………………………(4分)检验:把x=-12代入x(x-2)=54≠0,…………………………………………………(6分)故方程的解是:x=-12 .……………………………………………………………………(8分)命题点2 分式方程的应用1. 【思路分析】根据相等关系“甲做60面彩旗与乙做50面彩旗所用时间相等”列出方程求解,注意不能忘记检验.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗,…………………………(1分)根据题意,得6050x+=50x,………………………………………………………………(3分)解方程,得x=25,…………………………………………………………………………(4分)经检验,x=25是分式方程的解,∴x+5=30.……………………………………………………………………………………(5分)答:甲每小时做30面彩旗,乙每小时做25面彩旗.……………………………………(6分)2. 【思路分析】本题基本的关系是工作量除以工作效率即为工作的时间,关键的等量关系就是实际比原计划提前两天完成,理顺这两个关系即可,但注意解出分式方程的根后要进行验根.解:设原计划每天栽树x棵.………………………………………………………………(1分)根据题意,得1200x-(1120)20%x+=2,……………………………………………………(5分)解得x=100,………………………………………………………………………………(7分)经检验,x=100是原方程的解,…………………………………………………………(9分)答:原计划每天栽树100棵.………………………………………………………………(10分)3. 【思路分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:1200x-(1120)20%x+=8,解此方程即可求得答案.解:设九(1)班人均捐款数为x元,则九(2)班人均捐款数为(1+20%)x元,…(1分)由题意,得1200x-(1120)20%x+=8,………………………………………………………(5分)解得x =25,…………………………………………………………………………………(7分) 经检验,x =25是原分式方程的解,………………………………………………………(8分) 九(2)班的人均捐款数为:(1+20%)x =30.……………………………………………(9分) 答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.………………………(10分)4.(1)【信息梳理】设每张门票的原定票价为x 元,解:设每张门票的原定票价为x 元.……………………………………………………(1分) 由题意得:6000480080x x =-, 解得:x=400,经检验,x =400是原方程的解.答:每张门票的原定票价为400元.………………………………………………………(5分)(2)【信息梳理】设平均每次降价的百分率为y ,由(1)知原定票价为400元.解:设平均每次降价的百分率为y .由题意得:400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去),答:平均每次降价10%.……………………………………………………………………(10分)。
2021年中考数学真题分项汇编【全国通用】(第01期)专题7一元二次方程及应用(共30题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·山东临沂市·中考真题)方程256x x -=的根是( )A .1278x x ==,B .1278x x ==-,C .1278x x =-=,D .1278x x =-=-, 【答案】C【分析】利用因式分解法解方程即可得到正确选项.【详解】解:∵256x x -=,∵2560x x --=,∵()()780x x +-=,∵x +7=0,x -8=0,∵x 1=-7,x 2=8.故选:C .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了.2.(2021·浙江丽水市·中考真题)用配方法解方程2410x x ++=时,配方结果正确的是( ) A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x += 【答案】D【分析】先把常数项移到方程的右边,方程两边同时加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方形式即可.【详解】解:2410x x ++=,241x x ∴+=-,24414x x ∴++=-+,2(2)3x ∴+=,故选:D .【点睛】本题考查利用配方法对一元二次方程求解,解题的关键是:熟练运用完全平方公式进行配方. 3.(2021·四川泸州市·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【答案】C【分析】 根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【详解】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【点睛】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.4.(2021·四川广安市·中考真题)关于x 的一元二次方程()22310a x x +-+=有实数根,则a 的取值范围是( )A .14a ≤且2a ≠-B .14a ≤C .14a <且2a ≠-D .14a < 【答案】A【分析】根据一元二次方程的定义和判别式的意义得到a +2≠0且∵≥0,然后求出两不等式的公共部分即可.【详解】解:∵关于x 的一元二次方程()22310a x x +-+=有实数根, ∵∵≥0且a +2≠0,∵(-3)2-4(a +2)×1≥0且a +2≠0,解得:a ≤14且a ≠-2, 故选:A .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与∵=b 2-4ac 有如下关系:当∵>0时,方程有两个不相等的两个实数根;当∵=0时,方程有两个相等的两个实数根;当∵<0时,方程无实数根. 5.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个【答案】D【分析】直线y x m =-+不经过第一象限,则m =0或m <0,分这两种情形判断方程的根.【详解】∵直线y x m =-+不经过第一象限,∵m =0或m <0,当m =0时,方程变形为x +1=0,是一元一次方程,故有一个实数根;当m <0时,方程210mx x ++=是一元二次方程,且∵=2414b ac m -=-,∵m <0,∵-4m >0,∵1-4m >1>0,∵∵>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D .【点睛】本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.6.(2021·四川眉山市·中考真题)已知一元二次方程2310x x -+=的两根为1x ,2x ,则211252x x x --的值为( )A .7-B .3-C .2D .5【答案】A【分析】根据一元二次方程根的定义,得211310x x -+=,结合根与系数的关系,得1x +2x =3,进而即可求解. 【详解】解:∵一元二次方程2310x x -+=的两根为1x ,2x ,∵211310x x -+=,即:21131x x -=-,1x +2x =3,∵211252x x x --=2113x x --2(1x +2x )=-1-2×3=-7.故选A .【点睛】本题主要考查一元二次方程根的定义以及根与系数的关系,熟练掌握20ax bx c ++=(a ≠0)的两根为1x ,2x ,则1x +2x =b a -,1x 2x =c a,是解题的关键. 7.(2021·浙江杭州市·中考真题)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x=-和21y x =-- D .11y x =-和21y x =-+ 【答案】A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.【详解】解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意; 对于D 选项则有110m m --+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A .【点睛】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.8.(2021·浙江台州市·中考真题)关于x 的方程x 2-4x +m =0有两个不相等的实数根,则m 的取值范围是( )A .m >2B .m <2C .m >4D .m <4【答案】D【分析】根据方程x 2-4x +m =0有两个不相等的实数根,可得()24410m ∆=--⨯⨯>,进而即可求解.【详解】解:∵关于x 的方程x 2-4x +m =0有两个不相等的实数根,∵()24410m ∆=--⨯⨯>,解得:m <4,故选D .【点睛】本题主要考查一元二次方程根的判别式,熟练掌握ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则判别式大于零,是解题的关键.9.(2021·云南中考真题)若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是( )A .1a <B .1a ≤C .1a ≤且0a ≠D .1a <且0a ≠ 【答案】D【分析】根据一元二次方程的定义和判别式的意义得到a ≠0且∵=22-4a >0,然后求出两不等式的公共部分即可.【详解】解:根据题意得a ≠0且∵=22-4a >0,解得a <1且a ≠0.故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与∵=b 2-4ac 有如下关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0时,方程无实数根.10.(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >- B .14k < C .14k >-且0k ≠ D .14k <0k ≠ 【答案】C【分析】由一元二次方程定义得出二次项系数k ≠0;由方程有两个不相等的实数根,得出“∵>0”,解这两个不等式即可得到k 的取值范围.【详解】解:由题可得:()()2021420k k k k ≠⎧⎪⎨⎡⎤---->⎪⎣⎦⎩, 解得:14k >-且0k ≠; 故选:C .【点睛】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.11.(2021·四川南充市·中考真题)已知方程2202110x x -+=的两根分别为1x ,2x ,则2122021x x -的值为( )A .1B .1-C .2021D .2021-【答案】B【分析】根据一元二次方程解的定义及根与系数的关系可得21120211x x =-,121x x ⋅=,再代入通分计算即可求解. 【详解】∵方程2202110x x -+=的两根分别为1x ,2x ,∵211202110x x -+=,121x x ⋅=,∵21120211x x =-, ∵2122021x x -=21202112021x x --=1222220011222x x x x x -⋅-=22202112021x x ⨯--=22x x -=-1. 故选B .【点睛】本题考查了一元二次方程解的定义及根与系数的关系,熟练运用一元二次方程解的定义及根与系数的关系是解决问题的关键.12.(2021·四川凉山彝族自治州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定【答案】C【分析】 根据一次函数图象经过的象限找出k 、b 的正负,再结合根的判别式即可得出∵>0,由此即可得出结论.【详解】解:观察函数图象可知:函数y =kx +b 的图象经过第二、三、四象限,∵k <0,b <0.在方程210x bx k ++-=中,∵=()2241440b k b k --=-+>,∵一元二次方程210x bx k ++-=有两个不相等的实数根.故选:C .【点睛】本题考查了一次函数图象与系数的关系以及根的判别式,根据一次函数图象经过的象限找出k 、b 的正负是解题的关键.13.(2021·四川泸州市·中考真题)直线l 过点(0,4)且与y 轴垂直,若二次函数2222()(2)(3)2y x a x a x a a a =-+-+--+(其中x 是自变量)的图像与直线l 有两个不同的交点,且其对称轴在y 轴右侧,则a 的取值范围是( )A .a >4B .a >0C .0<a ≤4D .0<a <4【答案】D【分析】由直线l :y =4,化简抛物线2231212y x ax a a =-++,令22312124x ax a a -++=,利用判别式∆12480a =-+>,解出4a <,由对称轴在y 轴右侧可求0a >即可.【详解】解:∵直线l 过点(0,4)且与y 轴垂直,直线l :y =4,222222()(2)(3)231212y x a x a x a a a x ax a a =-+-+--+=-++,∵22312124x ax a a -++=,∵二次函数2222()(2)(3)2y x a x a x a a a =-+-+--+(其中x 是自变量)的图像与直线l 有两个不同的交点,∵()()221243124a a a ∆=--⨯⨯+-, 12480a =-+>,∵4a <,又∵对称轴在y 轴右侧,1212=20236a a x a --=-=->⨯, ∵0a >,∵0<a <4.故选择D .【点睛】本题考查二次函数与直线的交点问题,抛物线对称轴,一元二次方程两个不等实根,根的判别式,掌握二次函数与直线的交点问题转化为一元二次方程实根问题,根的判别式,抛物线对称轴公式是解题关键.二、填空题14.(2021·上海中考真题)若一元二次方程2230x x c -+=无解,则c 的取值范围为_________. 【答案】98c >【分析】根据一元二次方程根的判别式的意义得到()2342c =--⨯<0,然后求出c 的取值范围.【详解】解:关于x 的一元二次方程2230x x c -+=无解,∵2a =,3b =-,c c =,∵()2243420b ac c =-=--⨯<, 解得98c >, ∵c 的取值范围是98c >. 故答案为:98c >. 【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∵=b 2-4ac :当∵>0,方程有两个不相等的实数根;当∵=0,方程有两个相等的实数根;当∵<0,方程没有实数根.15.(2021·湖南岳阳市·中考真题)已知关于x 的一元二次方程260x x k ++=有两个相等的实数根,则实数k 的值为_______.【答案】9【分析】直接利用根的判别式进行判断即可.【详解】解:由题可知:“∵=0”,即2640k -=;∵9k =;故答案为:9. 【点睛】本题考查了用根的判别式判断一元二次方程根的情况,解决本题的关键是牢记:∵>0时,该方程有两个不相等的实数根;∵=0时,该方程有两个相等的实数根;∵<0时,该方程无实数根.16.(2021·江西中考真题)已知1x ,2x 是一元二次方程2430x x -+=的两根,则1212x x x x +-=______. 【答案】1 【分析】直接利用根与系数的关系求解即可. 【详解】解:∵1x ,2x 是一元二次方程2430x x -+=的两根, ∵124x x +=,123x x =, ∵1212431x x x x +-=-=. 故答案为:1. 【点睛】本题考查了一元二次方程的根与系数的关系,若12x x 、是方程20ax bx c ++=(0a ≠)的两根,则12b x x a +=-,12c x x a=.17.(2021·四川遂宁市·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20 【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得.解:∵第1个图形中黑色三角形的个数1, 第2个图形中黑色三角形的个数3=1+2, 第3个图形中黑色三角形的个数6=1+2+3, 第4个图形中黑色三角形的个数10=1+2+3+4, ……∵第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去), ∵第20个图形共有210个小球. 故答案为:20. 【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .18.(2021·四川广安市·中考真题)一个三角形的两边长分别为3和5,第三边长是方程x 2-6x +8=0的根,则三角形的周长为_____. 【答案】12 【分析】先求方程x 2-6x+8=0的根,再由三角形的三边关系确定出三角形的第三边的取值范围,即可确定第三边的长,利用三角形的周长公式可求得这个三角形的周长. 【详解】∵三角形的两边长分别为3和5,∵5-3<第三边<5+3,即2<第三边<8, 又∵第三边长是方程x 2-6x+8=0的根,∵解之得根为2和4,2不在范围内,舍掉, ∵第三边长为4.即勾三股四弦五,三角形是直角三角形. ∵三角形的周长:3+4+5=12. 故答案为12.本题考查了解一元二次方程和三角形的三边关系.属于基础题型,应重点掌握.19.(2021·甘肃武威市·中考真题)已知关于x 的方程2x 2x m 0-+=有两个相等的实数根,则m 的值是_________. 【答案】1 【详解】试题分析:根据一元二次方程根的判别式,可由方程有两个相等的实数根可的∵=b 2-4ac=4-4m=0,解得m=1. 故答案为1.考点:一元二次方程根的判别式20.(2021·江苏连云港市·中考真题)已知方程230x x k -+=有两个相等的实数根,则k =____. 【答案】94【详解】试题分析:∵230x x k -+=有两个相等的实数根, ∵∵=0, ∵9-4k=0, ∵k=94. 故答案为94. 考点:根的判别式.21.(2021·四川成都市·中考真题)若m ,n 是一元二次方程2210x x +-=的两个实数根,则242m m n++的值是______. 【答案】-3. 【分析】先根据一元二次方程的解的定义得到2210m m +-=,则221m m ,根据根与系数的关系得出2m n +=-,再将其代入整理后的代数式计算即可.【详解】解:∵m ,n 是一元二次方程2210x x +-=的两个实数根, ∵2210m m +-=,2m n +=-∵221m m ,∵242m m n ++=2222m m m n=1+2×(-2) =-3故答案为:-3. 【点睛】本题主要考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程20(a 0)++=≠ax bx c 的两根时,1212,b cx x x x a a+=-=,也考查了一元二次方程的解.22.(2021·浙江丽水市·中考真题)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题: 已知实数,a b 同时满足2222,22a a b b b a +=++=+,求代数式b aa b+的值.结合他们的对话,请解答下列问题: (1)当a b =时,a 的值是__________. (2)当ab 时,代数式b aa b+的值是__________. 【答案】2-或1 7 【分析】(1)将a b =代入222a a b +=+解方程求出a ,b 的值,再代入222b b a +=+进行验证即可; (2)当a b 时,求出30++=a b ,再把b aa b+通分变形,最后进行整体代入求值即可. 【详解】解:已知222222a a b b b a ⎧+=+⎨+=+⎩①②,实数a ,b 同时满足∵,∵,∵-∵得,22330a b a b -+-=∵()(3)0a b a b -++= ∵0a b -=或30++=a b ∵+∵得,22+=4a b a b --(1)当a b =时,将a b =代入222a a b +=+得,220a a +-=解得,11a =,22a =- ∵11b =,22b =-把=1a b =代入222b b a +=+得,3=3,成立; 把=2a b =-代入222b b a +=+得,0=0,成立; ∵当a b =时,a 的值是1或-2 故答案为:1或-2; (2)当ab 时,则30++=a b ,即=3a b +-∵22+=4a b a b -- ∵22+=7a b∵222()=+2+9a b a ab b += ∵1ab =∵227=71b a a b a b ab ++== 故答案为:7. 【点睛】此题主要考查了用因式分解法解一元二次方程,完全平方公式以及求代数式的值和分式的运算等知识,熟练掌握运算法则和乘法公式是解答此题的关键.三、解答题23.(2021·四川南充市·中考真题)已知关于x 的一元二次方程22(21)0x k x k k -+++=.(1)求证:无论k 取何值,方程都有两个不相等的实数根.(2)如果方程的两个实数根为1x ,2x ,且k 与12x x 都为整数,求k 所有可能的值.【答案】(1)见解析;(2)0或-2或1或-1 【分析】(1)计算判别式的值,然后根据判别式的意义得到结论; (2)先利用因式分解法得出方程的两个根,再结合k 与12x x 都为整数,得出k 的值; 【详解】解:(1)22(21)0x k x k k -+++= ∵∵=[]()22(21)41k k k -+-⨯⨯+=224+1-4+4-4=10k k k k >∵无论k 取何值, 方程都有两个不相等的实数根. (2)∵22(21)0x k x k k -+++= ∵()()-1=0x k x k -- ∵=0-1x k x k --,=0∵1x k =,2=+1x k 或1+1x k =,2=x k 当1x k =,2=+1x k 时,121==1-+1+1x k x k k ∵k 与12x x 都为整数, ∵k =0或-2当1+1x k =,2=x k 时,∵12+11==1+x k x k k, ∵k 与12x x 都为整数, ∵k =1或-1∵k 所有可能的值为0或-2或1或-1【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当∵>0时,方程有两个不等的实数根”;(2)利用因式分解法求出方程的解.24.(2021·浙江嘉兴市·中考真题)小敏与小霞两位同学解方程()()2333x x -=-的过程如下框:你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程. 【答案】两位同学的解法都错误,正确过程见解析 【分析】根据因式分解法解一元二次方程 【详解】 解:正确解答:()()2333x x -=- 移项,得()()23330x x ---=, 提取公因式,得()()3330x x ⎡--⎤⎣⎦-=, 去括号,得()()3330x x --+=,则30x -=或60x -=, 解得13x =,26x =. 【点睛】本题考查因式分解法解一元二次方程,掌握因式分解的技巧准确计算是解题关键.25.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元? 【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元 【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案. 【详解】(1)由题意列方程得:(x +40-30) (300-10x )=3360 解得:x 1=2,x 2=18 ∵要尽可能减少库存, ∵x 2=18不合题意,故舍去 ∵T 恤的销售单价应提高2元; (2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+ ∵当x =10时,M 最大值=4000元 ∵销售单价:40+10=50元∵当服装店将销售单价50元时,得到最大利润是4000元. 【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.26.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几; (2)若该景区仅有,A B 两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;①问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【答案】(1)20%;(2)∵798万元,∵当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元 【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,则四月份的游客为()41x +人,五月份的游客为()241x +人,再列方程,解方程可得答案;(2)∵分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;∵设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元,再列出W 与m 的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案. 【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x ,由题意,得24(1) 5.76x +=()21 1.44,x ∴+=解这个方程,得120.2, 2.2x x ==-(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)∵由题意,丙种门票价格下降10元,得: 购买丙种门票的人数增加:0.6+0.4=1(万人), 购买甲种门票的人数为:20.6 1.4-=(万人), 购买乙种门票的人数为:30.4 2.6-=(万人), 所以:门票收入问;()()100 1.480 2.61601021⨯+⨯+-⨯+798=(万元)答:景区六月份的门票总收入为798万元.∵设丙种门票价格降低m 元,景区六月份的门票总收人为W 万元, 由题意,得()()()()10020.068030.0416020.060.04W m m m m m =-+-+-++化简,得20.1(24)817.6W m =--+,0.10-<,∵当24m =时,W 取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元. 【点睛】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.27.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a%4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a ,这两种小面的总销售额在4月的基础上增加5%11a .求a 的值.【答案】(1)每份“堂食”小面价格是7元,“生食”小面的价格是5元.(2)a 的值为8.【分析】(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列出二元一次方程组,解方程组即可;(2)根据题意列出一元二次方程,解方程即可.【详解】解:(1)设每份“堂食”小面和“生食”小面的价格分别是x 、y 元,根据题意列方程组得,3231433x y x y +=⎧⎨+=⎩,解得,75x y =⎧⎨=⎩, 答:每份“堂食”小面价格是7元,“生食”小面的价格是5元. (2)根据题意得,535450072500(1%)5(1%)(4500725005)(1%)2411a a a ⨯++⨯-=⨯+⨯+, 解得,10a =(舍去),28a =,答:a 的值为8.【点睛】本题考查了二元一次方程组的应用和一元二次方程的应用,解题关键是找准题目中的等量关系,列出方程,熟练运用相关知识解方程.28.(2021·四川乐山市·中考真题)已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.【答案】(1)14m >-;(2)11x =,22x =- 【分析】 (1)根据∵>0时,一元二次方程有两个不相等的实数根求解m 的取值范围即可;(2)根据二次函数图象与x 轴的交点的横坐标就是当y =0时对应一元二次函数的解,故将x =1代入方程中求出m 值,再代入一元二次方程中解方程即可求解.【详解】解:(1)由题知140m ∆=+>, ∵14m >-. (2)由图知20x x m +-=的一个根为1,∵2110m +-=,∵2m =,即一元二次方程为220x x +-=,解得11x =,22x =-,∵一元二次方程20x x m +-=的解为11x =,22x =-.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键.29.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A 产品,乙车间生产B 产品,去年两个车间生产产品的数量相同且全部售出.已知A 产品的销售单价比B 产品的销售单价高100元,1件A 产品与1件B 产品售价和为500元.(1)A 、B 两种产品的销售单价分别是多少元?(2)随着5G 时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B 产品的生产车间.预计A 产品在售价不变的情况下产量将在去年的基础上增加a %;B 产品产量将在去年的基础上减少a %,但B 产品的销售单价将提高3a %.则今年A 、B 两种产品全部售出后总销售额将在去年的基础上增加2925a %.求a 的值. 【答案】(1)A 产品的销售单价为300元,B 产品的销售单价为200元;(2)20【分析】(1)设B 产品的销售单价为x 元,则A 产品的销售单价为(x +100)元,根据题意列出方程解出即可;(2)设去年每个车间生产产品的数量为t 件,根据题意根据题意列出方程()()()293001%20013%1%5001%25a t a t a t a ⎛⎫+⋅++⋅-=⋅+ ⎪⎝⎭解出即可; 【详解】解:(1)设B 产品的销售单价为x 元,则A 产品的销售单价为(x +100)元.根据题意,得()100500x x ++=.解这个方程,得200x =.则100300x +=.答:A 产品的销售单价为300元,B 产品的销售单价为200元.(2)设去年每个车间生产产品的数量为t 件,根据题意,得()()()293001%20013%1%5001%25a t a t a t a ⎛⎫+⋅++⋅-=⋅+ ⎪⎝⎭设a %=m ,则原方程可化简为250m m -=. 解这个方程,得121,05m m ==(舍去). ∵a=20.答:a 的值是20.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元二次方程.30.(2021·四川泸州市·中考真题)一次函数y =kx +b (k ≠0)的图像与反比例函数m y x=的图象相交于A (2,3),B (6,n )两点(1)求一次函数的解析式(2)将直线AB 沿y 轴向下平移8个单位后得到直线l ,l 与两坐标轴分别相交于M ,N ,与反比例函数的图象相交于点P ,Q ,求PQ MN的值 【答案】(1)一次函数y=142x -+,(2)12PQ MN =. 【分析】(1)利用点A (2,3),求出反比例函数6y x=,求出 B (6,1),利用待定系数法求一次函数解析式; (2)利用平移求出y=142x --,联立1426y x y x⎧=--⎪⎪⎨⎪=⎪⎩,求出P (-6,-1),Q (-2,-3),在Rt ∵MON 中,由勾股定理MN=PQ=【详解】解:(1)∵反比例函数my x =的图象过A (2,3),∵m =6,∵6n =6,∵n =1,∵B (6,1)一次函数y =kx +b (k ≠0)的图像与反比例函数6y x =的图象相交于A (2,3),B (6,1)两点,∵6123k b k b +=⎧⎨+=⎩, 解得124k b ⎧=-⎪⎨⎪=⎩,一次函数y=142x -+,(2)直线AB 沿y 轴向下平移8个单位后得到直线l ,得y=142x --,当y =0时,1402x ,8x =-,当x =0时,y =-4,∵M (-8,0),N (0,-4),1426y x y x⎧=--⎪⎪⎨⎪=⎪⎩,消去y 得28120x x ++=,解得122,6x x =-=-,解得1123x y =-⎧⎨=-⎩,2261x y =-⎧⎨=-⎩,∵P (-6,-1),Q (-2,-3),在Rt ∵MON 中,∵MN =2245OM ON +=,∵PQ =()()22261325-++-+=, ∵251245PQ MN ==.【点睛】本题考查待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理,掌握待定系数法求反比例函数解析式与一次函数解析式,利用平移求平移后直线l.,解方程组,一元二次方程,勾股定理是解题关键.。