中考数学专题复习六一元一次不等式组同步练习题无答案
- 格式:doc
- 大小:76.00 KB
- 文档页数:3
一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。
初中数学北师大版八年级下册第二章第六节一元一次不等式组同步练习一、单选题1.下列不等式组中,无解的是()A.{x<2x<−3B.{x<2x>−3C.{x>2x>−3D.{x>2x<−32.已知关于x的不等式组的{x−a≥b2x−a<2b+1解集为3≤x<5,则ba的值为()A.﹣2B.−12C.﹣4D.﹣143.若不等式组{x<1x<m的解为x<m,则m的取值范围为()A.m≤1B.m=1C.m≥1D.m<14.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[3.2]=3,[2]=2,[-2.3]=-3.如果[x−12]=2,则x的取值范围是()A.5≤x≤7B.5<x≤7C.5<x<7D.5≤x<75.定义一种运算:a∗b={a,a≥bb,a<b,则不等式(2x+1)∗(2−x)>3的解集是()A.x>1或x<13B.−1<x<13C.x>1或x<−1D.x>13或x<−16.已知某程序如图所示,规定:从“输入实数x”到“结果是否大于95”为一次操作,如果该程序进行了两次操作停止,那么实数x的取值范围是()A.x>23B.11≤x≤23C.23<x≤47D.x≤477.若关于x的一元次不等式组{−2x+3m4≤2x2x+7≤4(x+1)的解集为x≥32,且关于y的方程3y−2=2m−(5−3y)2的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.108.目前,我国已获批上市4款自主研发的新冠疫苗.某生物制药公司计划生产制造A、B两种疫苗共40万支,已知生产每支A疫苗需甲种原料8mg,乙种原料5mg;生产每支B疫苗需甲种原料4mg,乙种原料9mg.公司现有甲种原料4kg,乙种原料3kg,设计划生产A疫苗x支,下列符合题意的不等式组是( )A .{8x +5(400000−x)≤40000004x +9(400000−x)≤3000000B .{5x +9(400000−x)≤40000008x +4(400000−x)≤3000000C .{8x +4(400000−x)≤40000005x +9(400000−x)≤3000000D .{8x +9(400000−x)≤40000005x +4(400000−x)≤3000000二、填空题9.不等式组 {5x +4>3xx−12≤2x−15 的解是 .10.已知关于 x 的不等式组 {5−3x ≥−1,a −2x <0无解,则 a 的取值范围是 . 11.三个数3, 1-a ,1-2a 在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a 的取值范围为12.在某种药品的说明书上的部分内容是“用法用量:每天 30~60mg ,分2~3次服用”.则一次服用这种药品的剂量 x 的范围是 mg .13.对于任意实数,m ,n ,定义一种运算: m※n =mn −m −n +72 ,请根据上述定义解决问题:若关于x 的不等式 a <(12※x)<7 的解集中只有一个整数解,则实数a 的取值范围是 .14.若点 P 的坐标为 (x−15,2x −10) ,其中 x 满足不等式组 {5x −10≥2(x +1)12x −1≤7−32x ,则点 P 在第 象限.15.令 a 、b 两数中较大的数记作 max|a ,b|,如 max|2,3|=3,已知 k 为正整数且使不等式 max|2k+1,﹣k+5|≤5 成立,则 k 的值是 .16. 12月是成都奶油巧克力草莓大丰收的季节,重庆渝北海领开展“水果一带一路”活动,成都顺丰快递公司出动所有车辆分12月25,26日两批往重庆运输现摘草莓.该公司共有A ,B ,C 三种车型,其中A 型车数量占公司车辆总数的一半,B 型车数量与C 型车数量相等.25日安排A 型车数量的一半,B 型车数量的 13 ,C 型车数量的 34 进行运输,且25日A ,B ,C 三种车型每辆车载货量分别为10吨,15吨,20吨,则25日刚好运完所有草莓重量的一半.26日安排剩下的所有车辆完成剩下的所有草莓的运输,且26日A ,B ,C 三种车型每辆载货量分别不超过14吨,27吨,24吨.26日B 型车实际载货量为26日A 型车每辆实际载货量的 32.已知同型货车每辆的实际载货量相等,A ,B ,C 三种车型每辆车26日运输成本分别为100元/吨,200元/吨,75元/吨,则26日运输时,一辆A 型车、一辆B 型车,一辆C 型车总的运输成本至多为 元.三、解答题17.解不等式组: {6(23x −2)<x −31−x2−2⩽x 并把解集在数轴上表示出来.18.已知a ,b ,c 是△ABC 的三边长,若b =2a ﹣1,c =a+5,且△ABC 的周长不超过20cm ,求a 的范围.19.x 取哪些正整数值时,不等式 5x +2>3(x −1) 与 2x−13≤3x+16 都成立?20.已知关于x ,y 的方程满足方程组 {3x +2y =m +1 ①2x +y =m −1 ② ,(Ⅰ)若 x-y=2 ,求m 的值;(Ⅱ)若x ,y ,m 均为非负数,求m 的取值范围,并化简式子|m −3|+|m −5| ;(Ⅲ)在(Ⅱ)的条件下求 s =2x −3y +m 的最小值及最大值.四、综合题21.疫情期间,为满足市民的防护需求,某医药公司想要购买A 、B 两种口罩.在进行市场调研时发现:A 型口罩比B 型口罩每件进价多了10元.用68000元购买A 型口罩的件数是用32000元购买B 型口罩件数的2倍.(1)A 、B 型口罩进价分别为每件多少元?(2)若该公司计划购买A 、B 型口罩共200件,其中A 型口罩的件数不大于B 型口罩的件数,且用于购买A 型口罩的钱数多于购买B 型口罩的钱数.设购买A 型口罩x 件,则符合条件的进货方案共多少种?(件数均为整数,不用列出方案)22.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S 店准备购进A 型(电动汽车)和B 型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.23.对实数x 、y ,我们定义一种新运算:F (x ,y ) =ax +by (其中a ,b 为常数).例如:F (2,3) =2a +3b ,F (2, −3 ) =2a −3b .已知F (1,1)=2,F (1, −1 )=0. (1)则 a = , b = ;(2)若方程组 {F(x,−y)=4m −3F(x,2y)=−5m 的解中,x 是非正数,y 是负数: ①求m 的取值范围;②若 2x ⋅4y =2n ,求n 的最小值;(3)若关于x 的不等式组 {F(3x,0)>−2cF(−2x,0)≥−3c恰好有3个整数解,求c 的取值范围.24.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y (个)与甲品牌文具盒的数量x (个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?答案解析部分1.D2.A3.A4.D5.C6.C7.D8.C9.-2<x≤310.a≥411.−3<a<−212.10≤x≤3013.6≤a<13214.四15.2或116.540017.解:解不等式①,得:x<3,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<3,将不等式组的解集表示在数轴上如下:18.解:由题意得:{a+5<2a−1+aa+5+a+2a−1≤20,解得3<a≤4.∴a的取值范围为3<a≤419.解:解不等式5x+2>3(x−1)得:5x+2>3x−3x >−52解不等式 2x−13≤3x+16得:2(2x −1)≤3x +1 4x −2≤3x +1x ≤3∴ −52<x ≤3∴符合条件的正整数值有1、2、3 20.解:(Ⅰ) {3x +2y =m +1 ①2x +y =m −1 ②①-②×2得: −x =−m +3 得: x =m −3 2m −6+y =m −1③ 把③代入②2m-6+y=m-1 y =−m +5④把③和④代入 x −y =2 , m-3+m-5=2, m =5 , ∴ 的值为5.(Ⅱ)∵x ,y ,m 均为非负数,{m −3≥0−m +5≥0m ≥0∴3≤m ≤5∴|m −3|+|m −5| . =m-3+5-m , =2.(Ⅲ)把 x=m-3 y=-m+5, x −y =2 代入 s =2x −3y +m , ∴ s=2x-3y+m , =2(m-3 )-3(-m+5)+m =6m-21 ∵ 3≤m≤5 , ∴-3≤6m -21≤9∴−3≤s ≤9 .答: s =2x −3y +m 的最小值为-3,最大值为9.21.(1)解:设B 型口罩每件的进价为y 元,则A 型口罩每件的进价为(y+10)元 依题意得: 68000y+10 =2×32000y 解得:y =160经检验,y =160是原方程的解,且符合题意∴y+10=170.答:A 型口罩每件的进价为170元,B 型口罩每件的进价为160元; (2)解:设购买A 型口罩x 件,则购买B 型口罩(200﹣x )件 依题意得: {x ≤200−x170x >160(200−x) 解得:963233<x≤100又∵x 为正整数,∴x 可以取97,98,99,100, ∴符合条件的进货方案共4种.22.(1)解:设A 型汽车购进x 辆,则B 型汽车购进(16﹣x )辆.根据题意得: {30x +42(16−x)≤60030x +42(16−x)≥576 , 解得:6≤x≤8. ∵x 为整数, ∴x 取6、7、8. ∴有三种购进方案:(2)解:设总利润为w 万元.根据题意得:W =(32﹣30)x+(45﹣42)(16﹣x ) =﹣x+48. ∵﹣1<0,∴w 随x 的增大而减小,∴当x =6时,w 有最大值,W 最大=﹣6+48=42(万元).∴当购进A 型车6辆,B 型车10辆时,可获得最大利润,最大利润是42万元. (3)解:设电动汽车行驶的里程为a 万公里.当32+0.65a =45时,解得:a =20<30. ∴选购太阳能汽车比较合算.23.(1)1;1(2)解:①原式= {x −y =4m −3x +2y =−5m ,解得: {x =m −2y =1−3m , ∵x 是非正数,y 是负数,∴{m −2≤01−3m <0,解得: 13<m ≤2 ;②原式整理为: 2x ⋅22y =2n ,∴x +2y =n ,即 m −2+2(1−3m)=n , 整理得: n =−5m ,∴当 m 取最大值2时,此时 n 的值最小, 最小值为: n =−5×2=−10 ;(3)解:不等式组整理为: {3x >−2c−2x ≥−3c, 解得: −23c <x ≤32c ,∵不等式组恰好有3个整数解,∴2<32c −(23c)≤3 ,解得:1213<c ≤1813.24.(1)解:设y 与x 之间的函数关系式为y=kx+b ,由函数图象,得 {50k +b =250200k +b =100,解得: {k =−1b =300. ∴y 与x 之间的函数关系式为y=﹣x+300. (2)解:∵y=﹣x+300,∴当x=120时,y=180.设甲品牌进货单价是a 元,则乙品牌的进货单价是2a 元,由题意,得 120a+180×2a=7200,解得:a=15, ∴乙品牌的进货单价是30元.答:甲、乙两种品牌的文具盒进货单价分别为15元,30元.(3)解:设甲品牌进货m 个,则乙品牌的进货(﹣m+300)个,由题意,得{15m +30(−m +300)≤63004m +9(−m +300)≥1795,解得:180≤m≤181.∵m 为整数,∴m=180,181. ∴共有两种进货方案:方案1:甲品牌进货180个,则乙品牌的进货120个;方案2:甲品牌进货181个,则乙品牌的进货119个.设两种品牌的文具盒全部售出后获得的利润为W元,由题意,得W=4m+9(﹣m+300)=﹣5m+2700.∵k=﹣5<0,∴W随m的增大而减小.∴m=180时,W最大=1800元.。
2021中考数学 专题训练 一元一次不等式(组)一、选择题(本大题共10道小题) 1. 若x +5>0,则( )A. x +1<0B. x -1<0C. x5<-1 D. -2x <122. 某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为 ( )A .13B .14C .15D .163. 直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图X2-2-3,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ) A .x >1 B .x <1 C .x >-2 D .x <-24. (2019·广安)若m n >,下列不等式不一定成立的是 A .33m n +>+ B .33m n -<-C .33m n >D .22m n >5. (2019•重庆)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为 A .13 B .14 C .15 D .166.A .3B .4C .5D .6 7.若关于x 的代等式组10233544(1)3x x x a x a+⎧+>⎪⎨⎪++>++⎩恰有三个整数解,则a 的取值范围是 ABC .312a <<D .1a ≤或32a >8.(2019•山西)不等式组13224x x ->⎧⎨-<⎩的解集是A .x>4B .x>-1C .-1<x<4D .x<-19. (2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x (元)所在的范围为A .10<x<12B .12<x<15C .10<x<15D .11<x<1410. 若关于x的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是 A .1 B .2 C .3 D .4二、填空题(本大题共8道小题)11. 不等式3x+1>2(x+4)的解集为 . 12. 不等式组21x x >⎧⎨>-⎩的解集是__________.13. 如果不等式组的解集是x<a -4,则a 的取值范围是 .14. 若关于x 的不等式组有且只有两个整数解,则m 的取值范围是 .15. (2019•株洲)若a 为有理数,且2-a 的值大于1,则a 的取值范围为__________.16. 若关于x ,y 的二元一次方程组的解满足x +y<2,则实数a 的取值范围为______.17. 已知关于x的方程2x=m的解满足⎩⎪⎨⎪⎧x-y=3-nx+2y=5n(0<n<3),若y>1,则m的取值范围是________.18. 若关于x的不等式组有实数解,则实数a的取值范围是____________.道小题)19.20. 为了进一步丰富校园活动,学校准备购买一批足球和篮球,已知购买7个足球和5个篮球的费用相同;购买40个足球和20个篮球共需3400元.(1)求每个足球和篮球各多少元?(2)如果学校计划购买足球和篮球共80个,总费用不超过48 00元,那么最多能买多少个篮球?233,35x xx a>-⎧⎨->⎩21. 为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4∶3,单价和为42元.(1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?22. (2019•江西)解不等式组:2(1)7122x xxx+>⎧⎪⎨+-≥⎪⎩并在数轴上表示它的解集.23. 某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A 型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?24. 某水果商计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用800元购进甲种水果的数量与用1000元购进乙种水果的数量相同.(1)求甲、乙两种水果的单价分别是多少元?(2)该水果商根据该水果店平常的销售情况确定,购进两种水果共200千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,购回后,水果商决定甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则水果商应如何进货,才能获得最大利润,最大利润是多少?2021中考数学专题训练一元一次不等式(组)-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】,若x+5>0,则x>-5.逐项分析如下:××2. 【答案】C[解析]设小华答对的题的个数为x题,则答错或不答的题的个数为(20-x)题,可列不等式10x-5(20-x)>120,解得x>14,即他至少要答对的题的个数为15题.故选C.3. 【答案】B4. 【答案】D【解析】A、不等式的两边都加3,不等号的方向不变,故A 错误;B、不等式的两边都乘以-3,不等号的方向改变,故B错误;C、不等式的两边都除以3,不等号的方向不变,故C错误;D、如22,,,,故D正确,故选D.==-><23m n m n m n5. 【答案】C【解析】设要答对x 道.10x+(-5)×(20-x )>120,10x-100+5x>120,15x>220,解得:x>443,根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选C .6. 【答案】B【解析】3(1)17212x x x x +>-⎧⎪⎨+≥-⎪⎩①②,解①得:2x >-, 解②得:3x ≤,则不等式组的解集为23x -<≤. 故非负整数解为0,1,2,3共4个, 故选B .7. 【答案】B【解析】解不等式1023x x ++>,得:25x >-, 解不等式2544(1)3x a x a ++>++,得:2x a <, ∵不等式组恰有三个整数解, ∴这三个整数解为0、1、2, ∴223a <≤, 解得312a <≤,故选B .8. 【答案】A【解析】13224x x ->⎧⎨-<⎩①②,由①得:x>4,由②得:x>-1,不等式组的解集为:x>4,故选A .9. 【答案】B【解析】根据题意可得:151210x x x ≤⎧⎪≥⎨⎪≥⎩,可得:12≤x ≤15,∴12<x<15,故选B .10. 【答案】C【解析】解不等式2x-6+m<0,得:解不等式4x-m>0,得:∵不等式组有解,解得m<4, 如果m=2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<m<3,整数解为x=1,2,有2个;如果m=-1x=0,1,2,3,有4个,故选C.二、填空题(本大题共8道小题)11. 【答案】x>712. 【答案】2x>【解析】根据“同大取大;同小取小;大小小大中间找;大大小小找不到.”得原不等式组的解集为:2x>.故答案为:2x>.13. 【答案】a≥-3[解析]因为不等式组的解集为x<a-4,所以3a+2≥a-4,解这个不等式得a≥-3.14. 【答案】-2≤m<1[解析]解不等式①得x>-2;解不等式②得x≤,∴不等式组的解集为-2<x≤.∵不等式组有且只有两个整数解,∴0≤<1,解得-2≤m<1.15. 【答案】a<1且a 为有理数【解析】根据题意知2-a>1,解得a<1,故答案为:a<1且a 为有理数.16. 【答案】a <417. 【答案】25<m <23 【解析】解原方程组,得⎩⎪⎨⎪⎧x =n +2y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23;当x =5时,m =2x =25.∵当x>0时,m 随x 的增大而减小,∴25<m <23.18. 【答案】a <4 解析:⎩⎪⎨⎪⎧ 2x >3x -3, ①3x -a >5. ②由①得,x <3,由②得,x >5+a 3.∵此不等式组有实数解,∴5+a 3<3,解得a <4.三、解答题(本大题共6道小题)解不等式①得,3x ≤,解不等式②,1x>-,所以,原不等式组的解集为13x-<≤,在数轴上表示如下:.20. 【答案】(1)设每个足球为x元,每个篮球为y元,根据题意得:7540203400x yx y=⎧⎨+=⎩,解得:5070xy=⎧⎨=⎩.答:每个足球为50元,每个篮球为70元;(2)设买篮球m个,则买足球(80m-)个,根据题意得:7050(80)4800m m+-≤,解得:40m≤.∵m为整数,∴m最大取40,答:最多能买40个篮球.21. 【答案】解:(1)设甲票价为4x元,则乙为3x元.∴3x+4x=42,解得x=6.∴4x=24,3x=18.∴甲、乙两种票的单价分别是24元、18元.(2)设甲票有y张,根据题意,得⎩⎪⎨⎪⎧ 24y +1836-y ≤750,y >15.解得15<y ≤17.∵x 为整数,∴y =16或17.∴有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张.22. 【答案】2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩①②, 解①得:x>-2,解②得:x ≤-1,故不等式组的解为:-2<x ≤-1,在数轴上表示出不等式组的解集为:.23. 【答案】(1)设租用A ,B 两型客车,每辆费用分别是x 元、y 元, 43107003410300x y x y +=⎧⎨+=⎩, 解得,17001300x y =⎧⎨=⎩, 答:租用A ,B 两型客车,每辆费用分别是1700元、1300元.(2)设租用A 型客车a 辆,租用B 型客车b 辆,45302401700130010000a b a b +≥⎧⎨+≤⎩, 解得,25a b =⎧⎨=⎩,42a b =⎧⎨=⎩,51a b =⎧⎨=⎩, ∴共有三种租车方案,方案一:租用A 型客车2辆,B 型客车5辆,费用为9900元,方案二:租用A 型客车4辆,B 型客车2辆,费用为9400元,方案三:租用A 型客车5辆,B 型客车1辆,费用为9800元,由上可得,方案二:租用A 型客车4辆,B 型客车2辆最省钱.24. 【答案】(1)设甲种水果的单价是x 元,则乙种水果的单价是(4)x +元, 80010004x x =+, 解得,16x =,经检验,16x =是原分式方程的解,∴420x +=,答:甲、乙两种水果的单价分别是16元、20元.(2)设购进甲种水果a 千克,则购进乙种水果(200)a -千克,利润为w 元,(2016)(2520)(200)1000w a a a=-+--=-+,∵甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过3420元,∴3(200)1620(200)3420a aa a≤-⎧⎨+-≤⎩,解得,145150a≤≤,∴当145a=时,w取得最大值,此时855w=,20055a-=,答:水果商进货甲种水果145千克,乙种水果55千克,才能获得最大利润,最大利润是855元.。
一. 解下列不等式,并在数轴上表示出它们的解集.1. 8223-<+x x2. x x 4923+≥-3. )1(5)32(2+<+x x4. 0)7(319≤+-x5. 31222+≥+x x6. 223125+<-+x x7. 5223-<+x x8. 234->-x9. )1(281)2(3--≥-+y y10. 1213<--m m11. )2(3)]2(2[3-->--x x x x12. 215329323+≤---x x x13.41328)1(3--<++x x 14. )1(52)]1(21[21-≤+-x x x15. 22416->--x x 16. x x x 212416-≤--17. 7)1(68)2(5+-<+-x x 18. 46)3(25->--x x19.1215312≤+--x x 20. 31222-≥+x x二. 应用题1.爆破施工时,导火索燃烧的速度是s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m之外的安全地域,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,此刻要比原打算至少提早两天完成,则以后平均天天至少要比原打算多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。
4.某工人打算在15天里加工408个零件,最初三天中天天加工24个,问以后天天至少要加工多少个零件,才能在规定的时刻内逾额完成任务?5.王凯家到学校千米,此刻需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?6.某工程队打算在10天内修路6km,施工前2天修完后,打算发生转变,预备提早2天完成修路任务,以后几天内平均天天至少要修路多少千米?。
北京市2023年九年级中考数学一轮复习——一元一次不等式和一元一次不等式组 练习题一、单选题1.(2022·北京十一学校一分校模拟预测)设m 是非零实数,给出下列四个命题:①若-1<m<0,则1m<m<2m ;②若m>1,则1m <2m <m ;③若m<1m <2m ,则m<0;④2m <m<1m,则0<m<1.其中命题成立的序号是( ) A .①③B .①④C .②③D .③④2.(2022·北京·东直门中学模拟预测)实数a 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .1a >B .<1a -C .10a +>D .11a<- 3.(2022·北京市三帆中学模拟预测)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .-4B .-2C .2D .44.(2022·北京·九年级专题练习)实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a <-B .a b <C .a b -<-D .0ab >5.(2021·北京东城·一模)实数a ,b ,c 在数轴上的对应点的位置如图所示,下列式子正确的是( )A .b +c >0B .a -b >a -cC .ac >bcD .ab >ac6.(2021·北京海淀·一模)已知1x =是不等式20x b -<的解,b 的值可以是( ) A .4B .2C .0D .2-7.(2021·北京丰台·二模)若a b >,则下列不等式一定成立的是( ) A .33a b -<- B .22a b -<- C .44a b< D .22a b <8.(2020·北京·北理工附中一模)不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( )A .B .C .D .二、填空题9.(2022·北京市三帆中学模拟预测)已知三个实数a 、b 、c 满足20a b c -+=,20a b c ++<,则:①0b >,②0b <,③240b ac -≤,④20b ac -≥,以上4个结论中正确的是__________(写出正确的序号).10.(2022·北京·九年级专题练习)不等式组3021x x -<⎧⎨-<⎩的解集是______.11.(2022·北京·九年级专题练习)小琦跟几位同学在某快餐厅吃饭,如下为此快餐厅的菜单、若他们所点的餐食总共为10份盖饭,x 杯饮料,y 份凉拌菜.(1)他们点了______份A 套餐(用含x 或y 的代数式表示);(2)若6x =,且A 、B 、C 套餐均至少点了1份,则最多有______种点餐方案.12.(2022·北京·九年级专题练习)用一组a 、b 、c 的值说明命题“若a >b ,则ac >bc ”错误的,这组值可以是a = ,b= ,c = .13.(2021·北京西城·一模)某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是________.14.(2021·北京朝阳·一模)某校初三年级共有8个班级的190名学生需要进行体检,各班学生人数如下表所示:若已经有7个班级的学生完成了体检,且已经完成体检的男生、女生的人数之比为4:3,则还没有体检的班级可能是_____.15.(2021·北京房山·二模)已知a b <,且实数c 满足ac bc >,请你写出一个符合题意的实数c 的值___. 16.(2020·北京密云·二模)已知“若a b >,则ac bc <”是真命题,请写出一个满足条件的c 的值是__________. 17.(2020·北京四中模拟预测)某校初三年级84名师生参加社会实践活动,计划租车前往,租车收费标准如下:则租车一天的最低费用为___________元.三、解答题18.(2022·北京·中考真题)解不等式组:274,4.2x x x x +>-⎧⎪⎨+<⎪⎩19.(2022·北京十一学校一分校模拟预测)解不等式组:4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩ 20.(2022·北京市第十九中学三模)解不等式组:1251635341x x x x +-⎧>+⎪⎨⎪+≥-⎩,并写出其中的正整数解.21.(2022·北京·中国人民大学附属中学朝阳学校一模)解不等式组()4126{533x x x x +≤+--<,并写出它的所有非负..整数解.... 22.(2021·北京·中考真题)解不等式组:451342x x x x ->+⎧⎪⎨-<⎪⎩ 23.(2021·北京门头沟·一模)解不等式组:213(1)532x x xx ->-⎧⎪⎨-<+⎪⎩ 24.(2021·北京朝阳·二模)解不等式232(4)x x -≥-,并把它的解集在数轴上表示出来. 25.(2021·北京石景山·二模)解不等式113x x -≤-,并把它的解集在数轴上表示出来.26.(2021·北京顺义·一模)解不等式()3125x x -≥-,并把它的解集在数轴上表示出来.参考答案:1.B【分析】逐个进行一次判断即可,判断一个命题是假命题,只需举出一个反例. 【详解】解:①若-1<m <0,则1m<m<2m ,成立,是真命题; ②若m >1,取m=2时,m 2=4, m <m 2,原命题不成立; ③若m<1m <2m ,取m=-12时,1m =-2,m >1m ,原命题不成立; ④2m <m<1m,则0<m<1,成立,是真命题; 成立的有①④, 故选:B .【点睛】此题考查了命题和不等式,解题的关键是理解不等式的性质. 2.A【分析】直接利用a 在数轴上位置进而通过绝对值的几何意义:绝对值表示一个点与原点的距离,及不等式的性质分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 正确;因为a <-1,不等号两边同时乘以-1,改变不等号方向,得1a ->,故选项B 错误; 因为a <-1,不等号两边同时加1,得10a +<,故选项C 错误;因为a <-1,不等号两边同时除以a ,0a <,∴改变不等号方向,得11a->,不等号两边同时除以-1,改变不等号方向,得11a-<,故选项D 错误;故选:A .【点睛】此题主要考查了绝对值的几何意义、不等式的性质,结合数轴分析各选项,掌握不等式的性质是解题关键. 3.D【分析】将x =1代入不等式求出b 的取值范围即可得出答案. 【详解】解:∵x =1是不等式2x -b <0的解, ∴2-b <0, ∴b >2, 故选:D .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.D【分析】先根据数轴的性质可得20a b -<<<,再根据绝对值的性质、不等式的性质、有理数乘法法则逐项判断即可得.【详解】解:由数轴的性质得:20a b -<<<. A 、2a >-,此项错误,不符题意; B 、a b >,此项错误,不符题意; C 、a b ->-,此项错误,不符题意; D 、0ab >,此项正确,符合题意; 故选:D .【点睛】本题考查了数轴、绝对值、不等式的性质、有理数的乘法法则,熟练掌握数轴的性质是解题关键. 5.A【分析】先根据数轴的定义可得0a c b <<<,再根据不等式的基本性质逐项判断即可得. 【详解】由数轴的定义得:0a c b <<<, A 、0b c +>,此项正确,符合题意; B 、b c >,b c ∴-<-,a b a c ∴-<-,此项错误,不符题意;C 、,0a b c <>,ac bc ∴<,此项错误,不符题意;D 、,0b c a ><,ab ac ∴<,此项错误,不符题意;故选:A .【点睛】本题考查了数轴、不等式的基本性质,熟练掌握数轴的定义是解题关键. 6.A【分析】把x 的值代入不等式,求出b 的取值范围即可得解. 【详解】解:∵1x =是不等式20x b -<的解, ∴20b -<, 解得,2b >所以,选项A 符合题意, 故选:A .【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键. 7.B【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】解:A 、不等式的两边都减去3,不等号的方向不变,故A 错误; B 、不等式的两边都乘以−2,不等号的方向改变,故B 正确; C 、不等式的两边都除以4,不等号的方向不变,故C 错误; D 、当a =1,b =-1时,a 2=b 2,故D 错误; 故选:B .【点睛】本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 8.B【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【详解】解:21512x x ①②->⎧⎪⎨+≥⎪⎩ 解不等式①可得x <1, 解不等式②得x≥-3,则不等式组的解集为:-3≤x <1, 由此可知用数轴表示为:故选B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键 9.②④##④②【分析】根据条件得出b 的符号,再将2a cb +=代入,根据完全平方式的非负性即可进行判断. 【详解】解:20a bc -+=,2a c b ∴+=, 20a b c ++<,40b ∴<, 0b ∴<,∴①选项不符合题意,②选项符合题意;2a c b +=,2a cb +=∴, 0b <,0a c ∴+<,222()164()424a c a c acb ac ac ++-∴-=-=, ac 的符号不能确定,24b ac ∴-的符号不能确定,∴③选项不确定,222()()024a c a cb ac ac +--=-=≥,∴④选项符合题意,故答案为:②④.【点睛】本题考查了不等式与因式分解的综合,根据条件得出b 的符号以及b 的表达式是解题的关键. 10.13x <<【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找到解集即可.【详解】解:3021x x -<⎧⎨-<⎩①②,解不等式①可得3x <, 解不等式②可得1x >, ∴不等式组的解集为13x <<, 故答案为:13x <<.【点睛】本题考查解一元 一次不等式组,掌握不等式组的解法是解决本题的关键. 11. (10-y ) 5【分析】(1)由三种套餐中均包含盖饭且只有A 套餐中不含凉拌菜,即可得出他们点了(10-y )份A 套餐; (2)由三种套餐中均包含盖饭且只有B 套餐中不含凉拌菜,即可得出他们点了4份B 套餐.设他们点了m 份A 套餐,则点了(10-4-m )份C 套餐,由A ,C 套餐均至少点了1份,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出点餐方案的个数.【详解】解:(1)∵B,C套餐中均含一份凉拌菜,且A套餐中不含凉拌菜,∴他们点了(10-y)份A套餐.故答案为:(10-y) .(2)∵A,C套餐均含一杯饮料,且B套餐中不含饮料,∴他们点了4份B套餐.设他们点了m份A套餐,则点了(10-4-m)份C套餐,依题意得:11041 mm≥⎧⎨--≥⎩解得:1≤m≤5.又:m为正整数,∴m可以取1,2,3,4,5,最多有5种点餐方案.故答案为:5.【点睛】本题考查了一元一次不等式组的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含y的代数式表示出他们点A套餐的数量;(2)根据各数量之间的关系,正确列出一元一次不等式组.12.1;﹣1,0.(答案不唯一)【分析】根据题意选择a、b、c的值即可.【详解】解:当a=1,b=﹣1,c=0时,1>﹣1,而1×0=0×(﹣1),∴命题“若a>b,则ac>bc”是错误的,故答案为1;﹣1,0.(答案不唯一)【点睛】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.13.购买24块彩色地砖,60块单色地砖或购买27块彩色地砖,55块单色地砖【分析】设购买x块彩色地砖,购买单色地砖y块,进而由题意得到2x<y<3x,再根据总费用为1500元,且x、y均为正整数,将y用x的代数式表示,然后解一元一次不等式组即可求解.【详解】解:设购买x块彩色地砖,购买单色地砖y块,则2x<y<3x,25x+15y=1500,∴1500255100(1)153xy x,又已知有:23x y x,∴510033510023x x x x⎧-<⎪⎪⎨⎪->⎪⎩,解得3003001411x, 又x 为正整数,且30021.414,30027.311,∴x =22,23,24,25,26,27; 由(1)式中,x y ,均为正整数, ∴x 必须是3的倍数, ∴24x =或27x =,当24x =时,单色砖的块数为15002425=6015;当27x =时,单色砖的块数为15002725=5515; 故符合要求的购买方案为:购买24块彩色地砖,60块单色地砖 或 购买27块彩色地砖,55块单色地砖. 【点睛】本题考查了一元一次不等式的实际应用,本题的关键点是将单色砖的块数用彩色砖的块数的代数式表示,进而解不等式组,注意实际问题考虑解为正整数的情况. 14.1班或5班【分析】设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,根据题意和结合表格数据得19≤190﹣7x≤29,解之即可解答.【详解】解:设已经完成体检的男生4x 人,女生3x 人,则完成体检的总人数7x 人,没完成体检的总人数(190﹣7x )人,由题意,19≤190﹣7x ≤29, 解得:23≤x ≤3247,∵x 为整数, ∴x =23或24,当x =23时,190﹣7x =29, 当x =24时,190﹣7x =22,所以,还没有体检的班级可能是1班或5班, 故答案为:1班或5班.【点睛】本题考查统计表、一元一次不等式组的应用,理解题意,正确列出一元一次不等式组是解答的关键. 15.-3【分析】根据不等式的性质解答即可.<,【详解】解:∵a b<,∴当c>0时,ac bc>,当c<0时,ac bc故答案为:-3(答案不唯一).【点睛】此题考查不等式的性质,熟记不等式的性质是解题的关键.16.1-(答案不唯一,负数即可)【分析】当a b>,要使符号变号,则只需不等式两边同时乘同一个负数c即可.<成立,即不等式两边同时乘一个c符号会变号,则使c是负数即可,则可使【详解】当a b>,要使ac bcc=-.1【点睛】本题考查了真命题和不等式的性质知识点,不等式符号要变号,就使不等式两边同时乘或除同一个负数即可,这一性质是解题的关键.17.3800【分析】将84名师生同时送到目的地,且花费是最少,只有优化租车方案方可达到节约,从同款型和不同车型组合两方面考虑求解.【详解】解:依题意得:租车费用最低的前题条件是将84名师生同时送到目的地,其方案如下:①全部一种车型:小巴车23座最少4辆,其费用为:4×1000=4000元,中巴车39座最少3辆,其费用为:3×1800=5400元,大巴车55座最少2辆,其费用为:2×2400=4800元∵4000<480<5400,∴同种车型应选取小巴车4辆费用最少.②搭配车型:2辆23座小巴车和1辆39座中巴车,其费用为:1000×2+1800=3800元,1辆39座中巴车和1辆55座大巴车,其费用为:1800+2400=4200元,∵3800<4200,∴搭配车型中2辆23座小巴车和1辆39座大巴车最少.综合①、②两种情况,费用最少为3800元.故答案为:3800.【点睛】本题考查了不等式的应用,主要考虑方案的可行性,正确分类并通过计算比较大小求解.18.14<<x【分析】分别解两个一元一次不等式,再求交集即可. 【详解】解:27442x x x x +>-⎧⎪⎨+<⎪⎩①② 解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.19.12x ≤<【分析】分别求得各不等式的解集,然后求得公共部分即可. 【详解】解:原不等式组为4(1)7,32.4x x x x +≥+⎧⎪⎨+>⎪⎩①② 解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为12x <.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.543x -≤<;正整数解为1. 【分析】分别求出两个不等式得解集,找出两个解集的公共部分即可得不等式组得解集,再找出解集中得正整数解即可得答案. 【详解】1251635341x x x x +-⎧>+⎪⎨⎪+-⎩ 解不等式125163x x +->+得:53x <, 解不等式5341x x +≥-得:4x ≥-,∴不等式组得解集为543x -≤<, ∴不等式组的正整数解为:1.【点睛】本题考查解一元一次不等式组及求不等式组得正整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.不等式组的解集为1x ,所有非负整数解为0,1【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的所有非负整数解即可.【详解】解:原不等式组为4(1)26,53.3x x x x +≤+⎧⎪⎨--<⎪⎩①②解不等式①,得1x .解不等式②,得2x <.∴原不等式组的解集为1x .∴原不等式组的所有非负整数解为0,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.24x <<【分析】根据一元一次不等式组的解法可直接进行求解. 【详解】解:451342x x x x ->+⎧⎪⎨-<⎪⎩①② 由①可得:2x >,由②可得:4x <,∴原不等式组的解集为24x <<.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.23.123x -<< . 【分析】先分别求解两个不等式的解集,再求两个解集的公共部分即得.【详解】解:()2131532x x x x ⎧->-⎪⎨-<+⎪⎩①②, 解不等式①得:2x <,解不等式②得:13x >-, ∴这个不等式的解集为123x -<< . 【点睛】本题考查了一元一次不等式组求解,解题关键是根据不等式的性质将不等式去分母、去括号、移项、合并同类项和系数化为1.24.2x ≤,数轴见解析【分析】按照解一元一次不等式的一般步骤解答,并把解集规范的表示在数轴上即可.【详解】解:2328x x -≥-.2328.x x --≥--510.x -≥-2.x ≤不等式的解集在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.25.1x ≥,数轴见解析【分析】正确解不等式,后根据大于向右,小于向左,有等号,实心圆,无等号,空心圆表示出来即可.【详解】解:去分母:133x x -≤-.移项,合并同类项:22x ≤.解得,1x ≥.【点睛】本题考查了不等式的解法,规范按照解不等式的基本步骤,扎实求解,理解数轴表示的符号意义是解题的关键.26.x ≥-2,在数轴上表示见解析【分析】去括号,移项,合并同类项,再在数轴上表示出不等式的解集即可.【详解】解:3(x −1)≥2x −5,去括号,得3x -3≥2x -5,移项,得3x -2x ≥-5+3,合并同类项,得x ≥-2,在数轴上表示不等式的解集为:.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.。
专题06.一元一次不等式(组)一、单选题1.(2021·河北中考真题)已知a b >,则一定有44a b --□,“”中应填的符号是( )A .>B .<C .≥D .=2.(2021·山东菏泽市·中考真题)如果不等式组541x x x m +<-⎧⎨>⎩的解集为2x >,那么m 的取值范围是( )A .2m ≤B .2m ≥C .2m >D .2m <3.(2021·湖南常德市·中考真题)若a b >,下列不等式不一定成立的是( ) A .55a b ->-B .55a b -<-C .a bc c> D .a c b c +>+4.(2021·湖南株洲市·中考真题)不等式组2010x x -≤⎧⎨-+>⎩的解集为( )A .1x <B .2x ≤C .12x <≤D .无解5.(2021·山东临沂市·中考真题)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若>0b ,则11<a b,其中正确的个数是( )A .1B .2C .3D .46.(2021·四川遂宁市·中考真题)不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .7.(2021·浙江金华市·中考真题)一个不等式的解在数轴上表示如图,则这个不等式可以是( )A .20x +>B .20x -<C .24x ≥D .20x -<8.(2021·四川南充市·中考真题)满足3x 的最大整数x 是( ) A .1B .2C .3D .49.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 10.(2021·浙江丽水市·中考真题)若31a ->,两边都除以3-,得( ) A .13a <-B .13a >-C .3a <-D .3a >-11.(2021·湖南邵阳市·中考真题)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-212.(2021·浙江中考真题)不等式315x ->的解集是( ) A .2x >B .2x <C .43x >D .43x <13.(2021·湖南衡阳市·中考真题)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .14.(2021·山东临沂市·中考真题)不等式-113x x <+的解集在数轴上表示正确的是( ) A . B .C .D .15.(2021·重庆中考真题)不等式2x ≤在数轴上表示正确的是( )A .B .C .D .16.(2020·广西贵港市·中考真题)如果a b <,0c <,那么下列不等式中不成立的是( )A .a c b c +<+B .ac bc >C .11ac bc +>+D .22ac bc >17.(2020·广西中考真题)不等式组1051x x ->⎧⎨-≥⎩的整数解共有( )A .1个B .2个C .3个D .4个18.(2020·辽宁朝阳市·中考真题)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( ) A .8B .6C .7D .919.(2020·辽宁铁岭市·)不等式组31231x x +>⎧⎨-≤⎩的整数解的个数是( )A .2B . 3C .4D .520.(2020·辽宁盘锦市·中考真题)不等式417x x +>+的解集在数轴上表示正确的是( ) A .B .C .D .21.(2020·四川宜宾市·中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( ) A .2种B .3种C .4种D .5种22.(2020·甘肃天水市·中考真题)若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<-B .74a -≤≤-C .74a -≤<-D .74a -<≤-23.(2020·山东潍坊市·中考真题)若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解,则a 的取值范围是( ) A .02a ≤≤B .02a ≤<C .02a <≤D .02a <<24.(2020·山东德州市·中考真题)若关于x 的不等式组2242332x x x x a--⎧>⎪⎨⎪->--⎩的解集是2x <,则a 的取值范围是( ) A .2a ≥B .2a <-C .2a >D .2a ≤25.(2020·内蒙古呼伦贝尔市·中考真题)满足不等式组()5231131722x x x x⎧+-⎪⎨-≤-⎪⎩>的非负整数解的个数为( )A .4B .5C .6D .726.(2019·四川绵阳市·中考真题)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( ) A .3种B .4种C .5种D .6种27.(2019·西藏中考真题)把一些书分给几名同学,如果每人分3本,那么余6本;如果前面的每名同学分5本,那么最后一人就分不到3本,这些书有______本,共有______人.( ) A .27本,7人B .24本,6人C .21本,5人D .18本,4人28.(2019·重庆中考真题)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( ) A .13B .14C .15D .1629.(2019·湖南永州市·中考真题)若关于x 的不等式组26040x m x m -+⎧⎨-⎩<>有解,则在其解集中,整数的个数不可能是( ) A .1B .2C .3D .430.(2019·内蒙古呼和浩特市·中考真题)若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()xx m x +++﹣>成立,则m 的取值范围是( ) A .35m >-B .15m <-C .35m <-D .15m >-31.(2019·山东聊城市·中考真题)若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >32.(2019·四川乐山市·中考真题)小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式12x +<的概率是()A .15B .14C .13D .1233.(2019·江苏扬州市·中考真题)已知n 正整数,若一个三角形的三边长分别是n+2、n+8、3n ,则满足条件的n 的值有( ) A .4个 B .5个C .6个D .7个二、填空题目34.(2021·湖南常德市·中考真题)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个. 35.(2021·四川眉山市·中考真题)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是______. 36.(2021·上海中考真题)不等式2120x -<的解集是_______.37.(2021·江苏扬州市·中考真题)在平面直角坐标系中,若点()1,52P m m --在第二象限,则整数m 的值为_________.38.(2021·浙江温州市·中考真题)不等式组343214x x -<⎧⎪⎨+≥⎪⎩的解为______.39.(2021·四川泸州市·中考真题)关于x 的不等式组23023x x a恰好有2个整数解,则实数a 的取值范围是_________.40.(2021·四川遂宁市·中考真题)已知关于x ,y 的二元一次方程组235423x y ax y a +=⎧⎨+=+⎩满足0x y ->,则a的取值范围是____.41.(2020·四川绵阳市·中考真题)若不等式52x+>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是_______.42.(2020·四川绵阳市·中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本)43.(2020·黑龙江鹤岗市·中考真题)若关于x的一元一次不等式组1020xx a->⎧⎨->⎩的解是1x>,则a的取值范围是_______.44.(2020·黑龙江鸡西市·中考真题)若关于x的一元一次不等式组1020xx a->⎧⎨-<⎩有2个整数解,则a的取值范围是______.45.(2020·山东滨州市·中考真题)若关于x的不等式组12420x ax⎧->⎪⎨⎪-≥⎩无解,则a的取值范围为________.46.(2020·四川遂宁市·中考真题)若关于x的不等式组214322x xx m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解,则m的取值范围是______.47.(2020·贵州黔东南苗族侗族自治州·中考真题)不等式组513(1)111423x xx x->+⎧⎪⎨--⎪⎩的解集为_____.48.(2019·湖北鄂州市·中考真题)若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足0x y+≤,则m的取值范围是____.49.(2019·辽宁丹东市·中考真题)关于x的不等式组2401xa x->⎧⎨->-⎩的解集是2<x<4,则a的值为_____.50.(2019·贵州铜仁市·中考真题)如果不等式组324x a x a +⎧⎨-⎩<<的解集是x <a ﹣4,则a 的取值范围是_______.三、解答题51.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步 49662x x ->--+第三步510x ->-第四步 2x >第五步任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的; ②第__________步开始出现错误,这一步错误的原因是________________; 任务二:请直接写出该不等式的正确解集.52.(2021·河北中考真题)已知训练场球筐中有A 、B 两种品牌的乒乓球共101个,设A 品牌乒乓球有x 个. (1)淇淇说:“筐里B 品牌球是A 品牌球的两倍.”嘉嘉根据她的说法列出了方程:1012x x -=.请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B 品牌球比A 品牌球至少多28个,试通过列不等式的方法说明A 品牌球最多有几个.53.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?54.(2021·湖北宜昌市·中考真题)解不等式组3(2)4 21132x xx x--≥⎧⎪-+⎨≤⎪⎩.55.(2021·湖南常德市·中考真题)某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?56.(2021·湖北黄冈市·中考真题)2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:(1)共需租________辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?57.(2021·湖南长沙市·中考真题)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?58.(2021·陕西中考真题)解不等式组:543121 2xxx+<⎧⎪⎨+≥-⎪⎩59.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.60.(2021·四川乐山市·中考真题)当x取何正整数时,代数式32x+与213x-的值的差大于161.(2021·江苏连云港市·中考真题)解不等式组:311442 x xx x-≥+⎧⎨+<-⎩.62.(2020·柳州市柳林中学中考真题)解不等式组21123xx+>⎧⎨-≥-⎩①②请结合解题过程,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在如图所示的数轴上表示出来:(Ⅳ)原不等式的解集为.63.(2020·山东济南市·中考真题)解不等式组:()42131322x x x x ⎧-≤+⎪⎨->⎪⎩①②,并写出它的所有整数解.64.(2020·山东威海市·中考真题)解不等式组423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩,并把解集在数轴上表示出来65.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据n b 定义为[]n b 如表2:定义:对于任意正整数m 、n ,其中2m >.若[]n b m =,则22n m b m -+. 如:[]4175b =表示417521752b -+,即4173177b .(1)通过观察表2,猜想出n a 与序号n 之间的关系式,[]n b 与序号n 之间的关系式; (2)用含n a 的代数式表示[]n b ;计算鞋号为42的鞋适合的脚长范围; (3)若脚长为271毫米,那么应购鞋的鞋号为多大?66.(2020·湖南娄底市·中考真题)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶. 求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?67.(2020·江苏淮安市·中考真题)解不等式31212x x -->. 解:去分母,得2(21)31x x ->-.…… (1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A”或“B”) A .不等式两边都乘(或除以)同一个正数,不等号的方向不变; B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.68.(2020·贵州贵阳市·中考真题)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?祝你考试成功!祝你考试成功!。
专题06 一元二次方程与一元一次不等式(组)及其应用考向1 一元二次方程解法及其应用【母题来源】(2021·浙江丽水)【母题题文】用配方法解方程x2+4x+1=0时,配方结果正确的是()A.(x﹣2)2=5 B.(x﹣2)2=3 C.(x+2)2=5 D.(x+2)2=3【母题来源】(2021·浙江台州)【母题题文】关于x的方程x2﹣4x+m=0有两个不相等的实数根,则m的取值范围是()A.m>2 B.m<2 C.m>4 D.m<4【母题来源】(2021·浙江舟山)【母题题文】小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:小敏:两边同除以(x﹣3),得3=x﹣3,则x=6.小霞:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x﹣3)=0.则x﹣3=0或3﹣x﹣3=0,解得x1=3,x2=0.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.【母题来源】(2021·浙江湖州)【母题题文】今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如下表所示:购票方式甲乙丙可游玩景点A B A和B门票价格 100元/人 80元/人 160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?【试题分析】以上题目考察的一元二次方程的解法及其应用;【命题意图】一元二次方程的解法有四种,其中中考中对配方法与公式法考察较多;一元二次方程的应用题因为和一次方程的应用题的思考方式变化不大,中考中一般也不单独考察,常常和二次函数联合考察其应用;【命题方向】浙江中考中,一元二次方程这个考点通常不会单独出题,并不是因为它在中考中占分少,而是因为在后续几何题目中的计算,都会考到一元二次方程的解法,单独的应用题考察很少,或者基本不考;复习中,能用配方法、公式法、因式分解法熟练解一元二次方程,会用一元二次方程根的判别式判断方程根的情况,了解一元二次方程的根与系数的关系即可; 【得分要点】一元二次方式知识总结一般形式)(002≠=++a c bx ax特征:①自含有1个未知数②未知数的最高次数是2次 ③是整式方程解法直接开方法配方法用法提醒:①先将常数项移到=右边;②二次项系数为1时,配方时加上的是一次想系数一半的平方因式分解法因式分解的一般步骤:①提取公因式,②套用乘法公式,③二次三项式想十字相乘公式法求根公式:)(042422≥--±-=ac b aac b b x根的判别式ac b 42-方程没有实数根;<根;方程有两个相等的实数数根;方程有两个不相等的实>⇔-⇔=-⇔-040404222ac b ac b ac b 韦达定理若一元二次方程)(002≠=++a c bx ax 的两个根分别为21x x 、则ac x x a bx x =•-=+2121; 实际应用 一般步骤:①审题, ②设元, ③列方程, ④解方程, ⑤检验, ⑥写出答案考向2 一元一次不等式(组)的解法【母题来源】(2021·浙江金华)【母题题文】一个不等式的解集在数轴上表示如图,则这个不等式可以是( )A .x +2>0B .x ﹣2<0C .2x ≥4D .2﹣x <0【母题来源】(2021·浙江丽水)【母题题文】若﹣3a >1,两边都除以﹣3,得( ) A .a <﹣B .a >﹣C .a <﹣3D .a >﹣3【母题来源】(2021·浙江衢州)【母题题文】 不等式2(y +1)<y +3的解集为 . 【母题来源】(2021·浙江湖州)【母题题文】不等式3x ﹣1>5的解集是( ) A .x >2B .x <2C .x >D .x <【母题来源】(2021·浙江温州) 【母题题文】 不等式组的解集为 .【母题来源】(2021·浙江绍兴)【母题题文】(1)计算:4sin60°﹣+(2﹣)0.(2)解不等式:5x+3≥2(x+3).【母题来源】(2021·浙江杭州)【母题题文】以下是圆圆解不等式组的解答过程:解:由①,得2+x>﹣1,所以x>﹣3.由②,得1﹣x>2,所以﹣x>1,所以x>﹣1.所以原不等式组的解集是x>﹣1.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.【母题来源】(2021·浙江宁波)【母题题文】(1)计算:(1+a)(1﹣a)+(a+3)2.(2)解不等式组:.【试题分析】以上题目都考察了一元一次不等式(组)的解法,以及在数轴上表示不等式的解集;【命题意图】一元一次不等式(组)的解法是在理解并掌握不等式的基本性质的基础上,对一元一次不等式的解法步骤的考察,而不等式组则是在解完每个不等式后,考察考生对解集公共部分的理解;【命题方向】浙江中考中,一元一次不等式(组)的解法考察形式较多,选择题、填空题或者简答题都有可能单独出题,而且一般都会考,但考题难度一般不大,考生需要掌握的能力为:准确掌握一元一次不等式(组)的解法,并能在数轴上表示出解集,会用数轴确定由两个一元一次不等式组成的不等式组的解集。
中考数学总复习《一元一次不等式(组)》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.x≤2在数轴上表示正确的是( )2.(2024·广州)若a<b,则( )A.a+3>b+3B.a-2>b-2C.-a<-bD.2a<2b3.(2024·雅安)不等式组{3x−2≥42x<x+6的解集在数轴上表示为( )4.(2024·南宁模拟)小霞原有存款52元,小明原有存款70元.从这个月开始,小霞每月存15元零花钱,小明每月存12元零花钱,设经过n个月后小霞的存款超过小明,可列不等式为( )A.52+15n>70+12nB.52+15n<70+12nC.52+12n>70+15nD.52+12n<70+15n5.(2024·广东)关于x的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是.6.(2024·青海)请你写出一个解集为x >√7的一元一次不等式 .7.(2024·龙东)关于x 的不等式组{4−2x ≥012x −a >0恰有3个整数解,则a 的取值范围是 . 8.解不等式组:{2x +1>0x+13>x −1.B 层·能力提升9.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是( )A .c (b -a )<0B .b (c -a )<0C .a (b -c )>0D .a (c +b )>010.(2024·包头)若2m -1,m ,4-m 这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是( ) A .m <2B .m <1C .1<m <2D .1<m <5311.某品牌护眼灯的进价为240元,商店以320元的价格出售.五一期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 元.12.(2024·雅安)某市为治理污水,保护环境,需铺设一段全长为3 000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元.该公司原计划最多应安排多少名工人施工?13.(2024·桂林模拟)某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药.学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A,B两块区域分别种植牡丹和芍药,每平方米种植2株,已知牡丹每株售价25元,芍药每株售价15元,学校计划购买鲜花费用不超过5万元,求最多可以购买多少株牡丹?C 层·挑战冲A +14.(2024·深圳)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为购物车叠放在一起的示意图,若一辆购物车车身长1 m,每增加一辆购物车,车身增加0.2 m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的解析式; 任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6 m,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?参考答案A层·基础过关1.x≤2在数轴上表示正确的是(C)2.(2024·广州)若a<b,则(D)A.a+3>b+3B.a-2>b-2C.-a<-bD.2a<2b3.(2024·雅安)不等式组{3x−2≥42x<x+6的解集在数轴上表示为(C)4.(2024·南宁模拟)小霞原有存款52元,小明原有存款70元.从这个月开始,小霞每月存15元零花钱,小明每月存12元零花钱,设经过n个月后小霞的存款超过小明,可列不等式为(A)A.52+15n>70+12nB.52+15n<70+12nC.52+12n>70+15nD.52+12n<70+15n5.(2024·广东)关于x的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是x≥3.6.(2024·青海)请你写出一个解集为x >√7的一元一次不等式 x -√7>0(答案不唯一) .7.(2024·龙东)关于x 的不等式组{4−2x ≥012x −a >0恰有3个整数解,则a 的取值范围是-12≤a <0.8.解不等式组:{2x +1>0x+13>x −1.【解析】解不等式2x +1>0得x >-12解不等式x+13>x -1得x <2.∴不等式组的解集是-12<x <2.B 层·能力提升9.实数a ,b ,c 在数轴上对应点的位置如图所示,下列式子正确的是(C)A .c (b -a )<0B .b (c -a )<0C .a (b -c )>0D .a (c +b )>010.(2024·包头)若2m -1,m ,4-m 这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是(B) A .m <2B .m <1C .1<m <2D .1<m <5311.某品牌护眼灯的进价为240元,商店以320元的价格出售.五一期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价 32 元.12.(2024·雅安)某市为治理污水,保护环境,需铺设一段全长为3 000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?【解析】(1)设原计划每天铺设管道x米,则实际施工每天铺设管道(1+25%)x=1.25x(米)根据题意得:3 0001.25x +15=3 000x解得x=40经检验x=40是分式方程的解,且符合题意∴1.25x=50,则原计划与实际每天铺设管道各为40米,50米;(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元.该公司原计划最多应安排多少名工人施工?【解析】(2)设该公司原计划应安排y名工人施工3000÷40=75(天)根据题意得:300×75y≤180 000解得y≤8∴不等式的最大整数解为8则该公司原计划最多应安排8名工人施工.13.(2024·桂林模拟)某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药.学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;【解析】(1)设垂直于墙的边为x米,围成的矩形面积为S平方米,则平行于墙的边为(120-3x)米根据题意得:S=x(120-3x)=-3x2+120x=-3(x-20)2+1 200∵-3<0,∴当x=20时,S取最大值1 200∴120-3x=120-3×20=60∴垂直于墙的边为20米,平行于墙的边为60米,花园面积最大为1 200平方米;(2)在花园面积最大的条件下,A,B两块区域分别种植牡丹和芍药,每平方米种植2株,已知牡丹每株售价25元,芍药每株售价15元,学校计划购买鲜花费用不超过5万元,求最多可以购买多少株牡丹?【解析】(2)设购买牡丹m株,则购买芍药1 200×2-m=(2 400-m)株∵学校计划购买鲜花费用不超过5万元∴25m+15(2 400-m)≤50 000,解得m≤1 400,∴最多可以购买1 400株牡丹.C层·挑战冲A+14.(2024·深圳)背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为购物车叠放在一起的示意图,若一辆购物车车身长1 m,每增加一辆购物车,车身增加0.2 m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的解析式; 任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6 m,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?【解析】任务1:根据题意得:L =0.2(n -1)+1=0.2n +0.8∴车身总长L 与购物车辆数n 的解析式为L =0.2n +0.8; 任务2:当L =2.6时,0.2n +0.8=2.6 解得n =92×9=18(辆)答:直立电梯一次性最多可以运输18辆购物车;任务3:设用扶手电梯运输m次,直立电梯运输n次∵100÷24=416根据题意得:{m+n=524m+18n≥100解得m≥53∵m为正整数,且m≤5,∴m=2,3,4,5∴共有4种运输方案.。
专题06 一元一次不等式(组)一、单选题1.(2021·河北)已知a b >,则一定有44a b --□,“”中应填的符号是( )A .>B .<C .≥D .=【答案】B【分析】直接运用不等式的性质3进行解答即可.【详解】解:将不等式a b >两边同乘以-4,不等号的方向改变得44a b -<-,∴“”中应填的符号是“<”,故选:B . 【点睛】此题主要考查了不等式的基本性质3:不等式的两边同乘以(或除以)同一个负数,不等号的方向改变,熟练掌握不等式的基本性质是解答此题的关键.2.(2021·山东菏泽市)如果不等式组541x x x m+<-⎧⎨>⎩的解集为2x >,那么m 的取值范围是( )A .2m ≤B .2m ≥C .2m >D .2m <【答案】A【分析】先解不等式组,确定每个不等式的解集,后根据不等式组的解集的意义,确定m 的取值范围即可. 【详解】∵541x x x m +<-⎧⎨>⎩①②,解①得x >2,解②得x >m , ∵不等式组541x x x m+<-⎧⎨>⎩的解集为2x >,根据大大取大的原则,∴2m ≤,故选A . 【点睛】本题考查了一元一次不等式组的解法,熟练根据不等式组的解集确定字母的取值是解题的关键. 3.(2021·湖南常德市)若a b >,下列不等式不一定成立的是( )A .55a b ->-B .55a b -<-C .a b c c >D .a c b c +>+ 【答案】C【分析】根据不等式的性质逐项进行判断即可得到答案.【详解】解:A .在不等式a b >两边同时减去5,不等式仍然成立,即55a b ->-,故选项A 不符合题意;B . 在不等式a b >两边同时除以-5,不等号方向改变,即55a b -<-,故选项B 不符合题意;C .当c ≤0时,不等得到a b c c>,故选项C 符合题意; D . 在不等式a b >两边同时加上c ,不等式仍然成立,即a c b c +>+,故选项D 不符合题意;故选:C .【点睛】此题主要考查了不等式的性质运用的,熟练掌握不等式的性质是解答此题的关键.4.(2021·湖南株洲市)不等式组2010x x -≤⎧⎨-+>⎩的解集为( ) A .1x <B .2x ≤C .12x <≤D .无解 【答案】A【分析】先解不等式组中的每一个不等式,再利用不等式组解集的口诀“同小取小”得出解集.【详解】解:2010x x -≤⎧⎨-+>⎩①②由①,得:x ≤2,由②,得:x <1,则不等式组的解集为:x <1,故选:A .【点睛】本题主要考查了一元一次不等式组解集的求法,关键在于根据解集的特点确定解集:同大取大、同小取小、大小小大中间找、大大小小无解得到.5.(2021·山东临沂市)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若>0b ,则11<a b,其中正确的个数是( ) A .1B .2C .3D .4【答案】A【分析】根据不等式的性质分别判断即可.【详解】解:∵a >b ,则①当a =0时,2a ab =,故错误;②当a <0,b <0时,22a b <,故错误; ③若0b <,则b b a b +<+,即2a b b +>,故错误;④若>0b ,则0a b >>,则11<a b,故正确;故选A . 【点睛】本题考查了不等式的性质,解题的关键是掌握不等式两边发生变化时,不等号的变化.6.(2021·四川遂宁市)不等式组20112x x ->⎧⎪⎨-≥-⎪⎩的解集在数轴上表示正确的是( ) A . B .C .D .【答案】C【分析】先分别求出两个不等式的解,得出不等式组的解,再在数轴上的表示出解集即可.【详解】解: 20112x x ->⎧⎪⎨-≥-⎪⎩①②解不等式①得,2x <解不等式②得,1x ≥- 不等式组的解集为12x -≤<,在数轴上表示为,故选:C .【点睛】本题考查了一元一次不等式组的解法和解集的表示,解题关键是熟练运用解不等式组的方法求解,准确在数轴上表示解集.7.(2021·浙江金华市)一个不等式的解在数轴上表示如图,则这个不等式可以是( )A .20x +>B .20x -<C .24x ≥D .20x -<【答案】B【分析】逐项解不等式,选择符合题意的一项.【详解】图中数轴表示的解集是x <2.A 选项,解不等式得x >-2,故该选项不符合题意,B 选项,解不等式得x <2,故该选项符合题意,C 选项,解不等式得2x ≥ ,故该选项不符合题意,D 选项,解不等式得x >2,故该选项不符合题意,故选:B .【点睛】本题主要考查不等式解集的表示方法和解简单的一元一次不等式.根据不等式的性质解一元一次不等式,主要是要细心.8.(2021·四川南充市)满足3x 的最大整数x 是( )A .1B .2C .3D .4 【答案】C【分析】逐项分析,求出满足题意的最大整数即可.【详解】A 选项,13<,但不是满足3x 的最大整数,故该选项不符合题意,B 选项,23<,但不是满足3x 的最大整数,故该选项不符合题意,C 选项,3=3,满足3x 的最大整数,故该选项符合题意,D 选项,43>,不满足3x ,故该选项不符合题意,故选:C .【点睛】本题较为简单,主要是对不等式的理解和最大整数的理解.9.(2021·浙江嘉兴市)已知点(),P a b 在直线34y x =--上,且250a b -≤( )A .52a b ≤B .52a b ≥C .25b a ≥D .25b a ≤ 【答案】D【分析】根据点(),P a b 在直线34y x =--上,且250a b -≤,先算出a 的范围,再对不等式250a b -≤变形整理时,需要注意不等号方向的变化. 【详解】解:点(),P a b 在直线34y x =--上,34b a ∴=--,将上式代入250a b -≤中,得:25(34)0a a -⨯--≤,解得:2017a ≤-,由250ab -≤,得:25a b ≤, 202,175b a a ≤-∴≤(两边同时乘上一个负数,不等号的方向要发生改变),故选:D . 【点睛】本题考查了解一元一次不等式,解题的关键是:要注意在变形的时候,不等号的方向的变化情况. 10.(2021·浙江丽水市)若31a ->,两边都除以3-,得( )A .13a <-B .13a >-C .3a <-D .3a >- 【答案】A 【分析】利用不等式的性质即可解决问题.【详解】解:31a ->,两边都除以3-,得13a <-,故选:A .【点睛】本题考查了解简单不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变. 11.(2021·湖南邵阳市)不等式组51341233x x x x ->-⎧⎪⎨-≤-⎪⎩的整数解的和为( ) A .1B .0C .-1D .-2【答案】A【分析】先求出不等式组的解集,再从中找出整数求和即可. 【详解】51341233x x x x ->-⎧⎪⎨-≤-⎪⎩①②,解①得32x >-,解②得x≤1,∴213x -<≤,∴整数解有:0,1,∴0+1=1.故选A. 【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 12.(2021·浙江)不等式315x ->的解集是( )A .2x >B .2x <C .43x >D .43x < 【答案】A【分析】直接移项、合并同类项、不等号两边同时除以3即可求解.【详解】解:315x ->,移项、合并同类项得:36x >,不等号两边同时除以3,得:2x >,故选:A .【点睛】本题考查解一元一次不等式,掌握不等式的基本性质是解题的关键. 13.(2021·湖南衡阳市)不等式组1026x x +<⎧⎨-≤⎩的解集在数轴上可表示为( ) A . B . C .D .【答案】A 【分析】根据一元一次不等式组的解题要求对两个不等式进行求解得到解集即可对照数轴进行选择.【详解】解不等式x +1<0,得x <-1,解不等式-26x ≤,得3x ≥-,所以这个不等式组的解集为-3-x ≤<1,在数轴上表示如选项A 所示,故选:A .【点睛】本题主要考查了一元一次不等式组的解,正确求解不等式组的解集并在数轴上表示是解决本题的关键.14.(2021·山东临沂市)不等式-113x x <+的解集在数轴上表示正确的是( ) A .B .C .D .【答案】B【分析】求出不等式的解集,再根据“大于向右,小于向左,不包括端点用空心,包括端点用实心”的原则将解集在数轴上表示出来. 【详解】解:解不等式113x x -<+, 去分母得:()131x x -<+,去括号得:133x x -<+,移项合并得:24x >-,系数化为得:2x >-,表示在数轴上如图:故选:B .【点睛】本题考查的是解一元一次不等式以及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.15.(2021·重庆)不等式2x ≤在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】根据在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示,把已知解集表示在数轴上即可.【详解】解:不等式2x ≤在数轴上表示为: .故选:D .【点睛】本题考查了在数轴上表示不等式的解集,熟悉相关性质是解题的关键.二、填空题1.(2021·湖南常德市)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个.【答案】21【分析】设弹珠的总数为x 个, 蓝珠有y 个,根据总数不超过50个列出不等式求解即可.【详解】解:设弹珠的总数为x 个, 蓝珠有y 个,根据题意得,1186450x x y x x ⎧+++=⎪⎨⎪≤⎩①②,由①得,96127y x +=,结合②得,9612507y +≤解得,1216y ≤ 所以,刘凯的蓝珠最多有21个.故答案为:21.【点睛】此题主要考查了一元一次不等式的应用,能够找出不等关系是解答此题的关键.2.(2021·四川眉山市)若关于x 的不等式1x m +<只有3个正整数解,则m 的取值范围是______.【答案】32m -≤<-【分析】首先解关于x 的不等式,然后根据x 只有3个正整数解,来确定关于m 的不等式组的取值范围,再进行求解即可.【详解】解:解不等式1x m +<,得:1x m <-,由题意x 只有3个正整数解,则分别为:1,2,3,故:1314m m ->⎧⎨-≤⎩,解得:32m -≤<-,故答案是:32m -≤<-. 【点睛】本题考查了关于x 不等式的正整数解及解一元一次不等式组的解集问题,解题的关键是:根据关于x 不等式的正整数解的情况来确定关于m 的不等式组的取值范围,其过程需要熟练掌解不等式的步骤. 3.(2021·上海)不等式2120x -<的解集是_______.【答案】6x <【分析】根据不等式的性质即可求解.【详解】2120x -<,212x <,6x < 故答案为:6x <.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.4.(2021·江苏扬州市)在平面直角坐标系中,若点()1,52P m m --在第二象限,则整数m 的值为_________.【答案】2【分析】根据第二象限的点的横坐标小于0,纵坐标大于0列出不等式组,然后求解即可.【详解】解:由题意得:10520m m -<⎧⎨->⎩,解得:512m <<,∴整数m 的值为2,故答案为:2. 【点睛】本题考查了点的坐标及解一元一次不等式组,记住各象限内点的坐标的符号是解决的关键.5.(2021·浙江温州市)不等式组343214x x -<⎧⎪⎨+≥⎪⎩的解为______.【答案】273x ≤< 【分析】分别求出不等式组中两个不等式的解集,再求出其公共部分即可. 【详解】解:343214x x -<⎧⎪⎨+≥⎪⎩①②,由①得,x <7;由②得,x ≥23; 根据小大大小中间找的原则,不等式组的解集为273x ≤<.故答案为:273x ≤< 【点睛】此题主要考查了解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.(2021·四川泸州市)关于x 的不等式组23023x x a 恰好有2个整数解,则实数a 的取值范围是_________. 【答案】102a <≤ 【分析】首先解每个不等式,根据不等式组只有2个整数解,确定整数解的值,进而求得a 的范围.【详解】解:23023x x a ①②解①得32x >,解②得32x a <+,不等式组的解集是3322x a . ∵不等式组只有2个整数解,∴整数解是2,3.则3324a ,∴102a <≤故答案是:102a <≤ 【点睛】本题考查的是一元一次不等式组的整数解,根据x 的取值范围,得出x 的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(2021·四川遂宁市)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____.【答案】1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①②①-②,得33x y a -=- ∵0x y ->∴330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键.三、解答题1. (2021贺州)解不等式组:()2552314x x x x +>+⎧⎨-<⎩. 【答案】31x -<< 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】()2552314x x x x +>+⎧⎪⎨-<⎪⎩①② 解不等式①得1x <,解不等式②得3x >-,所以这个不等式组的解集为31x -<<.【点晴】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题关键.2.(2021·山西)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的;②第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.【答案】(1)6;(2)任务一:①乘法分配律(或分配律);②五;不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);任务二:2x <【分析】(1)根据实数的运算法则计算即可;(2)根据不等式的性质3判断并计算即可.【详解】(1)解:原式118(8)4=⨯+-⨯()826=+-=. (2)①乘法分配律(或分配律)②五 不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);任务二:不等式两边都除以-5,改变不等号的方向得:2x <.【点睛】本题主要考查实数的运算,不等式的性质等知识点,熟练掌握实数的运算法则以及不等式的性质是解题关键.3.(2021·河北)已知训练场球筐中有A 、B 两种品牌的乒乓球共101个,设A 品牌乒乓球有x 个. (1)淇淇说:“筐里B 品牌球是A 品牌球的两倍.”嘉嘉根据她的说法列出了方程:1012x x -=.请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B 品牌球比A 品牌球至少多28个,试通过列不等式的方法说明A 品牌球最多有几个.【答案】(1)不正确;(2)36【分析】(1)解方程,得到方程的解不是整数,不符合题意,因此判定淇淇说法不正确;(2)根据题意列出不等式,解不等式即可得到A 品牌球的数量最大值.【详解】解:(1)1012x x -=,解得:1013x =,不是整数,因此不符合题意;所以淇淇的说法不正确. (2)∵A 品牌球有x 个,B 品牌球比A 品牌球至少多28个,∴10128x x --≥,解得:36.5x ≤, ∵x 是整数,∴x 的最大值为36,∴A 品牌球最多有36个.【点睛】本题考查了一元一次方程和一元一次不等式的应用,解决本题的关键是能根据题意列出方程或不等式,并结合实际情况,对它们的解或解集进行判断,得出结论;本题数量关系较明显,因此考查了学生的基本功.4.(2021·湖北恩施州)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?【答案】(1)每千克花生的售价为10元,每千克的茶叶售价为50元;(2)花生销售30千克,茶叶也销售30千克时可获得最大利润,最大利润为540元.【分析】(1)设每千克花生的售价为(x -40)元,每千克的茶叶售价为x 元,然后根据题意可列出方程进行求解;(2)设茶叶销售了m 千克,则花生销售了(60-m )千克,所获得利润为w 元,由题意可得()660361260602m m m m ⎧-+≤⎨-≤⎩,10240w m =+,然后求出不等式组的解集,进而根据一次函数的性质可求解. 【详解】解:(1)设每千克花生的售价为(x -40)元,每千克的茶叶售价为x 元,由题意得:()504010x x -=,解得:50x =,∴花生每千克的售价为50-40=10元;答:每千克花生的售价为10元,每千克的茶叶售价为50元(2)设茶叶销售了m 千克,则花生销售了(60-m )千克,所获得利润为w 元,由题意得:()660361260602m m m m ⎧-+≤⎨-≤⎩,解得:2030m ≤≤, ∴()()()10660503610240w m m m =--+-=+,∵10>0,∴w 随m 的增大而增大,∴当m =30时,w 有最大值,最大值为1030240540w =⨯+=;答:当花生销售30千克,茶叶也销售30千克时可获得最大利润,最大利润为540元.【点睛】本题主要考查一次函数及一元一次不等式组的实际应用,熟练掌握一次函数及一元一次不等式组的实际应用是解题的关键.5.(2021·湖北宜昌市)解不等式组3(2)421132x x x x --≥⎧⎪-+⎨≤⎪⎩. 【答案】1x ≤.【分析】先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解集. 【详解】解:3(2)421132x x x x --≥⎧⎪⎨-+≤⎪⎩①②,解不等式①得,1x ≤,解不等式②得,5x ≤,则不等式组的解集为1x ≤.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.6.(2021·湖南常德市)某汽车贸易公司销售A 、B 两种型号的新能源汽车,A 型车进货价格为每台12万元,B 型车进货价格为每台15万元,该公司销售2台A 型车和5台B 型车,可获利3.1万元,销售1台A 型车和2台B 型车,可获利1.3万元.(1)求销售一台A 型、一台B 型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A 、B 两种新能源汽车共22台,问最少需要采购A 型新能源汽车多少台?【答案】(1)销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)最少需要采购A 型新能源汽车10台.【分析】(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意中的数量关系列出二元一次方程组,解方程组即可;(2)先求出每台A 型车和每台B 型车的采购价,根据“用不超过300万元资金,采购A 、B 两种新能源汽车共22台”列出不等式求解即可.【详解】解:(1)设每台A 型车的利润为x 万元,每台B 型车的利润为y 万元,根据题意得,25 3.12 1.3x y x y +=⎧⎨+=⎩ 解得,0.30.5x y =⎧⎨=⎩答:销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元;(2)因为每台A 型车的采购价为:12万元,每台B 型车的采购价为:15万元,设最少需要采购A 型新能源汽车m 台,则需要采购B 型新能源汽车(22-m )台,根据题意得,1215(22)300m m +⨯-≤ 330,m ∴-≤- 解得,10m ≥∵m 是整数,∴m 的最小整数值为10,即最少需要采购A 型新能源汽车10台.【点睛】本题主要考查了一元一次不等式的应用和二元一次方程组的应用,解答此题的关键是找出题中的数量关系.7.(2021·湖北黄冈市)2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如下表所示:(1)共需租________辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?【答案】(1)11;(2)3辆;(3)3种,租用3辆甲种型号大客车,8辆乙种型号大客车最节省钱.【分析】(1)根据学生和老师的总人数、乙种客车的载客量,以及每辆汽车上至少要有一名教师进行计算即可得;(2)设租用x 辆甲种型号大客车,从而可得租用(11)x -辆乙种型号大客车,根据甲、乙两种型号的大客车的载客量、学生和老师的总人数建立不等式,解不等式求出x 的取值范围,再结合1≥x 且为正整数即可得;(3)根据(2)中x 的取值范围可得出租车方案,再分别求出各租车方案的费用即可得.【详解】解:(1)(54911)5510+÷=(辆)10⋯(人),11111÷=(辆),∴共需租11辆大客车,故答案为:11;(2)设租用x 辆甲种型号大客车,则租用(11)x -辆乙种型号大客车,由题意得:4055(11)54911x x +-≥+,解得3x ≤,因为1≥x 且为正整数,所以最多可以租用3辆甲种型号大客车;(3)由(2)可知,租用甲种型号大客车的辆数可以为1,2,3辆,则有三种租车方案:①租用1辆甲种型号大客车,10辆乙种型号大客车;②租用2辆甲种型号大客车,9辆乙种型号大客车;③租用3辆甲种型号大客车,8辆乙种型号大客车;方案①的费用为1500106006500⨯+⨯=(元),方案②的费用为250096006400⨯+⨯=(元),方案③的费用为350086006300⨯+⨯=(元),所以租用3辆甲种型号大客车,8辆乙种型号大客车最节省钱.【点睛】本题考查了一元一次不等式的实际应用,正确建立不等式是解题关键.8.(2021·湖南长沙市)为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题? (2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?【答案】(1)一共答对了22道题;(2)至少需答对23道题.【分析】(1)设该参赛同学一共答对了x 道题,从而可得该参赛同学一共答错了(251)x --道题,再根据“每一题答对得4分,答错扣1分,不答得0分”、“他的总得分为86分”建立方程,解方程即可得;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,从而可得参赛者答错了(25)y -道题,再根据“总得分大于或等于90分”建立不等式,解不等式即可得.【详解】解:(1)设该参赛同学一共答对了x 道题,则该参赛同学一共答错了(251)x --道题, 由题意得:4(251)86x x ---=,解得22x =,答:该参赛同学一共答对了22道题;(2)设参赛者需答对y 道题才能被评为“学党史小达人”,则参赛者答错了(25)y -道题,由题意得:4(25)90y y --≥,解得23y ≥,答:参赛者至少需答对23道题才能被评为“学党史小达人”.【点睛】本题考查了一元一次方程和一元一次不等式的实际应用,正确列出方程和不等式是解题关键.9.(2021·陕西)解不等式组:5431212x x x +<⎧⎪⎨+≥-⎪⎩ 【答案】1x <-【分析】根据一元一次不等式组的解法直接进行求解即可. 【详解】解:5431212x x x +<⎧⎪⎨+≥-⎪⎩,由54x +<,得1x <-; 由31212x x +≥-,得3x ≤;∴原不等式组的解集为1x <-. 【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键. 10.(2021·江苏连云港市)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A 型消毒液和3瓶B 型消毒液共需41元,5瓶A 型消毒液和2瓶B 型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B 型消毒液的数量不少于A 型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.【答案】(1)A 种消毒液的单价是7元,B 型消毒液的单价是9元;(2)购进A 种消毒液67瓶,购进B 种23瓶,最少费用为676元【分析】(1)根据题中条件列出二元一次方程组,求解即可;(2)利用由(1)求出的两种消毒液的单价,表示出购买的费用的表达式,根据购买两种消毒液瓶数之间的关系,求出引进表示瓶数的未知量的范围,即可确定方案.【详解】解:(1)设A 种消毒液的单价是x 元,B 型消毒液的单价是y 元.由题意得:23415253x y x y +=⎧⎨+=⎩,解之得,79x y =⎧⎨=⎩,答:A 种消毒液的单价是7元,B 型消毒液的单价是9元.(2)设购进A 种消毒液a 瓶,则购进B 种()90a -瓶,购买费用为W 元.则()79902810=+-=-+W a a a ,∴W 随着a 的增大而减小,a 最大时,W 有最小值. 又1903-≥a a ,∴67.5a ≤.由于a 是整数,a 最大值为67, 即当67a =时,最省钱,最少费用为810267676-⨯=元.此时,906723-=.最省钱的购买方案是购进A 种消毒液67瓶,购进B 种23瓶.【点睛】本题考查了二元一次不等式组的求解及利用一次函数的增减性来解决生活中的优化决策问题,解题的关键是:仔细审题,找到题中的等量关系,建立等式进行求解.11.(2021·四川乐山市)当x 取何正整数时,代数式32x +与213x -的值的差大于1 【答案】1,2,3,4【分析】根据题意,列一元一次不等式并求解,即可得到x 的取值范围;结合x 为正整数,通过计算即可得到答案. 【详解】根据题意得:321123x x ,解得:5x < ∵x 为正整数,∴x 为1,2,3,4时,代数式32x +与213x -的值的差大于1. 【点睛】本题考查了解一元一次不等式;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解. 12.(2021·江苏连云港市)解不等式组:311442x x x x -≥+⎧⎨+<-⎩. 【答案】x >2【分析】按照解一元一次不等式组的一般步骤进行解答即可.【详解】解:解不等式3x ﹣1≥x +1,得:x ≥1,解不等式x +4<4x ﹣2,得:x >2,∴不等式组的解集为x >2.【点睛】本题考查了解一元一次不等式组,熟悉“解一元一次不等式的方法和确定不等式组解集的方法”是解答本题的关键.。
年级数学中考复习专题一元一次不等式一、选择题:1、若a、b是有理数,则下列说法正确的是()A、若,则B、若,则C、若,则D、若,则2、不等式5x﹣1>2x+5的解集在数轴上表示正确的是( )A. B.C. D.3、已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是()A.a>0B.a>1C.a<0D.a<14、要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤35、若不等式组无解,则有()A、B、 C、D、≤6、已知点P(2a+4,3a-6)在第四象限,那么a的取值范围是()A.-2<a<3B.a<-2C.a>3D.-2<a<27、不等式组有3个整数解,则a的取值范围是()A. B. C. D.8、若方程组的解x,y满足0<x+y<1,则k的取值范围是( )A.﹣4<k<0B.﹣1<k<0C.0<k<8D.k>﹣49、阅读理解:我们把称作二阶行列式,规定它的运算法则为,例如,如果,则的取值范围是()(A)(B)(C)(D)10、使不等式x-1≥2与3x-7<8同时成立的x的整数值是( )A.3,4B.4,5C.3,4,5D.不存在11、关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥312、某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A.8折B.8.5折C.7折D.6折学二、填空题:13、不等式的解集是.14、已知b<a<0,则ab,a²,b²的大小为。
15、不等式2+9≥3(+2)的正整数解是。
16、如图,已知直线与直线相交于点(2,-2),由图象可得不等式的解集是.17、已知点P(2a﹣8,2﹣a)是第三象限的整点(横、纵坐标均为整数),则P点的坐标是.18、关于x的不等式的解为,则不等式的解为。
19、从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既是不等式组的解,又在函数的自变量取值范围内的概率是.20、某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%.设进价为x元,则x的取值范围是___________.21、若不等式组的解集是﹣3<x<2,则a+b= .22、某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打__________折.23、有10名菜农,每人种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排人种茄子。
《一元一次不等式(组)》
一、选择题
1.若a>b,c<0,则下列四个不等式中成立的是()
A.ac>bc B.C.a﹣c<b﹣c D.a+c<b+c
2.一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是()
A.y<0 B.y>0 C.y<3 D.y>3
3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()
A.x<3 B.C.x<D.x>3
4.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b <0的解集为()
A.x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<0
5.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()
A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<6
6.已知点P(2x﹣6,x﹣5)在第四象限,则x的取值范围是.
7.若直线y=﹣2x﹣4与直线y=4x+b的交点在第三象限,则b的取值范围是()
A.﹣4<b<8 B.﹣4<b<0 C.b<﹣4或b>8 D.﹣4≤b≤8
8.函数y=中自变量x的取值范围是()
A.x>2 B.x<2 C.x≠2 D.x≥2
二、填空题
9.下列判断中,正确的序号为.
①若﹣a>b>0,则ab<0;②若ab>0,则a>0,b>0;③若a>b,c≠0,则ac>bc;④若a>b,c ≠0,则ac2>bc2;⑤若a>b,c≠0,则﹣a﹣c<﹣b﹣c.
10.不等式(﹣2m+1)x>﹣2m+1的解集为x<1,则m的取值范围是.
11.若不等式组的解集是﹣1<x<1,则a、b的值分别是.
12.已知方程组的解x+y>0,则m的取值范围是.
13.关于x、y方程组的解满足x>y,求a的取值范围.
14.方程组满足x>0,y<0,则a的取值范围是.
15.已知一次函数y=(﹣3a+1)x+a的图象经过一、二、三象限,不经过第四象限,则a的取值范围是16.如图所示,是某电信公司甲、乙两种业务:每月通话费用y(元)与通话时间x(分)之间的函数关系.某企业的周经理想从两种业务中选择一种,如果周经理每个月的通话时间都在100分钟以上,那么选择种业务合算.
三、解答题
17.解下列不等式(组),并把解集在数轴上表示出来
(1)<1﹣
(2).
18.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料.
19.某校5名教师要带若干名学生到外地参加一次科技活动.已知每张车票价格是120元,购车票时,车站提出两种优惠方案供学校选择.甲种方案是教师按车票价格付款,学生按车票价格的60%付款;乙种方案是师生都按车票价格的70%付款.设一共有x名学生,请问选择哪种方案合算?
20.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.
(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;
(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?
22.某车间有20名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件获利16元,每加工一个乙种零件获利24元,若派x人加工甲种零件,其余的人加工乙种零件.
(1)此车间每天所获利润为y元,求出y与x的函数关系式.
(2)要使车间每天所获利润不低于1800元,至多派多少人加工甲种零件?
25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:
元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.
(1)上表中,a= ;b= ;
(2)请直接写出y与x之间的函数关系式;
(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?。