上海市松江区2019-2020学年中考第二次模拟数学试题含解析
- 格式:doc
- 大小:810.00 KB
- 文档页数:22
初三数学 第1页 共9页F(第6题图)EDCBA2019年松江区初中毕业生学业模拟考试初三数学(满分150分,完卷时间100分钟) 2019.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.最小的素数是( ) (A )1;(B )2;(C )3;(D )4.2.下列计算正确的是( ) (A )422a a a =+; (B )()3362a a =;(C )()53233aaa -=-⋅;(D )326224a a a =÷.3.下列方程中,没有实数根的是( ) (A )0322=--x x ; (B )0322=+-x x ; (C )0122=+-x x ;(D )0122=--x x .4.如图,一次函数y kx b =+的图像经过点(1-,0)与(0,2), 则关于x 的不等式0kx b +>的解集是( ) (A )1->x ; (B )1-<x ;(C )2>x ; (D )2<x .5.在直角坐标平面内,已知点M (4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )(A )05r <<; (B )35r <<; (C )45r <<; (D )34r <<. 6.如图,已知□ABCD 中,E 是边AD 的中点,BE 交对角线 AC 于点F ,那么:AFE FCDE S S ∆四边形 为( ) (A )1:3; (B )1:4; (C )1:5;(D )1:6.(第4题图)初三数学 第2页 共9页二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.计算:)-5+=________.8.因式分解:228a b b -= . 9x =的根是 .10.不等式组2010x x +≥⎧⎨-<⎩的解集是 .11.已知函数2()f x x=,那么ff .(填“>”、“=”或“<”) 12.如果将直线31y x =-平移,使其经过点(0,2),那么平移后所得直线的表达式是______. 13.在不透明的盒子中装有4个黑色棋子和若干个白色棋子,每个棋子除颜色外其它完全相同,从中随机摸出一个棋子,摸到黑色棋子的概率是13,那么白色棋子的个数是_______. 14.某校初三(1)班40名同学的体育成绩如右表所示,则这40名同学 成绩的中位数是__________. 15.正六边形的中心角等于_______度.16.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点.设AB a =,DE b =,用a 、b 表示AC 为_________. 17.如图,高度相同的两根电线杆AB 、CD 均垂直于地面AF ,某时刻电线杆AB 的影子为地面上的线段AE ,电线杆CD 的影子为地面上的线段CF 和坡面上的线段FG .已知坡面FG 的坡比1:0.75i =,又AE =6米,CF =1米,FG =5米,那么电线杆AB 的高度为______米. 18.如图,已知Rt △ABC 中,∠ACB=90°,AC =8,BC =6.将△ABC 绕点B 旋转得到△DBE ,点A 的对应点D 落在射线BC 上.直线AC 交DE 于点F ,那么CF 的长为________.(第17题图)(第16题图)(第18题图)CBA初三数学 第3页 共9页三、解答题:(本大题共7题,满分78分)19.(本题满分10分))(1212116+2--20.(本题满分10分) 解方程组:2226691x y x xy y +=⎧⎨-+=⎩21.(本题满分10分)在梯形ABCD 中,AB ∥CD ,BC ⊥AB ,且AD ⊥BD ,BD =6,sin A =32,求梯形ABCD 的面积.22.(本题满分10分,第(1)小题4分,第(2)小题6分)小明、小军是同班同学.某日,两人放学后去体育中心游泳,小明16:00从学校出发,小军16:03也从学校出发,沿相同的路线追赶小明.设小明出发x 分钟后,与体育中心的距离为y 米.如图,线段AB 表示y 与x 之间的函数关系. (1)求y 与x 之间的函数解析式;(不要求写出 定义域)(2)如果小军的速度是小明的1.5倍,那么小军用了多少分钟追上小明?此时他们距离体育中心多少米?23.(本题满分12分,每小题各6分)如图,已知□ABCD 中,AB=AC ,CO ⊥AD ,垂足为点O ,延长CO 、BA 交于点E ,联结DE . (1)求证:四边形ACDE 是菱形;(2)联结OB ,交AC 于点F ,如果OF=OC ,求证:22AB BF BO =⋅.②① (第23题图)O ECBA(第21题图)CBADx (分钟)(第22题图)初三数学 第4页 共9页24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,抛物线24y ax x c =++过点A (6,0)、B (3,23),与y 轴交于点C .联结AB 并延长,交y 轴于点D . (1)求该抛物线的表达式;(2)求△ADC 的面积;(3)点P 在线段 AC 上,如果△OAP 和△DCA求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知Rt △ABC 中,∠ACB=90°,AC=24,BC=16.点O 在边BC 上,以O 为圆心,OB 为半径的弧经过点A .P 是弧AB 上的一个动点. (1)求半径OB 的长;(2)如果点P 是弧AB 的中点,联结PC ,求∠PCB 的正切值; (3)如果BA 平分∠PBC ,延长BP 、CA 交于点D ,求线段DP 的长.·(第25题图)OBC A·(备用图)OBCA初三数学 第5页 共9页2019年松江区初中毕业生学业模拟考试初三数学参考答案及评分说明一、选择题:1.B ; 2.C ; 3.B ; 4.A ; 5.D ; 6.C .二、填空题:7.6;8.()()222-+a a b ;9.1=x ;10.12<≤-x ;11.>;12.23+=x y ;13.8;14.28;15.60;16.2+;17.12;18.3.三、解答题:19.解:原式=324132333-+-+-+………………………………(8分)=2……………………………………………………………………(2分)20.解:由②得13=-y x ,13-=-y x …………………………………(4分)则原方程组化为⎩⎨⎧=-=+1362y x y x⎩⎨⎧-=-=+1362y x y x ……………………………(2分) 解这两个方程组得原方程组的解为⎩⎨⎧==14y x ⎪⎪⎩⎪⎪⎨⎧==57516y x ……………………(4分)∴原方程组的解为⎩⎨⎧==14y x ⎪⎪⎩⎪⎪⎨⎧==57516y x21.解:∵AB ∥CD ,∴∠ABD =∠CDB …………………………………………(1分) ∵AB ∥CD ,BC ⊥AB ,∴BC ⊥CD ………………………………………………(1分)初三数学 第6页 共9页∵AD ⊥BD ,∴∠ADB=∠BCD=90°……………………………………………(1分) ∴∠A =∠DBC ……………………………………………………………………(1分) 在Rt △ADB 中,ABBDA =sin ……………………………………………………(1分) ∵BD =6,sin A =32,∴AB=9……………………………………………………(1分) 在Rt △BCD 中,BDDCDBC =∠sin ……………………………………………(1分) ∵32sin sin ==∠A DBC ,∴DC=4…………………………………………(1分) ∴52=BC ……………………………………………………………………(1分) ∴()()51352942121=⨯+=⋅+=BC AB DC S ABCD 梯形………………(1分)22.(1)设y 与x 之间的函数解析式为()0≠+=k b kx y ……………………(1分) ∵函数图像过(10,0),(0,600)∴⎩⎨⎧==+600010b b k …………………………………………………………………(1分)解得⎩⎨⎧=-=60060b k ……………………………………………………………………(1分)∴60060+-=x y ………………………………………………………………(1分) (2)设小军用了t 分钟追上小明………………………………………………(1分) 由题意得60(t +3)=60×1.5t ……………………………………………………(3分) 解得t =6……………………………………………………………………………(1分)()60600360=++⨯-=t y (米)……………………………………………(1分)答:小军用了6分钟追上小明,此时他们距离体育中心60米. 23.证明:(1)∵四边形ABCD 是平行四边形∴AB ∥DC ,AB=DC ………………………………………………………………(1分) ∵AB=AC ,∴AC=DC ……………………………………………………………(1分)初三数学 第7页 共9页∵CO ⊥AD ,∴AO=DO …………………………………………………………(1分) ∵EO AOCO DO=,∴EO=CO ………………………………………………………(1分) ∴四边形ACDE 是平行四边形……………………………………………………(1分) ∵AC=DC ,∴四边形ACDE 是菱形……………………………………………(1分) (2)∵ OF=OC ,∴∠OFC=∠OCF ……………………………………………(1分) ∵AE=AC ,∴∠OCF=∠BEO∵∠OFC=∠BF A ,∴∠BF A=∠BEO …………………………………………(1分) ∵∠ABF=∠OBE …………………………………………………………………(1分) ∴△BF A ∽△BEO ,∴AB BFBO BE=………………………………………………(1分) ∴AB ·BE=BF ·BO ,∵AE=AC=AB ,∴BE=2AB ………………………………(1分) ∴22AB BF BO =⋅………………………………………………………………(1分)24.解:(1)∵抛物线经过点A (6,0)、B (3,32) ∴3624039122a c a c ++=⎧⎪⎨++=⎪⎩…………(1分)解得126a c ⎧=-⎪⎨⎪=-⎩……………………(1分)∴抛物线的表达式为21462y x x =-+-………………………………………(1分)(2)过点B 作BE ⊥x 轴,垂足为E ,∵A (6,0)、B (3,32) ∴OA=6,OE=3,32BE =,∵BE ∥y 轴 ∴BE AEDO AO=……………………………………………………………………(1分)初三数学 第8页 共9∴3326DO =,∴DO=3……………………………………………………………(1分) ∵C (0,-6),∴DC=9……………………………………………………………(1分) ∴27692121=⨯⨯=⋅=∆OA DC S ADC ………………………………………(1分) (3)∵A (6,0),C (0,-6),∴OA=OC ,∴∠OAC=∠OCA=45°………(1分) ∵△OAP 和△DCA 相似,∴AO AP CD CA =或AO APCA CD=……………………(2分) 过点P 作PF ⊥x 轴,垂足为F ① 当AO APCD CA=时,69=AP =AF=PF=4,∴OF=2 ∴P (2,—4)……………………………………………………………………(1分) ② 当AO AP CA CD =9AP =,2AP =,则92AF PF == ,∴32OF = ∴P 39(,)22-………………………………………………………………………(1分)25.解:(1)联结OA ……………………………………………………………(1分) 设OA=OB=r ,∵BC=16,∴OC=16-r …………………………………………(1分) ∵在Rt △ABC 中,∠ACB=90°,AC=24 ∴(()22216r r +-=………………………………………………………(1分)解得r=9……………………………………………………………………………(1分) ∴OB=9(2)联结OP ,交AB 于点E ,过点P 作PF ⊥CB ,垂足为F ∵P 是弧AB 的中点,OP 过圆心∴OP ⊥AB …………………………………………………(1分)∴∠PFO=∠BEO=90°,∴∠OPF=∠EBO ……………(1∵∠PFO=∠BCA=90°,∴△PFO ∽△BCA∴ACOFBC PF BA PO ==………………………………(1分)初三数学 第9页 共9页∵AC=24,BC=16,AB=212∴26=PF ,3=OF ……………………………(1分) ∴CF=10∴tan PF PCB CF ∠===1分) (3)过点O 作OH ⊥PB ,垂足为H ,联结OA ∵BA 平分∠PBC ,∴∠PBA=∠CBA ∵OA=OB ,∴∠OBA=∠OAB∴∠PBA=∠OAB ,∴OA ∥BD ………………………(1分)∴CBCOBD OA =,∵OA=9,CO=7,CB=16 ∴BD=7144……………………………………………(1分)∵∠ACO=∠OHB=90°,∠AOC=∠HBO ,OA=OB ∴△ACO ≌△OHB∴OC=BH=7……………………………………………(1分) ∵OD 过圆心,∴PH=BH ,∴PB=14………………(1分) ∴746=PD ……………………………………………(1分)DHP·(第25题图)OBCA。
初三数学 第1页 共4页F(第6题图)EDCBA2019年松江区初中毕业生学业模拟考试初三数学(满分150分,完卷时间100分钟) 2019.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.最小的素数是( ) (A )1;(B )2;(C )3;(D )4.2.下列计算正确的是( ) (A )422a a a =+;(B )()3362a a =;(C )()53233a a a -=-⋅;(D )326224a a a =÷.3.下列方程中,没有实数根的是( ) (A )0322=--x x ; (B )0322=+-x x ; (C )0122=+-x x ;(D )0122=--x x .4.如图,一次函数y kx b =+的图像经过点(1-,0)与(0,2), 则关于x 的不等式0kx b +>的解集是( ) (A )1->x ; (B )1-<x ;(C )2>x ; (D )2<x .5.在直角坐标平面内,已知点M (4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( )(A )05r <<; (B )35r <<; (C )45r <<; (D )34r <<. 6.如图,已知□ABCD 中,E 是边AD 的中点,BE 交对角线 AC 于点F ,那么:AFE FCDE S S ∆四边形 为( ) (A )1:3; (B )1:4; (C )1:5;(D )1:6.(第4题图)初三数学 第2页 共4页二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.计算:)-5+=________.8.因式分解:228a b b -= . 9x =的根是 .10.不等式组2010x x +≥⎧⎨-<⎩的解集是 .11.已知函数2()f x x=,那么ff .(填“>”、“=”或“<”) 12.如果将直线31y x =-平移,使其经过点(0,2),那么平移后所得直线的表达式是______. 13.在不透明的盒子中装有4个黑色棋子和若干个白色棋子,每个棋子除颜色外其它完全相同,从中随机摸出一个棋子,摸到黑色棋子的概率是13,那么白色棋子的个数是_______. 14.某校初三(1)班40名同学的体育成绩如右表所示,则这40名同学 成绩的中位数是__________. 15.正六边形的中心角等于_______度.16.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点.设AB a =u u u r r ,DE b =u u u r r ,用a r 、b r表示AC u u u r为_________.17.如图,高度相同的两根电线杆AB 、CD 均垂直于地面AF ,某时刻电线杆AB 的影子为地面上的线段AE ,电线杆CD 的影子为地面上的线段CF 和坡面上的线段FG .已知坡面FG 的坡比1:0.75i =,又AE =6米,CF =1米,FG =5米,那么电线杆AB 的高度为______米. 18.如图,已知Rt △ABC 中,∠ACB=90°,AC =8,BC =6.将△ABC 绕点B 旋转得到△DBE ,点A 的对应点D 落在射线BC 上.直线AC 交DE 于点F ,那么CF 的长为________.(第17题图)(第16题图)(第18题图)CBA初三数学 第3页 共4页三、解答题:(本大题共7题,满分78分)19.(本题满分10分))(1212116+2--20.(本题满分10分) 解方程组:2226691x y x xy y +=⎧⎨-+=⎩21.(本题满分10分)在梯形ABCD 中,AB ∥CD ,BC ⊥AB ,且AD ⊥BD ,BD =6,sin A =32,求梯形ABCD 的面积.22.(本题满分10分,第(1)小题4分,第(2)小题6分)小明、小军是同班同学.某日,两人放学后去体育中心游泳,小明16:00从学校出发,小军16:03也从学校出发,沿相同的路线追赶小明.设小明出发x 分钟后,与体育中心的距离为y 米.如图,线段AB 表示y 与x 之间的函数关系. (1)求y 与x 之间的函数解析式;(不要求写出 定义域)(2)如果小军的速度是小明的1.5倍,那么小军用了多少分钟追上小明?此时他们距离体育中心多少米?23.(本题满分12分,每小题各6分)如图,已知□ABCD 中,AB=AC ,CO ⊥AD ,垂足为点O ,延长CO 、BA 交于点E ,联结DE . (1)求证:四边形ACDE 是菱形;(2)联结OB ,交AC 于点F ,如果OF=OC ,求证:22AB BF BO =⋅.②① (第23题图)O EDCBA(第21题图)CBADx (分钟)(第22题图)初三数学 第4页 共4页24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,抛物线24y ax x c =++过点A (6,0)、B (3,23),与y 轴交于点C .联结AB 并延长,交y 轴于点D . (1)求该抛物线的表达式;(2)求△ADC 的面积;(3)点P 在线段 AC 上,如果△OAP 和△DCA求点P 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知Rt △ABC 中,∠ACB=90°,AC=24,BC=16.点O 在边BC 上,以O 为圆心,OB 为半径的弧经过点A .P 是弧AB 上的一个动点. (1)求半径OB 的长;(2)如果点P 是弧AB 的中点,联结PC ,求∠PCB 的正切值; (3)如果BA 平分∠PBC ,延长BP 、CA 交于点D ,求线段DP 的长.·(第25题图)OBC A·(备用图)OBCA参考答案及评分说明 —1—2019年松江区初中毕业生学业模拟考试初三数学参考答案及评分说明一、选择题:1.B ; 2.C ; 3.B ; 4.A ; 5.D ; 6.C .二、填空题:7.6;8.()()222-+a a b ;9.1=x ;10.12<≤-x ;11.>;12.23+=x y ;13.8;14.28;15.60;16.b a 2+;17.12;18.3.三、解答题:19.解:原式=324132333-+-+-+………………………………(8分)=2……………………………………………………………………(2分)20.解:由②得13=-y x ,13-=-y x …………………………………(4分)则原方程组化为⎩⎨⎧=-=+1362y x y x⎩⎨⎧-=-=+1362y x y x ……………………………(2分) 解这两个方程组得原方程组的解为⎩⎨⎧==14y x ⎪⎪⎩⎪⎪⎨⎧==57516y x ……………………(4分)∴原方程组的解为⎩⎨⎧==14y x ⎪⎪⎩⎪⎪⎨⎧==57516y x参考答案及评分说明 —2—21.解:∵AB ∥CD ,∴∠ABD =∠CDB …………………………………………(1分) ∵AB ∥CD ,BC ⊥AB ,∴BC ⊥CD ………………………………………………(1分) ∵AD ⊥BD ,∴∠ADB=∠BCD=90°……………………………………………(1分) ∴∠A =∠DBC ……………………………………………………………………(1分) 在Rt △ADB 中,ABBDA =sin ……………………………………………………(1分) ∵BD =6,sin A =32,∴AB=9……………………………………………………(1分) 在Rt △BCD 中,BDDCDBC =∠sin ……………………………………………(1分) ∵32sin sin ==∠A DBC ,∴DC=4…………………………………………(1分) ∴52=BC ……………………………………………………………………(1分) ∴()()51352942121=⨯+=⋅+=BC AB DC S ABCD 梯形………………(1分)22.(1)设y 与x 之间的函数解析式为()0≠+=k b kx y ……………………(1分) ∵函数图像过(10,0),(0,600) ∴⎩⎨⎧==+600010b b k …………………………………………………………………(1分)解得⎩⎨⎧=-=60060b k ……………………………………………………………………(1分)∴60060+-=x y ………………………………………………………………(1分) (2)设小军用了t 分钟追上小明………………………………………………(1分) 由题意得60(t +3)=60×1.5t ……………………………………………………(3分) 解得t =6……………………………………………………………………………(1分)()60600360=++⨯-=t y (米)……………………………………………(1分)答:小军用了6分钟追上小明,此时他们距离体育中心60米.参考答案及评分说明 —3—23.证明:(1)∵四边形ABCD 是平行四边形∴AB ∥DC ,AB=DC ………………………………………………………………(1分) ∵AB=AC ,∴AC=DC ……………………………………………………………(1分) ∵CO ⊥AD ,∴AO=DO …………………………………………………………(1分) ∵EO AOCO DO=,∴EO=CO ………………………………………………………(1分) ∴四边形ACDE 是平行四边形……………………………………………………(1分) ∵AC=DC ,∴四边形ACDE 是菱形……………………………………………(1分) (2)∵ OF=OC ,∴∠OFC=∠OCF ……………………………………………(1分) ∵AE=AC ,∴∠OCF=∠BEO∵∠OFC=∠BF A ,∴∠BF A=∠BEO …………………………………………(1分) ∵∠ABF=∠OBE …………………………………………………………………(1分) ∴△BF A ∽△BEO ,∴AB BFBO BE=………………………………………………(1分) ∴AB ·BE=BF ·BO ,∵AE=AC=AB ,∴BE=2AB ………………………………(1分) ∴22AB BF BO =⋅………………………………………………………………(1分)24.解:(1)∵抛物线经过点A (6,0)、B (3,32) ∴3624039122a c a c ++=⎧⎪⎨++=⎪⎩…………(1分)解得126a c ⎧=-⎪⎨⎪=-⎩……………………(1分)∴抛物线的表达式为21462y x x =-+-………………………………………(1分)参考答案及评分说明 —4—(2)过点B 作BE ⊥x 轴,垂足为E ,∵A (6,0)、B (3,32) ∴OA=6,OE=3,32BE =,∵BE ∥y 轴 ∴BE AEDO AO =……………………………………………………………………(1分) ∴3326DO =,∴DO=3……………………………………………………………(1分) ∵C (0,-6),∴DC=9……………………………………………………………(1分) ∴27692121=⨯⨯=⋅=∆OA DC S ADC ………………………………………(1分)(3)∵A (6,0),C (0,-6),∴OA=OC ,∴∠OAC=∠OCA=45°………(1分) ∵△OAP 和△DCA 相似,∴AO AP CD CA =或AO APCA CD=……………………(2分) 过点P 作PF ⊥x 轴,垂足为F ① 当AO AP CD CA =时,69=AP =,则AF=PF=4,∴OF=2 ∴P (2,—4)……………………………………………………………………(1分) ② 当AO AP CA CD =9AP=,2AP =则92AF PF == ,∴32OF = ∴P 39(,)22-………………………………………………………………………(1分)25.解:(1)联结OA ……………………………………………………………(1分) 设OA=OB=r ,∵BC=16,∴OC=16-r …………………………………………(1分) ∵在Rt △ABC 中,∠ACB=90°,AC=24∴(()22216r r +-=………………………………………………………(1分)解得r=9……………………………………………………………………………(1分) ∴OB=9参考答案及评分说明 —5—(2)联结OP ,交AB 于点E ,过点P 作PF ⊥CB ,垂足为F ∵P 是弧AB 的中点,OP 过圆心∴OP ⊥AB …………………………………………………(1分)∴∠PFO=∠BEO=90°,∴∠OPF=∠EBO ……………(1∵∠PFO=∠BCA=90°,∴△PFO ∽△BCA∴AC OFBC PF BA PO ==………………………………(1分) ∵AC=24,BC=16,AB=212∴26=PF ,3=OF ……………………………(1∴CF=10 ∴tan PF PCB CF ∠===1分) (3)过点O 作OH ⊥PB ,垂足为H ,联结OA ∵BA 平分∠PBC ,∴∠PBA=∠CBA ∵OA=OB ,∴∠OBA=∠OAB∴∠PBA=∠OAB ,∴OA ∥BD ………………………(1分) ∴CBCOBD OA =,∵OA=9,CO=7,CB=16 ∴BD=7144……………………………………………(1分)∵∠ACO=∠OHB=90°,∠AOC=∠HBO ,OA=OB ∴△ACO ≌△OHB∴OC=BH=7……………………………………………(1分) ∵OD 过圆心,∴PH=BH ,∴PB=14………………(1分) ∴746=PD ……………………………………………(1分) DHP·(第25题图)OBCA。
中考数学二模试卷题号一二三四总分得分一、选择题(本大题共6小题,共24.0分)1.下列实数中,有理数是( )A. B. C.π D. 3.142.如果将抛物线y=x2+2向下平移1个单位,那么所得抛物线的解析式是()A. y=(x-1)2+2B. y=(x+1)2+2C. y=x2+1D. y=x2+33.不等式组的解集是( )A. x>-2B. x<-2C. x>2D. x<24.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A. 方差B. 极差C. 中位数D. 平均数5.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是( )A. 5B. 6C. 8D. 106.如图,已知△ABC中,AC=2,AB=3,BC=4,点G是△ABC的重心.将△ABC平移,使得顶点A与点G重合.那么平移后的三角形与原三角形重叠部分的周长为( )A. 2B. 3C. 4D. 4.5二、填空题(本大题共12小题,共48.0分)7.化简:=______.8.方程组的解是______.9.函数y=的定义域是______.10.若关于x的一元二次方程x2+x-m=0有两个实数根,则m的取值范围是______.11.有一枚材质均匀的正方体骰子,六个面的点数分别是1,2,3,4,5,6,掷一次该骰子,向上的一面出现的点数大于2的概率是______.12.已知点P(-2,y1)和点Q(-1,y2)都在二次函数y=-x2+c的图象上,那么y1与y2的大小关系是______.13.空气质量检测标准规定:当空气质量指数W≤50时,空气质量为优;当50<W≤100时,空气质量为良,当100<Q≤150时,空气质量为轻微污染.已知某城市4月份30天的空气质量状况,统计如表:空气质量指数(W)406090110120140天数3510741这个月中,空气质量为良的天数的频率为______.14.如图,已知梯形ABCD,AD∥BC,BC=3AD,如果=,=,那么______(用,表示).15.某市出租车计费办法如图所示,如果小张在该市乘坐出租车行驶了10千米,那么小张需要支付的车费为______元.16.已知⊙O1和⊙O2相交,圆心距d=5,⊙O1的半径为3,那么⊙O2的半径r的取值范围是______.17.如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于______度.18.如图,四边形ABCD是⊙O的内接矩形,将矩形ABCD沿着直线BC翻折,点A、点D的对应点分别为A′、D′,如果直线A′D′与⊙O相切,那么的值为______.三、计算题(本大题共1小题,共10.0分)19.如图是某地下停车库入口的设计示意图,已知坡道AB的坡比i=1:2.4,AC的长为7.2米,CD的长为0.4米.按规定,车库坡道口上方需张贴限高标志,根据图中所给数据,确定该车库入口的限高数值(即点D到AB的距离).四、解答题(本大题共6小题,共68.0分)20.计算:()-1+-+|1-|.21.解方程:-=2.22.如图,在平面直角坐标系内xOy中,某一次函数的图象与反比例函数的y=的图象交于A(1,m)、B(n,-1)两点,与y轴交于C点.(1)求该一次函数的解析式;(2)求的值.23.如图,已知AB、AC是⊙O的两条弦,且AO平分∠BAC.点M、N分别在弦AB、AC上,满足AM=CN.(1)求证:AB=AC;(2)联结OM、ON、MN,求证:=.24.如图,在平面直角坐标系xOy中,抛物线y=-x2+bx+3与x轴和y轴的正半轴分别交于A、B两点,且OA=OB,抛物线的顶点为M,联结AB、AM.(1)求这条抛物线的表达式和点M的坐标;(2)求sin∠BAM的值;(3)如果Q是线段OB上一点,满足∠MAQ=45°,求点Q的坐标.25.如图,已知梯形ABCD中,AD∥BC,AB⊥BC,AD<BC,AB=BC=1,E是边AB上一点,联结CE.(1)如果CE=CD,求证:AD=AE;(2)联结DE,如果存在点E,使得△ADE、△BCE和△CDE两两相似,求AD的长;(3)设点E关于直线CD的对称点为M,点D关于直线CE的对称点为N,如果AD=,且M在直线AD上时,求的值.答案和解析1.【答案】D【解析】解:A、是无理数,不合题意;B、是无理数,不合题意;C、π是无理数,不合题意;D、3.14是有理数,符合题意.故选:D.直接利用有理数和无理数的定义得出答案.此题主要考查了有理数和无理数,正确掌握相关定义是解题关键.2.【答案】C【解析】【分析】本题考查了二函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.先利用二次函数的性质得到抛物线y=x2+2的顶点坐标为(0,2),再根据点平移的规律得到点(0,2)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),点(0,2)向下平移1个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=x2+1,故选:C.3.【答案】C【解析】解:解不等式x+2>0,得:x>-2,解不等式6-2x<2,得:x>2,则不等式组的解集为x>2,故选:C.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.【答案】C【解析】解:13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:C.由于比赛取前6名参加决赛,共有13名选手参加,根据中位数的意义分析即可.本题考查了方差和标准差的意义.方差是用来衡量一组数据波动大小的量.5.【答案】C【解析】解:多边形的边数是:n==8,即该多边形是八边形.故选:C.已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.6.【答案】B【解析】解:∵将△ABC平移得到△GEF,∴GE∥AB,GF∥AC,∴∠GMN=∠B,∠GNM=∠C,∴△GMN∽△ABC,∴=,∵点G是△ABC的重心,∴AG=2GD,∴=,∴△GMN的周长=×(2+3+4)=3.故选:B.先根据平移和平行线的性质得到∠GMN=∠B,∠GNM=∠C,则可判断△GMN∽△ABC,根据相似三角形的性质得到=,接着利用三角形重心性质得AG=2GD,然后根据三角形周长定义计算即可.本题考查了重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了平移的性质和相似三角形的判定与性质.7.【答案】【解析】解:原式==a,故答案为:a.利用二次根式的性质=|a|进行计算即可.此题主要考查了二次根式的性质与化简,关键是掌握二次根式的性质.8.【答案】或【解析】解:方程组,由①得,y=2-x③,把③代入②得,x(2-x)=-3,解得:x1=3,x2=-1,把x1=3,x2=-1分别代入③得,y1=-1,y2=3,∴原方程组的解为:或.故答案为:或.根据代入消元法解方程组即可得到结论.本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.9.【答案】x≠-2【解析】解:∵函数y=,∴x+2≠0,解得,x≠2,故答案为:x≠-2.根据函数y=,可知x+2≠0,从而可以求得x的取值范围.本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.10.【答案】m≥-【解析】解:∵关于x的一元二次方程x2+x-m=0有两个实数根,∴△≥0,∴△=1-4(-m)≥0,即m≥-,故答案为:m≥-.根据一元二次方程x2+x-m=0有两个实数根得到△≥0,即△=1-4(-m)≥0,求出m的取值范围即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.【答案】【解析】解:抛掷此正方体骰子共有6种等可能结果,其中向上的一面出现的点数大于2的有3、4、5、6这4种结果,所以向上的一面出现的点数大于2的概率为=,故答案为:.由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数大于2的有4种情况,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.12.【答案】y1<y2【解析】解:二次函数y=-x2+c的开口向下,对称轴为y轴,∴当x<0时,y随x的增大而增大,∵-2<-1,∴y1<y2.故答案为:y1<y2.根据函数解析式求出对称轴,然后根据二次函数的增减性进行判断即可.本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性.13.【答案】0.5【解析】解:这个月中,空气质量为良的天数的频率为=0.5,故答案为:0.5.用空气质量为良的天数除以30即可得.本题考查频数与频率,解题的关键是掌握频率=频数÷总数.14.【答案】2+【解析】解:∵AD∥BC,BC=3AD,∴=3=3,∵=++,∴=-++3=2+,故答案为2+.根据=++,只要求出即可解决问题.本题考查平面向量,三角形法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【答案】30.8【解析】解:由图象可知,出租车的起步价是14元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2.4x+6.8,∴出租车行驶了10千米则y=2.4×10+6.8=30.8(元),故答案为30.8.设超过3千米的函数解析式为y=kx+b,根据题意列出方程组,利用待定系数法求得解析式,然后把x=10代入即可求得.此题主要考查了一次函数的应用、学会待定系数法确定函数解析式,正确由图象得出正确信息是解题关键,属于中考常考题型,16.【答案】2<r<8【解析】解:由题意可知:|3-r|<5<3+r,解得:2<r<8,故答案为:2<r<8.根据圆与圆的位置关系即可求出答案.本题考查圆与圆的位置关系,解题的关键是正确运用圆心距与两圆半径的数量关系来判断,本题属于基础题型.17.【答案】22.5【解析】解:设直角三角形的最小内角为x,另一个内角为y,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.设直角三角形的最小内角为x,另一个内角为y,根据三角形的内角和列方程组即可得到结论.本题考查了三角形的内角和,熟练掌握三角形的内角和是解题的关键.18.【答案】【解析】解:设直线A′D′与⊙O相切于G,连接OC,OG交BC于E,∵将矩形ABCD沿着直线BC翻折,∴AD=BC=A′D′,AB=CD=CD′=A′B,过O作OH⊥CD,∴CH=CD,∵直线A′D′与⊙O相切,∴OG⊥A′D′,∵BC∥A′D′,∴OG⊥BC,∴则四边形OECH是矩形,CE=BE=BC,∴CH=OE,设AB=CD=CD′=A′B=x,∴OE=x,∴OC=OG=x,∴CE===x,∴BC=2CE=2x,∴==,故答案为:.设直线A′D′与⊙O相切于G,连接OC,OG交BC于E,根据折叠的性质得到AD=BC=A′D′,AB=CD=CD′=A′B,过O作OH⊥CD,根据垂径定理得到CH=CD,根据切线的性质得到OG⊥A′D′,设AB=CD=CD′=A′B=x,根据勾股定理即可得到结论.本题考查了切线的性质,矩形的性质,折叠的性质,垂径定理,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.19.【答案】解:如图,延长CD交AB于E,∵i=1:2.4,∴,∴,∵AC=7.2,∴CE=3,∵CD=0.4,∴DE=2.6,过点D作DH⊥AB于H,∴∠EDH=∠CAB,∵,∴,,答:该车库入口的限高数值为2.4米.【解析】延长CD交AB于E,根据坡度和坡角可得CE=3,DE=2.6,过点D作DH⊥AB 于H,根据锐角三角函数即可求出DH的长.本题考查了解直角三角形的应用-坡度坡角问题,解决本题的关键是掌握坡度坡角定义.20.【答案】解:原式==2+3+3-2+-1=.【解析】直接利用二次根式的性质和绝对值的性质、分数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:去分母得:x(x+1)-6=2x2+8x+6,移项得:x2+x-6-2x2-8x-6=0,整理得:x2+7x+12=0,即(x+3)(x+4)=0,解得:x1=-3,x2=-4,经检验,x1=-3是增根,舍去,∴原方程的根是x=-4.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.【答案】解:(1)设一次函数解析式为y=kx+b(k≠0),又∵A(1,m)、B(n,-1)在反比例函数的图象上∴,,∴m=3,n=-3,∴A(1,3)、B(-3,-1),一次函数y=kx+b的图象过A(1,3)、B(-3,-1),∴,∴,∴所求一次函数的解析式是y=x+2;(2)过点A、B分别作y轴垂线,垂足为分别D、E,则AD∥BE,∴,∴.【解析】(1)根据图象上点的坐标特征求得A、B的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)过点A、B分别作y轴垂线,垂足为分别D、E,得出AD∥BE,根据平行线分线段成比例定理即可求得结论.此题考查了反比例函数与一次函数的交点问题.其知识点有待定系数法求解析,平行线分线段成比例定理等,此题难度适中,注意掌握数形结合思想的应用.23.【答案】证明:(1)过点O作OD⊥AB于点D,OE⊥AC于点E,如图所示:∵AO平分∠BAC.∴OD=OE,∴AB=AC;(2)联结OB,OM,ON,MN,如图所示,∵AM=CN,AB=AC∴BM=AN,∵OA=OB,∴∠B=∠BAO,∵∠BAO=∠OAN,∴∠B=∠OAN,∴△BOM≌△AON(SAS),∴∠BOM=∠AON,OM=ON,∴∠AOB=∠MON,∴△NOM∽△BOA,∴.【解析】(1)过点O作OD⊥AB于点D,OE⊥AC于点E,则根据垂径定理可得答案;(2)联结OB,OM,ON,MN,先判定△BOM≌△AON(SAS),再证明△NOM∽△BOA ,然后根据相似三角形的性质可得答案.本题考查了相似三角形的判定与性质、全等三角形的判定与性质及圆的有关性质,熟练掌握相关性质及定理是解题的关键.24.【答案】解:(1)∵抛物线y=-x2+bx+3与y轴交于B点,令x=0得y=3,∴B(0,3),∵AO=BO,∴A(3,0),把A(3,0)代入y=-x2+bx+3,得-9+3b+3=0,解得b=2,∴这条抛物线的表达式y=-x2+2x+3,顶点M(1,4);(2)∵A(3,0),B(0,3)M(1,4),∴BM2=2,AB2=18,AM2=20,∴∠MBC=90°,∴;(3)∵OA=OB,∴∠OAB=45°∵∠MAQ=45°,∴∠BAM=∠OAQ,由(2)得,∴,∴,∴,∴OQ=1,∴Q(0,1).【解析】(1)抛物线y=-x2+bx+3与y轴交于B点,令x=0得y=3,求出B(0,3),而AO=BO求出A(3,0),进而求解;(2)证明∠MBC=90°,则;(3)证明∠BAM=∠OAQ,即可求解.本题考查的是二次函数综合运用,涉及到解直角三角形、勾股定理的逆定理等,有一定的综合性,难度适中.25.【答案】证明:(1)如图,过C点作CF⊥AD,交AD的延长线于F,∵AD∥BC,AB⊥BC,AB=BC,∴四边形ABCF是正方形,∴AB=BC=CF=FA,又∵CE=CD,∴Rt△CBE≌Rt△CFD(HL),∴BE=FD,∴AD=AE;(2)①若∠EDC=90°时,若△ADE、△BCE和△CDE两两相似,那么∠A=∠B=∠EDC=90°,∠ADE=∠BCE=∠DCE=30°,在△CBE中,∵BC=1,∴,,∵AB=1,∴,∴,此时≠,∴△CDE与△ADE、△BCE不相似;②如图,若∠DEC=90°时,∵∠ADE+∠A=∠BEC+∠DEC,∠DEC=∠A=90°,∴∠ADE=∠BEC,且∠A=∠B=90°,∴△ADE∽△BEC,∴∠AED=∠BCE,若△CDE与△ADE相似,∵AB与CD不平行,∴∠AED与∠EDC不相等,∴∠AED=∠BCE=∠DCE,∴若△CDE与△ADE、△BCE相似,∴,∴AE=BE,∵AB=1,∴AE=BE=,∴AD=;(3)连接EM交CD于Q,连接DN交CE于P,连接ED,CM,作CF⊥AD于F,∵E关于直线CD的对称点为M,点D关于直线CE的对称点为N,∴∠CPD=∠CQE=90°,DC垂直平分EM,∠PCD=∠QCE,∴△CDP∽△CEQ,∴,∵AD∥BC,AB⊥BC,,AB=BC=1,∴,∵CD垂直平分EM,∴DE=DM,CE=CM,在Rt△CBE和Rt△CFM中,CB=CF,EC=CM,∴Rt△CBE≌Rt△CFM(HL)∴BE=FM,设BE=x,则FM=x,∵ED=DM,且AE2+AD2=DE2,∴,∴,∴,∴,∵DN=2DP,EM=2EQ,∴.【解析】(1)过C点作CF⊥AD,交AD的延长线于F,可证四边形ABCF是正方形,可得AB=BC=CF=FA,由“HL”可证Rt△CBE≌Rt△CFD,可得BE=FD,可得结论;(2)分两种情况讨论,由相似三角形的性质和直角三角形的性质可求解;(3)连接EM交CD于Q,连接DN交CE于P,连接ED,CM,作CF⊥AD于F,由轴对称的性质可得∠CPD=∠CQE=90°,DC垂直平分EM,由HL可证Rt△CBE≌Rt△CFM,可得BE=FM,由勾股定理可求BE的长,CE的长,通过证明△CDP∽△CEQ,可得,即可求解.本题是相似形综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的判定和性质,轴对称的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.。
上海市松江区2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB 方向运动到点B .动点Q同时从点A 出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.2.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6π B.4π C.8π D.43.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( ) A.2B.4 C.32D.24.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-85.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的()A.平均数B.众数C.中位数D.方差6.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.13πB.23πC.49πD.59π7.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE 中,DE的最小值是()A.4 B.6 C.8 D.108.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体9.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是10.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A .4B ..5C .6D .811.若x =-2 是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-412.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t 0 1 2 3 4 5 6 7 … h8141820201814…下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若函数y=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而减小,则m 的取值范围是_____. 14.函数中,自变量x 的取值范围是_____.15.化简二次根式3a -的正确结果是_____. 16.计算:2633⨯+=________. 17.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大. 18.下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n 个“上”字需用_____枚棋子. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A ,B ,C ,D 表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l )杨老师采用的调查方式是______(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C 班作品数量所对应的圆心角度数______. (3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.20.(6分)如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于点A 、B ,与y 轴交于点C ,直线y=x+4经过点A 、C ,点P 为抛物线上位于直线AC 上方的一个动点. (1)求抛物线的表达式;(2)如图,当CP//AO 时,求∠PAC 的正切值;(3)当以AP 、AO 为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P 的坐标. 21.(6分)解分式方程:12x -=3x22.(8分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212-- =2,第三个等式:224312--=3… 请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.23.(8分)如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE的长(结果保留根号).24.(10分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?25.(10分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m为符合条件的最小整数,求此方程的根.26.(12分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB=2,AE=2,求∠BAD的大小.27.(12分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1),由题意可得AP=2x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=22x,所以y=12AP QN⋅=21212=222x x x⨯⨯(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=32,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=22(6-x),所以y=12AP QN⋅=12332(6)=9222x x⨯⨯--+(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.2.A【解析】根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.4.D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.5.C【解析】【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=24024= 3609ππ⋅⋅.故选C.点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=2 360n rπ⋅⋅.7.B【解析】【分析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
上海市松江区2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是()A.B.C.D.2.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件.D.“多边形内角和与外角和相等”是不可能事件.3.如图是某几何体的三视图及相关数据,则该几何体的全面积是()A.15πB.24πC.20πD.10π4.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°5.某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,…,1.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.如果令1,,0,ii ja ji j第号同学同意第号同学当选第号同学不同意第号同学当选⎧=⎨⎩其中i=1,2,…,1;j=1,2,…,1.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是()A.同意第1号或者第2号同学当选的人数B.同时同意第1号和第2号同学当选的人数C.不同意第1号或者第2号同学当选的人数D .不同意第1号和第2号同学当选的人数6.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74 B .44 C .42 D .407.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠3=∠AB .∠D=∠DCEC .∠1=∠2D .∠D+∠ACD=180°8.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--9.如果m 的倒数是﹣1,那么m 2018等于( )A .1B .﹣1C .2018D .﹣201810.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( )A .31DE BC =B .DE 1BC 4= C .31AE AC =D .AE 1AC 4= 11.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )A .30厘米、45厘米;B .40厘米、80厘米;C .80厘米、120厘米;D .90厘米、120厘米12.已知二次函数2y ax bx c =++的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .24b ac -<0D .a b c ++<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数k y x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .14.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____. 15.如果两圆的半径之比为32:,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d 的取值范围是__________.16.如图,直线(0)y kx k =>交O e 于点A ,B ,O e 与x 轴负半轴,y 轴正半轴分别交于点D ,E ,AD ,BE 的延长线相交于点C ,则:CB CD 的值是_________.17.如图,某水库大坝的横断面是梯形ABCD ,坝顶宽6AD =米,坝高是20米,背水坡AB 的坡角为30°,迎水坡CD 的坡度为1∶2,那么坝底BC 的长度等于________米(结果保留根号)18.如图,线段 AB 是⊙O 的直径,弦 CD ⊥AB ,AB=8,∠CAB=22.5°,则 CD 的长等于___________________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE =∠ACB .(1)求证:AH 是⊙O 的切线;(2)若OB =4,AC =6,求sin ∠ACB 的值;(3)若23DF FO =,求证:CD =DH .20.(6分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).21.(6分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?22.(8分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.23.(8分)反比例函数y=k x(k≠0)与一次函数y=mx+b (m≠0)交于点A (1,2k ﹣1).求反比例函数的解析式;若一次函数与x 轴交于点B ,且△AOB 的面积为3,求一次函数的解析式.24.(10分)关于x 的一元二次方程()23220x k x k -+++=.求证:方程总有两个实数根;若方程有一根小于1,求k 的取值范围.25.(10分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A 、B 、C 、D 四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名.26.(12分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I )本次随机抽样调查的学生人数为 ,图①中的m 的值为 ;(II )求本次抽样调查获取的样本数据的众数、中位数和平均数;(III )若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.27.(12分)已知:二次函数2y ax bx =+满足下列条件:①抛物线y=ax 2+bx 与直线y=x 只有一个交点;②对于任意实数x ,a (-x+5)2+b (-x+5)=a (x-3)2+b (x-3)都成立.(1)求二次函数y=ax 2+bx 的解析式;(2)若当-2≤x≤r (r≠0)时,恰有t≤y≤1.5r 成立,求t 和r 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2不一定互补.故选D.点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.2.C【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可. 【详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是12,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.3.B【解析】解:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×(62)2=9π,圆锥的侧面积=12×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选B.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.4.B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=12∠ABK,∠SHC=∠DCF=12∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣12(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选B.5.B【解析】【分析】先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加.【详解】第1,2,3,……,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,…,a1,1来确定,是否同意第2号同学当选依次由a1,2,a2,2,a3,2,…,a1,2来确定,∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,故选B.【点睛】本题考查了推理应用题,题目比较新颖,是基础题.6.C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.7.C【解析】【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC ∥BD.本选项不能判断AB ∥CD ,故B 错误;C.∵∠1=∠2,∴AB ∥CD.本选项能判断AB ∥CD ,故C 正确;D.∵∠D+∠ACD=180°,∴AC ∥BD.故本选项不能判断AB ∥CD ,故D 错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.8.D【解析】【分析】将各选项的点逐一代入即可判断.【详解】解:当x=1时,y=-1,故点()1,1不在二次函数2y x =-的图象;当x=2时,y=-4,故点()2,2-和点()2,4不在二次函数2y x =-的图象;当x=-2时,y=-4,故点()2,4--在二次函数2y x =-的图象; 故答案为:D .【点睛】本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.9.A【解析】【分析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m 的倒数是﹣1,则m=-1,然后再代入m 2018计算即可.【详解】因为m 的倒数是﹣1,所以m=-1,所以m 2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则. 10.D【解析】【详解】如图,∵AD=1,BD=3,∴AD1 AB4=,当AE1AC4=时,AD AEAB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.11.C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.12.B【解析】【分析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线交于y轴的正半轴,∴ac >0,A 错误;∵-2b a>0,a >0, ∴b <0,∴B 正确;∵抛物线与x 轴有两个交点,∴b 2-4ac >0,C 错误;当x=1时,y >0,∴a+b+c >0,D 错误;故选B .【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3y x=. 【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b ,图中阴影部分的面积等于9可求出b 的值,从而可得出直线AB 的表达式,再根据点P (2a ,a )在直线AB 上可求出a 的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b ,则b 2=9,解得b=3.∵正方形的中心在原点O ,∴直线AB 的解析式为:x=2.∵点P (2a ,a )在直线AB 上,∴2a=2,解得a=3.∴P (2,3).∵点P 在反比例函数3y x=(k >0)的图象上,∴k=2×3=2. ∴此反比例函数的解析式为:. 14.1.06×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:10600=1.06×104, 故答案为:1.06×104 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.315d <<.【解析】【分析】先根据比例式设两圆半径分别为32x x 、,根据内切时圆心距列出等式求出半径,然后利用相交时圆心距与半径的关系求解.【详解】解:设两圆半径分别为32x x 、,由题意,得3x-2x=3,解得3x =,则两圆半径分别为96,,所以当这两圆相交时,圆心距d 的取值范围是9696d +﹣<<,即315d <<,故答案为315d <<.【点睛】本题考查了圆和圆的位置与两圆的圆心距、半径的数量之间的关系,熟练掌握圆心距与圆位置关系的数量关系是解决本题的关键.16【解析】【分析】连接BD ,根据90EOD ∠=︒可得90AOD BOE ∠+∠=︒,并且根据圆的半径相等可得△OAD 、△OBE都是等腰三角形,由三角形的内角和,可得∠C=45°,则有CDB △是等腰直角三角形,可得:CB CD =即可求求解.【详解】解:如图示,连接BD ,∵90EOD ∠=︒,∴90AOD BOE ∠+∠=︒,∵OB OE =,OA OD =,∴OAD ODA ∠=∠,OBE OEB ∠=∠, ∴()1360901352OAD OBE ︒︒∠+∠=-=︒, ∴45ACB ∠=︒,∵AB 是直径,∴90ADB CDB ∠=∠=︒,∴CDB △是等腰直角三角形, ∴:2CB CD =【点睛】本题考查圆的性质和直角三角形的性质,能够根据圆性质得出CDB △是等腰直角三角形是解题的关键. 17.(46203)+【解析】【分析】过梯形上底的两个顶点向下底引垂线AE 、DF ,得到两个直角三角形和一个矩形,分别解Rt ABE ∆、Rt DCF ∆求得线段BE 、CF 的长,然后与EF 相加即可求得BC 的长.【详解】如图,作AE BC ⊥,DF BC ⊥,垂足分别为点E ,F ,则四边形ADFE 是矩形.由题意得,6EF AD ==米,20AE DF ==米,30B°?,斜坡CD 的坡度为1∶2, 在Rt ABE ∆中,∵30B°?, ∴3203BE AE ==米.在Rt △DCF 中,∵斜坡CD 的坡度为1∶2, ∴12=DF CF , ∴240CF DF ==米,∴20364046203BC BE EF FC=++=++=+(米).∴坝底BC的长度等于(46203)+米.故答案为(463)+.【点睛】此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.18.2【解析】【分析】连接OC,如图所示,由直径AB 垂直于CD,利用垂径定理得到E 为CD 的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出CE 的长,进而得出CD.【详解】连接OC,如图所示:∵AB 是⊙O 的直径,弦CD⊥AB,∴OC= 12AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE 为△AOC 的外角,∴∠COE=45°,∴△COE 为等腰直角三角形,∴CE=22OC=22∴CD=2CE=2故答案为【点睛】考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)34;(3)证明见解析. 【解析】【分析】(1)连接OA ,证明△DAB ≌△DAE ,得到AB =AE ,得到OA 是△BDE 的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF ∽△AOF ,根据相似三角形的性质得到CD =14CE ,根据等腰三角形的性质证明. 【详解】(1)证明:连接OA ,由圆周角定理得,∠ACB =∠ADB ,∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中, BAD EAD DA DABDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAB ≌△DAE ,∴AB =AE ,又∵OB =OD ,∴OA ∥DE ,又∵AH ⊥DE ,∴OA ⊥AH ,∴AH 是⊙O 的切线;(2)解:由(1)知,∠E =∠DBE ,∠DBE =∠ACD ,∴∠E =∠ACD ,∴AE =AC =AB =1.在Rt △ABD 中,AB =1,BD =8,∠ADE =∠ACB ,∴sin∠ADB=68=34,即sin∠ACB=34;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=12 DE.∴△CDF∽△AOF,∴CD DFAO OF=23,∴CD=23OA=13DE,即CD=14CE,∵AC=AE,AH⊥CE,∴CH=HE=12 CE,∴CD=12 CH,∴CD=DH.【点睛】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.20.(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE 即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE ,∴∠DAB=∠EAC ,在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===,∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.21.1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.【解析】【分析】此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可【详解】设1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷根据题意可得()22x 5y 3.6{ 5328x y +=+=解得0.4{ 0.2x y ==答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【点睛】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系22.(1);(2)12;(3)t=或t=或t=1.【解析】 试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B ,C 的坐标代入解析式计算即可;(2)(2)分0<t <6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t >6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x 1、x 2是方程mx 2﹣8mx+4m+2=0的两根,∴x 1+x 2=8, 由. 解得:.∴B (2,0)、C (6,0)则4m ﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A (0,3)设直线AC 的解析式为:y=kx+b , ∵ ∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考点:二次函数综合题.23.(1)y=1x;(2)y=﹣1655x+或y=1677x+【解析】试题分析:(1)把A(1,2k-1)代入y=kx即可求得结果;(2)根据三角形的面积等于3,求得点B的坐标,代入一次函数y=mx+b即可得到结果.试题解析:(1)把A(1,2k﹣1)代入y=kx得,2k﹣1=k,∴k=1,∴反比例函数的解析式为:y=1x;(2)由(1)得k=1,∴A (1,1),设B (a ,0),∴S △AOB =12•|a|×1=3, ∴a=±6,∴B (﹣6,0)或(6,0),把A (1,1),B (﹣6,0)代入y=mx+b 得: 106m b m b =+⎧⎨=-+⎩, ∴1767m b ⎧=⎪⎪⎨⎪=⎪⎩, ∴一次函数的解析式为:y=17x+67, 把A (1,1),B (6,0)代入y=mx+b 得:106m b m b =+⎧⎨=+⎩, ∴1565m b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴一次函数的解析式为:y=﹣1655x +. 所以符合条件的一次函数解析式为:y=﹣1655x +或y=17x+67. 24.(2)见解析;(2)k<2.【解析】【分析】(2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根; (2)利用分解因式法解一元二次方程,可得出x 1=2、x 2=k+2,根据方程有一根小于2,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】(2)证明:∵在方程()23220x k x k -+++=中,△=[-(k+3)]2-4×2×(2k+2)=k 2-2k+2=(k-2)2≥2, ∴方程总有两个实数根.(2) ∵x 2-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x1=2,x2=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k的取值范围为k<2.【点睛】此题考查根的判别式,解题关键在于掌握运算公式.25.(1)50名;(2)16名;见解析;(3)56名.【解析】试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案.试题解析:(1)10÷20%=50(名)答:本次抽样共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.补全图形如图所示:(3)700×(4÷50)=56(名)答:估计该中学八年级700名学生中体能测试为D等级的学生有56名.考点:统计图.26.(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人【解析】【分析】(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;(II)根据众数、中位数和平均数的定义计算可得;(III)用总人数乘以样本中5天、6天的百分比之和可得.【详解】解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案为150、14;(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为4+42=4天,平均数为118+221+363+334+275+156150⨯⨯⨯⨯⨯⨯=3.5天;(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.27.(1)y=12-x 2+x ;(2)t=-4,r=-1. 【解析】【分析】(1)由①联立方程组,根据抛物线y=ax 2+bx 与直线y=x 只有一个交点可以求出b 的值,由②可得对称轴为x=1,从而得a 的值,进而得出结论;(2)进行分类讨论,分别求出t 和r 的值.【详解】(1)y=ax 2+bx 和y=x 联立得:ax 2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1, ∵对称轴为532x x -++-=1, ∴2b a-=1, ∴a=12-, ∴y=12-x 2+x. (2)因为y=12-x 2+x=12-(x-1)2+12, 所以顶点(1,12) 当-2<r<1,且r≠0时,当x=r 时,y 最大=12-r 2+r=1.5r ,得r=-1, 当x=-2时,y 最小=-4,所以,这时t=-4,r=-1.当r≥1时,y 最大=12,所以1.5r=12, 所以r=13,不合题意,舍去, 综上可得,t=-4,r=-1.【点睛】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.。
上海市松江区2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程2131x x +=-的解是( ) A .2- B .1- C .2 D .42.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH┴AF 与点H ,那么CH 的长是( )A .223B .5C .322D .3553.关于x 的一元二次方程x 2-4x+k=0有两个相等的实数根,则k 的值是( )A .2B .-2C .4D .-44.如图,在ABC ∆中,90, 4ACB AC BC ∠=︒== ,将ABC ∆折叠,使点A 落在BC 边上的点D 处, EF 为折痕,若3AE =,则sin CED ∠的值为( )A .13B .223C .24D .355.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+6.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A.12m B.13.5m C.15m D.16.5m7.如下图所示,该几何体的俯视图是()A.B.C.D.8.在数轴上到原点距离等于3的数是( )A.3 B.﹣3 C.3或﹣3 D.不知道9.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.10.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1 B.2 C.1 D.–211.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块12.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=kx的图象上的两个点,则一次函数y=kx+b的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限13.计算:(π﹣3)0﹣2-1=_____.14.如图,在平面直角坐标系中有矩形ABCD ,A (0,0),C (8,6),M 为边CD 上一动点,当△ABM 是等腰三角形时,M 点的坐标为_____.15.如图,已知直线////a b c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 和B 、D 、F ,如果3AC =,5CE =,4DF =,那么BD =______.16.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为17.若点M (1,m )和点N (4,n )在直线y=﹣12x+b 上,则m___n (填>、<或=) 18.亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC 中,AB =AC ,∠BAC =α,点D 、E 在边BC 上,且∠DAE =12α.②求证:△ADE ≌△ADF ;(2)如图2,当α=90°时,猜想BD 、DE 、CE 的数量关系,并说明理由;(3)如图3,当α=120°,BD =4,CE =5时,请直接写出DE的长为 .20.(6分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
2020上海市松江区初三二模数学试卷2020.05一.选择题1.下列实数中,有理数是()A.B. C.πD.3.142.如果将抛物线22y x =+向左平移1个单位,那么所得新抛物线的表达式是()A.2(1)2y x =++B.2(1)2y x =-+ C.21y x =+ D.23y x =+3.不等式组20622x x +>⎧⎨-<⎩的解集是()A.2x >- B.2x <- C.2x > D.2x <4.某校运动会有15名同学参加男子百米赛跑,它们预赛的成绩各不相同,取前7名参加决赛,小华已经知道了自己的成绩,他想知道自己能否进入决赛,还需要知道这15名同学成绩的()A.平均数B.众数C.中位数D.方差5.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.6B.8C.10D.126.如图,已知△ABC 中,2AC =,3AB =,4BC =,点G 是△ABC 的重心,将△ABC 平移,使得顶点A 与点G 重合,那么平移后的三角形与原三角形重叠部分的周长为()A.2B.3C.4D.4.5二.填空题7.=8.方程组23x y xy +=⎧⎨=-⎩的解是9.函数12y x =+的定义域是10.已知一元二次方程20x x m +-=有实数根,那么m 的取值范围是11.有一枚材质均匀的正方体骰子,六个面的点数分别是1、2、3、4、5、6,掷一次该骰子,向上的一面出现的点数大于2的概率是12.已知点1(2,)P y -和2(1,)Q y -都在二次函数2y x c =-+的图像上,那么1y 与2y 的大小关系是13.空气质量检测标准规定:当空气质量指数50W ≤时,空气质量为优;当50100W <≤时,空气质量为良,当100150W <≤时,空气质量为轻微污染,已知某城市4月份30天的空气质量状况,统计如下:空气质量指数(W )406090110120140天数3510741这个月中,空气质量为良的天数的频率为14.如图,已知梯形ABCD ,AD ∥BC ,3BC AD =,如果AD a =uuu r r ,AB b =uu u r r ,那么DC =uuu r(用a r ,b r表示)15.某市出租车计费办法如图所示,如果小张在该市乘坐出租车行驶了10千米,那么小张需要支付的车费为元16.已知1O e 和2O e 相交,圆心距5d =,1O e 的半径为3,那么2O e 的半径r 的取值范围是17.如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”,已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度18.如图,四边形ABCD 是O e 的内接矩形,将矩形ABCD 沿着直线BC 翻折,点A 、点D 的对应点分别为A '、D ',如果直线A D ''与O e 相切,那么ABBC的值为三.解答题19.计算:1121(8|12-+-+-.20.解方程:262343x x x x -=+++.21.如图,在平面直角坐标系xOy 中,某一次函数的图像与反比例函数3y x=的图像交于(1,)A m 、(,1)B n -两点,与y 轴交于C 点.(1)求该一次函数的解析式;(2)求ACCB的值.22.如图是某地下停车库入口的设计示意图,已知坡道AB 的坡比1:2.4i =,AC 的长为7.2米,CD 的长为0.4米,按规定,车库坡道口上方需张贴限高标志,根据图中所给数据,确定该车库入口的限高数值(即点D 到AB 的距离).23.如图,已知AB 、AC 是⊙O 的两条弦,且AO 平分∠BAC ,点M 、N 分别在弦AB 、AC 上,满足AM =CN .(1)求证:AB =AC ;(2)联结OM 、ON 、MN ,求证:MN OMAB OA=.24.如图,在平面直角坐标系xOy 中,抛物线23y x bx =-++与x 轴和y 轴的正半轴分别交于A 、B 两点,且OA OB =,又抛物线的顶点为M ,联结AB 、AM .(1)求这条抛物线的表达式和点M 的坐标;(2)求sin BAM ∠的值;(3)如果Q 是线段OB 上一点,满足45MAQ =o ∠,求点Q 的坐标.25.如图,已知梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD <BC ,AB =BC =1,E 是边AB 上一点,联结CE .(1)如图,如果CE =CD ,求证:AD =AE ;(2)联结DE ,如果存在点E ,使得△ADE 、△BCE 和△CDE 两两相似,求AD 的长;(3)设点E 关于直线CD 的对称点为M ,点D 关于直线CE 的对称点为N ,如果AD =23,且M 在直线AD 上时,求DN EM的值.参考答案一.选择题1.D2.A3.C4.C5.B6.B二.填空题7.8.1131x y =⎧⎨=-⎩,2213x y =-⎧⎨=⎩9.2x ≠10.14m ≥-11.2312.12y y <13.0.514.2a b+r r 15.30.816.28r <<17.22.5°18.24三.解答题19.4-.20.4.21.(1)2y x =+;(2)13.22.2.4m .23.(1)证明略;(2)证明略.24.(1)(1)(3)y x x =-+-,(1,4)M ;(2)1010;(3)(0,1)Q .25.(1)证明略;(2)14;(3)223.。
2020年上海市松江区中考数学二模试卷一.选择题(共6小题)1.下列实数中,有理数是()A.B.C.πD.3.142.如果将抛物线y=x2+2向左平移1个单位,那么所得新抛物线的解析式为()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+33.不等式组的解集是()A.x>﹣2B.x<﹣2C.x>2D.x<24.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数5.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5B.6C.8D.106.如图,已知△ABC中,AC=2,AB=3,BC=4,点G是△ABC的重心.将△ABC平移,使得顶点A与点G重合.那么平移后的三角形与原三角形重叠部分的周长为()A.2B.3C.4D.4.5二.填空题(共12小题)7.化简:=.8.方程组的解是.9.函数y=的定义域是.10.若关于x的一元二次方程x2+x﹣m=0有两个实数根,则m的取值范围是.11.有一枚材质均匀的正方体骰子,六个面的点数分别是1,2,3,4,5,6,掷一次该骰子,向上的一面出现的点数大于2的概率是.12.已知点P(﹣2,y1)和点Q(﹣1,y2)都在二次函数y=﹣x2+c的图象上,那么y1与y2的大小关系是.13.空气质量检测标准规定:当空气质量指数W≤50时,空气质量为优;当50<W≤100时,空气质量为良,当100<Q≤150时,空气质量为轻微污染.已知某城市4月份30天的空气质量状况,统计如表:空气质量指数(W)406090110120140天数3510741这个月中,空气质量为良的天数的频率为.14.如图,已知梯形ABCD,AD∥BC,BC=3AD,如果=,=,那么(用,表示).15.某市出租车计费办法如图所示,如果小张在该市乘坐出租车行驶了10千米,那么小张需要支付的车费为元.16.已知⊙O1和⊙O2相交,圆心距d=5,⊙O1的半径为3,那么⊙O2的半径r的取值范围是.17.如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.18.如图,四边形ABCD是⊙O的内接矩形,将矩形ABCD沿着直线BC翻折,点A、点D 的对应点分别为A′、D′,如果直线A′D′与⊙O相切,那么的值为.三.解答题(共7小题)19.计算:()﹣1+﹣+|1﹣|.20.解方程:﹣=2.21.如图,在平面直角坐标系内xOy中,某一次函数的图象与反比例函数的y=的图象交于A(1,m)、B(n,﹣1)两点,与y轴交于C点.(1)求该一次函数的解析式;(2)求的值.22.如图是某地下停车库入口的设计示意图,已知坡道AB的坡比i=1:2.4,AC的长为7.2米,CD的长为0.4米.按规定,车库坡道口上方需张贴限高标志,根据图中所给数据,确定该车库入口的限高数值(即点D到AB的距离).23.如图,已知AB、AC是⊙O的两条弦,且AO平分∠BAC.点M、N分别在弦AB、AC 上,满足AM=CN.(1)求证:AB=AC;(2)联结OM、ON、MN,求证:=.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+3与x轴和y轴的正半轴分别交于A、B两点,且OA=OB,抛物线的顶点为M,联结AB、AM.(1)求这条抛物线的表达式和点M的坐标;(2)求sin∠BAM的值;(3)如果Q是线段OB上一点,满足∠MAQ=45°,求点Q的坐标.25.如图,已知梯形ABCD中,AD∥BC,AB⊥BC,AD<BC,AB=BC=1,E是边AB上一点,联结CE.(1)如果CE=CD,求证:AD=AE;(2)联结DE,如果存在点E,使得△ADE、△BCE和△CDE两两相似,求AD的长;(3)设点E关于直线CD的对称点为M,点D关于直线CE的对称点为N,如果AD=,且M在直线AD上时,求的值.参考答案与试题解析一.选择题(共6小题)1.下列实数中,有理数是()A.B.C.πD.3.14【分析】直接利用有理数和无理数的定义得出答案.【解答】解:A、是无理数,不合题意;B、是无理数,不合题意;C、π是无理数,不合题意;D、3.14是有理数,符合题意.故选:D.2.如果将抛物线y=x2+2向左平移1个单位,那么所得新抛物线的解析式为()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=x2+1D.y=x2+3【分析】先利用二次函数的性质得到抛物线y=x2+2的顶点坐标为(0,2),再根据点平移的规律得到点(0,2)平移后所得对应点的坐标为(﹣1,2),然后根据顶点式写出平移后的抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),点(0,2)向左平移1个单位长度所得对应点的坐标为(﹣1,2),所以平移后的抛物线的解析式为y=(x+1)2+2,故选:B.3.不等式组的解集是()A.x>﹣2B.x<﹣2C.x>2D.x<2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+2>0,得:x>﹣2,解不等式6﹣2x<2,得:x>2,则不等式组的解集为x>2,故选:C.4.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数【分析】由于比赛取前6名参加决赛,共有13名选手参加,根据中位数的意义分析即可.【解答】解:13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:C.5.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5B.6C.8D.10【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【解答】解:多边形的边数是:n==8,即该多边形是八边形.故选:C.6.如图,已知△ABC中,AC=2,AB=3,BC=4,点G是△ABC的重心.将△ABC平移,使得顶点A与点G重合.那么平移后的三角形与原三角形重叠部分的周长为()A.2B.3C.4D.4.5【分析】先根据平移和平行线的性质得到∠GMN=∠B,∠GNM=∠C,则可判断△GMN ∽△ABC,根据相似三角形的性质得到=,接着利用三角形重心性质得AG=2GD,然后根据三角形周长定义计算即可.【解答】解:∵将△ABC平移得到△GEF,∴GE∥AB,GF∥AC,∴∠GMN=∠B,∠GNM=∠C,∴△GMN∽△ABC,∴=,∵点G是△ABC的重心,∴=,∴△GMN的周长=×(2+3+4)=3.故选:B.二.填空题(共12小题)7.化简:=.【分析】利用二次根式的性质=|a|进行计算即可.【解答】解:原式==a,故答案为:a.8.方程组的解是或.【分析】根据代入消元法解方程组即可得到结论.【解答】解:方程组,由①得,y=2﹣x③,把③代入②得,x(2﹣x)=﹣3,解得:x1=3,x2=﹣1,把x1=3,x2=﹣1分别代入③得,y1=﹣1,y2=3,∴原方程组的解为:或.故答案为:或.9.函数y=的定义域是x≠﹣2.【分析】根据函数y=,可知x+2≠0,从而可以求得x的取值范围.【解答】解:∵函数y=,解得,x≠2,故答案为:x≠﹣2.10.若关于x的一元二次方程x2+x﹣m=0有两个实数根,则m的取值范围是m≥﹣.【分析】根据一元二次方程x2+x﹣m=0有两个实数根得到△≥0,即△=1﹣4(﹣m)≥0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2+x﹣m=0有两个实数根,∴△≥0,∴△=1﹣4(﹣m)≥0,即m≥﹣,故答案为:m≥﹣.11.有一枚材质均匀的正方体骰子,六个面的点数分别是1,2,3,4,5,6,掷一次该骰子,向上的一面出现的点数大于2的概率是.【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数大于2的有4种情况,直接利用概率公式求解即可求得答案.【解答】解:抛掷此正方体骰子共有6种等可能结果,其中向上的一面出现的点数大于2的有3、4、5、6这4种结果,所以向上的一面出现的点数大于2的概率为=,故答案为:.12.已知点P(﹣2,y1)和点Q(﹣1,y2)都在二次函数y=﹣x2+c的图象上,那么y1与y2的大小关系是y1<y2.【分析】根据函数解析式求出对称轴,然后根据二次函数的增减性进行判断即可.【解答】解:二次函数y=﹣x2+c的开口向下,对称轴为y轴,∴当x<0时,y随x的增大而增大,∵﹣2<﹣1,∴y1<y2.故答案为:y1<y2.13.空气质量检测标准规定:当空气质量指数W≤50时,空气质量为优;当50<W≤100时,空气质量为良,当100<Q≤150时,空气质量为轻微污染.已知某城市4月份30天的空气质量状况,统计如表:空气质量指数(W)406090110120140天数3510741这个月中,空气质量为良的天数的频率为0.5.【分析】用空气质量为良的天数除以30即可得.【解答】解:这个月中,空气质量为良的天数的频率为=0.5,故答案为:0.5.14.如图,已知梯形ABCD,AD∥BC,BC=3AD,如果=,=,那么2+(用,表示).【分析】根据=++,只要求出即可解决问题.【解答】解:∵AD∥BC,BC=3AD,∴=3=3,∵=++,∴=﹣++3=2+,故答案为2+.15.某市出租车计费办法如图所示,如果小张在该市乘坐出租车行驶了10千米,那么小张需要支付的车费为30.8元.【分析】设超过3千米的函数解析式为y=kx+b,根据题意列出方程组,利用待定系数法求得解析式,然后把x=10代入即可求得.【解答】解:由图象可知,出租车的起步价是14元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2.4x+6.8,∴出租车行驶了10千米则y=2.4×10+6.8=30.8(元),故答案为30.8.16.已知⊙O1和⊙O2相交,圆心距d=5,⊙O1的半径为3,那么⊙O2的半径r的取值范围是2<r<8.【分析】根据圆与圆的位置关系即可求出答案.【解答】解:由题意可知:|3﹣r|<5<3+r,解得:2<r<8,故答案为:2<r<8.17.如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于22.5度.【分析】设直角三角形的最小内角为x,另一个内角为y,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x,另一个内角为y,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.18.如图,四边形ABCD是⊙O的内接矩形,将矩形ABCD沿着直线BC翻折,点A、点D 的对应点分别为A′、D′,如果直线A′D′与⊙O相切,那么的值为.【分析】设直线A′D′与⊙O相切于G,连接OC,OG交BC于E,根据折叠的性质得到AD=BC=A′D′,AB=CD=CD′=A′B,过O作OH⊥CD,根据垂径定理得到CH=CD,根据切线的性质得到OG⊥A′D′,设AB=CD=CD′=A′B=x,根据勾股定理即可得到结论.【解答】解:设直线A′D′与⊙O相切于G,连接OC,OG交BC于E,∵将矩形ABCD沿着直线BC翻折,∴AD=BC=A′D′,AB=CD=CD′=A′B,过O作OH⊥CD,∴CH=CD,∵直线A′D′与⊙O相切,∴OG⊥A′D′,∵BC∥A′D′,∴OG⊥BC,∴则四边形OECH是矩形,CE=BE=BC,∴CH=OE,设AB=CD=CD′=A′B=x,∴OE=x,∴OC=OG=x,∴CE===x,∴BC=2CE=2x,∴==,故答案为:.三.解答题(共7小题)19.计算:()﹣1+﹣+|1﹣|.【分析】直接利用二次根式的性质和绝对值的性质、分数指数幂的性质分别化简得出答案.【解答】解:原式==2+3+3﹣2+﹣1=.20.解方程:﹣=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+1)﹣6=2x2+8x+6,移项得:x2+x﹣6﹣2x2﹣8x﹣6=0,整理得:x2+7x+12=0,即(x+3)(x+4)=0,解得:x1=﹣3,x2=﹣4,经检验,x1=﹣3是增根,舍去,∴原方程的根是x=﹣4.21.如图,在平面直角坐标系内xOy中,某一次函数的图象与反比例函数的y=的图象交于A(1,m)、B(n,﹣1)两点,与y轴交于C点.(1)求该一次函数的解析式;(2)求的值.【分析】(1)根据图象上点的坐标特征求得A、B的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)过点A、B分别作y轴垂线,垂足为分别D、E,得出AD∥BE,根据平行线分线段成比例定理即可求得结论.【解答】解:(1)设一次函数解析式为y=kx+b(k≠0),又∵A(1,m)、B(n,﹣1)在反比例函数的图象上∴,,∴m=3,n=﹣3,∴A(1,3)、B(﹣3,﹣1),一次函数y=kx+b的图象过A(1,3)、B(﹣3,﹣1),∴,∴,∴所求一次函数的解析式是y=x+2;(2)过点A、B分别作y轴垂线,垂足为分别D、E,则AD∥BE,∴,∴.22.如图是某地下停车库入口的设计示意图,已知坡道AB的坡比i=1:2.4,AC的长为7.2米,CD的长为0.4米.按规定,车库坡道口上方需张贴限高标志,根据图中所给数据,确定该车库入口的限高数值(即点D到AB的距离).【分析】延长CD交AB于E,根据坡度和坡角可得CE=3,DE=2.6,过点D作DH⊥AB于H,根据锐角三角函数即可求出DH的长.【解答】解:如图,延长CD交AB于E,∵i=1:2.4,∴,∴,∵AC=7.2,∴CE=3,∵CD=0.4,∴DE=2.6,过点D作DH⊥AB于H,∴∠EDH=∠CAB,∵,∴,,答:该车库入口的限高数值为2.4米.23.如图,已知AB、AC是⊙O的两条弦,且AO平分∠BAC.点M、N分别在弦AB、AC 上,满足AM=CN.(1)求证:AB=AC;(2)联结OM、ON、MN,求证:=.【分析】(1)过点O作OD⊥AB于点D,OE⊥AC于点E,则根据垂径定理可得答案;(2)联结OB,OM,ON,MN,先判定△BOM≌△AON(SAS),再证明△NOM∽△BOA,然后根据相似三角形的性质可得答案.【解答】证明:(1)过点O作OD⊥AB于点D,OE⊥AC于点E,如图所示:∵AO平分∠BAC.∴OD=OE,∴AB=AC;(2)联结OB,OM,ON,MN,如图所示,∵AM=CN,AB=AC∴BM=AN,∵OA=OB,∴∠B=∠BAO,∵∠BAO=∠OAN,∴∠B=∠OAN,∴△BOM≌△AON(SAS),∴∠BOM=∠AON,OM=ON,∴∠AOB=∠MON,∴△NOM∽△BOA,∴.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+3与x轴和y轴的正半轴分别交于A、B两点,且OA=OB,抛物线的顶点为M,联结AB、AM.(1)求这条抛物线的表达式和点M的坐标;(2)求sin∠BAM的值;(3)如果Q是线段OB上一点,满足∠MAQ=45°,求点Q的坐标.【分析】(1)抛物线y=﹣x2+bx+3与y轴交于B点,令x=0得y=3,求出B(0,3),而AO=BO求出A(3,0),进而求解;(2)证明∠MBC=90°,则;(3)证明∠BAM=∠OAQ,即可求解.【解答】解:(1)∵抛物线y=﹣x2+bx+3与y轴交于B点,令x=0得y=3,∴B(0,3),∵AO=BO,∴A(3,0),把A(3,0)代入y=﹣x2+bx+3,得﹣9+3b+3=0,解得b=2,∴这条抛物线的表达式y=﹣x2+2x+3,顶点M(1,4);(2)∵A(3,0),B(0,3)M(1,4),∴BM2=2,AB2=18,AM2=20,∴∠MBC=90°,∴;(3)∵OA=OB,∴∠OAB=45°∵∠MAQ=45°,∴∠BAM=∠OAQ,由(2)得,∴,∴,∴,∴OQ=1,∴Q(0,1).25.如图,已知梯形ABCD中,AD∥BC,AB⊥BC,AD<BC,AB=BC=1,E是边AB上一点,联结CE.(1)如果CE=CD,求证:AD=AE;(2)联结DE,如果存在点E,使得△ADE、△BCE和△CDE两两相似,求AD的长;(3)设点E关于直线CD的对称点为M,点D关于直线CE的对称点为N,如果AD=,且M在直线AD上时,求的值.【分析】(1)过C点作CF⊥AD,交AD的延长线于F,可证四边形ABCF是正方形,可得AB=BC=CF=F A,由“HL”可证Rt△CBE≌Rt△CFD,可得BE=FD,可得结论;(2)分两种情况讨论,由相似三角形的性质和直角三角形的性质可求解;(3)连接EM交CD于Q,连接DN交CE于P,连接ED,CM,作CF⊥AD于F,由轴对称的性质可得∠CPD=∠CQE=90°,DC垂直平分EM,由HL可证Rt△CBE≌Rt △CFM,可得BE=FM,由勾股定理可求BE的长,CE的长,通过证明△CDP∽△CEQ,可得,即可求解.【解答】证明:(1)如图,过C点作CF⊥AD,交AD的延长线于F,∵AD∥BC,AB⊥BC,AB=BC,∴四边形ABCF是正方形,∴AB=BC=CF=F A,又∵CE=CD,∴Rt△CBE≌Rt△CFD(HL),∴BE=FD,∴AD=AE;(2)①若∠EDC=90°时,若△ADE、△BCE和△CDE两两相似,那么∠A=∠B=∠EDC=90°,∠ADE=∠BCE=∠DCE=30°,在△CBE中,∵BC=1,∴,,∵AB=1,∴,∴,此时≠,∴△CDE与△ADE、△BCE不相似;②如图,若∠DEC=90°时,∵∠ADE+∠A=∠BEC+∠DEC,∠DEC=∠A=90°,∴∠ADE=∠BEC,且∠A=∠B=90°,∴△ADE∽△BEC,∴∠AED=∠BCE,若△CDE与△ADE相似,∵AB与CD不平行,∴∠AED与∠EDC不相等,∴∠AED=∠BCE=∠DCE,∴若△CDE与△ADE、△BCE相似,∴,∴AE=BE,∵AB=1,∴AE=BE=,∴AD=;(3)连接EM交CD于Q,连接DN交CE于P,连接ED,CM,作CF⊥AD于F,∵E关于直线CD的对称点为M,点D关于直线CE的对称点为N,∴∠CPD=∠CQE=90°,DC垂直平分EM,∠PCD=∠QCE,∴△CDP∽△CEQ,∴,∵AD∥BC,AB⊥BC,,AB=BC=1,∴,∵CD垂直平分EM,∴DE=DM,CE=CM,在Rt△CBE和Rt△CFM中,CB=CF,EC=CM,∴Rt△CBE≌Rt△CFM(HL)∴BE=FM,设BE=x,则FM=x,∵ED=DM,且AE2+AD2=DE2,∴,∴,∴,∴,∵DN=2DP,EM=2EQ,∴.。
2020年上海市松江区中考数学二模试卷一、选择题1.下列各数是无理数的是()A. B. C. D.162.下列式子中,属于最简二次根式的是()A. B. C. D.3.在平面直角坐标系中,直线y=x﹣1经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限4.某班一个小组7名同学的体育测试成绩(满分30分)依次为:27,29,27,25,27,30,25,这组数据的中位数和众数分别是()A.27,25 B.25,27 C.27,27 D.27,305.如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是()A.AC⊥BD B.AB=AC C.∠ABC=90°D.AC=BD6.已知⊙O1的半径r1=6,⊙O2的半径为r2,圆心距O1O2=3,如图⊙O1与⊙O2有交点,那么r2的取值范围是()A.r2≥3 B.r2≤9 C.3<r2<9 D.3≤r2≤9二、填空题7.因式分解:2a2﹣3a=______.8.函数的定义域是______.9.计算:2(﹣)+3=______.10.关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是______.11.不等式组:的解集为______.12.将抛物线y=x2﹣2向左平移3个单位长度,再向上平移2个单位长度,所得的抛物线的解析式为______.13.反比例函数y=的图象经过点(﹣1,2),A(x1,y1),B(x2,y2)是图象上另两点,其中x1<x2<0,则y1、y2的大小关系是______.14.用换元法解分式方程时,如果设,将原方程化为关于y的整式方程,那么这个整式方程是______.15.某服装厂从20万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,那么你估计该厂这20万件产品中合格品约为______万件.16.从1到10的十个自然数中,随意取出一个数,该数为3的倍数的概率是______.17.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是______.18.如图,已知梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E是AB上一点,将△BCE沿着直线CE翻折,点B恰好与D点重合,则BE=______.三、解答题19.计算:()﹣2+(π﹣3.14)0+.20.解方程组:.21.已知气温的华氏度数y是摄氏度数x的一次函数,如图所示是一个家用温度表的表盘,其左边为摄氏温度的刻度和度数(单位:℃),右边为华氏温度的刻度和度数(单位:℉),观察发现表示﹣40℃与﹣40℉的刻度线恰好对齐(左一条水平线上),而表示0℃与32℉的刻度线恰好对齐.(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)当华氏温度为104℉时,温度表上摄氏温度为多少?22.如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC于D,O为AD上一点,以O为圆心,OA为半径的圆交AB于G,交BC于E、F.且AG=AD.(1)求EF的长;(2)求tan∠BDG的值.23.如图,已知等腰△ABC中,AB=AC,AD⊥BC,CE⊥AB,垂足分别为D、E.(1)求证:∠CAD=∠ECB;(2)点F是AC的中点,连结DF,求证:BD2=FC•BE.24.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.25.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD 上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.2020年上海市松江区中考数学二模试卷参考答案与试题解析一、选择题1.下列各数是无理数的是()A. B. C. D.16【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是有理数,故A错误;B、是无理数,故B正确;C、是有理数,故C错误;D、16是有理数,故D错误;故选:B.2.下列式子中,属于最简二次根式的是()A. B. C. D.【考点】最简二次根式.【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数含分母,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数含开的尽的因数,故C错误;D、被开方数不含分母,被开方数不含开的尽的因数或因式,故D正确;故选:D.3.在平面直角坐标系中,直线y=x﹣1经过()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限【考点】一次函数图象与系数的关系.【分析】根据k,b的符号判断直线所经过的象限.【解答】解:由已知,得:k=1>0,b=﹣1<0,故图象经过第一、三、四象限.故选C.4.某班一个小组7名同学的体育测试成绩(满分30分)依次为:27,29,27,25,27,30,25,这组数据的中位数和众数分别是()A.27,25 B.25,27 C.27,27 D.27,30【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中27是出现次数最多的,故众数是27;将这组数据从小到大的顺序排列后,处于中间位置的那个数是27,这组数据的中位数是27.故选C5.如图,已知四边形ABCD是平行四边形,要使它成为菱形,那么需要添加的条件可以是()A.AC⊥BD B.AB=AC C.∠ABC=90°D.AC=BD【考点】菱形的判定.【分析】根据菱形的判定方法有四种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,④对角线平分对角,作出选择即可.【解答】解:A、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项正确;B、∵四边形ABCD是平行四边形,AB=AC≠BC,∴平行四边形ABCD不是,故本选项错误;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出,平行四边形ABCD是菱形,故本选项错误;D、∵四边形ABCD是平行四边形,AC=BD∴四边形ABCD是矩形,不是菱形.故选:A.6.已知⊙O1的半径r1=6,⊙O2的半径为r2,圆心距O1O2=3,如图⊙O1与⊙O2有交点,那么r2的取值范围是()A.r2≥3 B.r2≤9 C.3<r2<9 D.3≤r2≤9【考点】圆与圆的位置关系.【分析】由⊙O1的半径r1=6,⊙O2的半径为r2,圆心距O1O2=3,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系,可求得内切时,r2的值,继而求得答案.【解答】解:∵⊙O1的半径r1=6,⊙O2的半径为r2,圆心距O1O2=3,∴若⊙O1与⊙O2内切,则r2=3或r2=9,∵⊙O1与⊙O2有交点,∴r2的取值范围是:3≤r2≤9.故选D.二、填空题7.因式分解:2a2﹣3a=a(2a﹣3).【考点】因式分解-提公因式法.【分析】直接找出公因式a,提取公因式得出答案.【解答】解:2a2﹣3a=a(2a﹣3).故答案为:a(2a﹣3).8.函数的定义域是x≠1.【考点】函数自变量的取值范围.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣1≠0,解可得自变量x的取值范围.【解答】解:根据题意,有x﹣1≠0,解可得x≠1.故答案为x≠1.9.计算:2(﹣)+3=.【考点】*平面向量.【分析】先去括号,然后进行向量的加减即可.【解答】解:2(﹣)+3=2﹣2+3=2+.故答案为:2+.10.关于x的一元二次方程x2﹣2x+m=0有两个实数根,则m的取值范围是m≤1.【考点】根的判别式.【分析】根据方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.【解答】解:由题意知,△=4﹣4m≥0,∴m≤1,故答案为:m≤1.11.不等式组:的解集为x>2.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣x≤0,得:x≥0,解不等式2x﹣4>0,得:x>2,则不等式组的解集为:x>2,故答案为:x>2.12.将抛物线y=x2﹣2向左平移3个单位长度,再向上平移2个单位长度,所得的抛物线的解析式为y=(x+3)2.【考点】二次函数图象与几何变换.【分析】先利用二次函数的性质得到抛物线y=x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律得到点(0,﹣2)平移后所得对应点的坐标为(﹣3,0),然后根据顶点式写出平移后的抛物线的解析式.【解答】解:抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向左平移3个单位长度,再向上平移2个单位长度所得对应点的坐标为(﹣3,0),所以平移后的抛物线的解析式为y=(x+3)2.故答案为y=(x+3)2.13.反比例函数y=的图象经过点(﹣1,2),A(x1,y1),B(x2,y2)是图象上另两点,其中x1<x2<0,则y1、y2的大小关系是y1<y2.【考点】反比例函数图象上点的坐标特征.【分析】先代入点(﹣1,2)求得k的值,根据k的值判断此函数图象所在的象限,再根据x1<x2<0判断出A(x1,y1)、B(x2,y2)所在的象限,根据此函数的增减性即可解答.【解答】解:∵反比例函数y=的图象经过点(﹣1,2),∴k=﹣2,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0,∴A(x1,y1)、B(x2,y2)两点均位于第二象限,∴y1<y2.故答案为:y1<y2.14.用换元法解分式方程时,如果设,将原方程化为关于y的整式方程,那么这个整式方程是y2+y﹣3=0.【考点】换元法解分式方程.【分析】根据题意,设=y,则=,代入分式方程,整理可得整式方程.【解答】解:由题意,设=y,则=,∴原方程化为:y﹣+1=0,∴整理得:y2+y﹣3=0.故答案为y2+y﹣3=0.15.某服装厂从20万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,那么你估计该厂这20万件产品中合格品约为19.6万件.【考点】用样本估计总体.【分析】抽取的100件进行质检,发现其中有2件不合格,那么合格的有98件,由此即可求出这类产品的合格率是98%,然后利用样本估计总体的思想,即可知道合格率是98%,即可求出该厂这20万件产品中合格品的件数.【解答】解:∵某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,∴合格的有98件,∴合格率为98÷100=98%,∴估计该厂这20万件产品中合格品约为20×98%=19.6万件.故答案为:19.6.16.从1到10的十个自然数中,随意取出一个数,该数为3的倍数的概率是.【考点】概率公式.【分析】由从1到10的十个自然数中,是3的倍数的有3,6,9,直接利用概率公式求解即可求得答案.【解答】解:∵从1到10的十个自然数中,是3的倍数的有3,6,9,∴随意取出一个数,该数为3的倍数的概率是:.故答案为:.17.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是289(1﹣x)2=256.【考点】由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可参照增长率问题进行计算,如果设平均每次降价的百分率为x,可以用x表示两次降价后的售价,然后根据已知条件列出方程.【解答】解:根据题意可得两次降价后售价为289(1﹣x)2,即方程为289(1﹣x)2=256.故答案为:289(1﹣x)2=256.18.如图,已知梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E是AB上一点,将△BCE沿着直线CE翻折,点B恰好与D点重合,则BE=.【考点】翻折变换(折叠问题);梯形.【分析】如图作DM⊥BC于M,先证明四边形ABMD是矩形,在RT△DMC中求出DM,再在△AED中利用勾股定理即可解决问题.【解答】解:如图作DM⊥BC于M.∵∠A=∠B=∠DMB=90°,∴四边形ABMD是矩形,∴AD=BM=2,AB=DM,∵BC=CD=5,在RT△DMC中,∵CM=BC﹣BM=3,CD=5,∴DM=AB===4,设BE=DE=x,在RT△AED中,∵AE2+AD2=ED2,∴(4﹣x)2+22=x2,∴x=,∴BE=,故答案为.三、解答题19.计算:()﹣2+(π﹣3.14)0+.【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:()﹣2+(π﹣3.14)0+=9﹣(﹣1)+1+×2=9+1+1+=11.20.解方程组:.【考点】高次方程.【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程,即可组成方程组,即可求解.【解答】解:由(2)得(x﹣y)(x﹣2y)=0.∴x﹣y=0或x﹣2y=0.原方程组可化为解这两个方程组,得原方程组的解为另解:由(1)得x=12﹣2y.(3)把(3)代入(2),得(12﹣2y)2﹣3(12﹣2y)y+2y2=0.整理,得y2﹣7y+12=0.解得y1=4,y2=3.分别代入(3),得x1=4,x2=6.∴原方程组的解为21.已知气温的华氏度数y是摄氏度数x的一次函数,如图所示是一个家用温度表的表盘,其左边为摄氏温度的刻度和度数(单位:℃),右边为华氏温度的刻度和度数(单位:℉),观察发现表示﹣40℃与﹣40℉的刻度线恰好对齐(左一条水平线上),而表示0℃与32℉的刻度线恰好对齐.(1)求y关于x的函数关系式(不需要写出函数的定义域);(2)当华氏温度为104℉时,温度表上摄氏温度为多少?【考点】一次函数的应用.【分析】(1)设y关于x的函数关系式为y=kx+b,根据给定两组数据得出关于k和b的二元一次方程组,解方程组即可得出结论;(2)将y=104带入(1)得出的函数关系式中,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)设y关于x的函数关系式为y=kx+b,由已知得:,解得:.故y关于x的函数关系式为y=x+32.(2)令y=104,则有x+32=104,解得:x=40.故当华氏温度为104℉时,温度表上摄氏温度为40℃.22.如图,在△ABC中,AB=AC=10,BC=12,AD⊥BC于D,O为AD上一点,以O为圆心,OA为半径的圆交AB于G,交BC于E、F.且AG=AD.(1)求EF的长;(2)求tan∠BDG的值.【考点】相似三角形的判定与性质;勾股定理;圆周角定理;解直角三角形.【分析】(1)连接AF,GE,根据等腰三角形的性质得到BD=CD=BC=6,由勾股定理得到AG=AD==8,根据相似三角形的性质列方程即可得到结论;(2)作GH⊥BC于H,推出AD∥GH,由相似三角形的性质得到,根据三角形函数的定义即可得到结论.【解答】解:(1)连接AF,GE,∵AD⊥BC,AB=AC,圆心在AD上,∴BD=CD=BC=6,ED=FD,∴BE=CF,∴AG=AD==8,BG=AB﹣AD=2,设BE=CF=x,则BF=BC﹣BE=12﹣x,∵四边形AGEF内接于⊙O,∴∠BEG=∠BAF,∠BGE=∠BFA,∴△BEG∽△BAF,∴,∴x(12﹣x)=20,∴x=2,x=10(不合题意舍去),∴EF=BC﹣2x=8;(2)作GH⊥BC于H,∵D⊥BC,GH⊥BC,∴AD∥GH,∴△BGH∽△BAD,∴,∴tan∠BDG═.23.如图,已知等腰△ABC中,AB=AC,AD⊥BC,CE⊥AB,垂足分别为D、E.(1)求证:∠CAD=∠ECB;(2)点F是AC的中点,连结DF,求证:BD2=FC•BE.【考点】相似三角形的判定与性质;等腰三角形的性质.【分析】(1)由三线合一定理可证得∠BAD=∠CAD,由CE⊥AB,得到∠ECB=∠BAD,由等量代换可得结论;(2)根据等腰三角形的性质得到BD=CD,∠B=∠ACD,根据直角三角形斜边上的中线定理证得FD=FC,BD=ED,于是有∠B=∠BED=∠ACD=∠CDF,从而证得△BDE∽△CFD,由相似三角形的性质即可证得结论.【解答】证明:(1)∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵CE⊥AB,∴∠ECB=∠BAD=90°﹣∠B,∴∠CAD=∠ECB;(2)∵AB=AC,AD⊥BC,∴BD=CD,∠B=∠ACD,∵CE⊥AB,∴BD=FD,∵F是AC的中点,∴FD=FC,∴∠B=∠BED,∴∠B=∠BED=∠ACD=∠CDF,∴△BDE∽△CFD,∴,∴BD•CD=BE•FC,∴BD2=FC•BE.24.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.【考点】二次函数综合题.【分析】(1)由一次函数的解析式求出A、C两点坐标,再根据A、B两点坐标求出b、c 即可确定二次函数解析式;(2)根据二次函数的解析式求出P点坐标,然后计算三角形APC的面积;(3)分两种情况讨论:①△ABC∽△AOQ,②△ABC∽△AQO.【解答】解:(1)∵一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,∴A(5,0),C(0,5),∵二次函数y=﹣x2+bx+c的图象经过点A、点B,∴b=4,c=5,∴二次函数的解析式为:y=﹣x2+4x+5.(2)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴P(2,9),过点P作PD∥y轴交AC于点D,如图,则D(2,3),∴=15;(3)①若△ABC∽△AOQ,如图,此时,OQ∥BC,由B、C两点坐标可求得BC的解析式为:y=5x+5,∴OQ的解析式为:y=5x,由解得:,∴Q(,);②若△ABC∽△AQO,如图,此时,,∵AB=6,AO=5,AC=,∴AQ=3,∴Q(2,3).综上所述,满足要求的Q点坐标为:Q(,)或Q(2,3).25.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD 上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.【考点】四边形综合题.【分析】(1)过A作AH⊥BC,于是得到AH=CD=6,解直角三角形即可得到结论;(2)过M作MP⊥CD于P,MK⊥BC于K,反向延长KM交AD于Q,则KQ⊥AD,解直角三角形求得MK=2x=PC,NP=y﹣2x,MP=CK=5﹣x=QD,于是得到AQ=8﹣(5﹣x)=3+x,QM=6﹣2x,推出△AMQ∽△PMN,根据相似三角形的性质列方程即可得到结论;(3)①当M在线段EF上时,根据全等三角形的性质和等量代换得到QM=MP,列方程得到6﹣2x=5﹣x,解方程即可得到结论;②当M在FE的延长线上时,根据已知条件得到△AQM≌△MNH,由全等三角形的性质得到AQ=MH,由(2)知FK=x,CK=5﹣x=MH,MK=2x=CH,列方程即可得到结论.【解答】解:(1)过A作AH⊥BC,∴AH=CD=6,∵tan∠ABC=2,∴,∴BH=3,∴CH=AD=8,∴AE=,∴CF=5;(2)过M作MK⊥BC于K,反向延长KM交AD于Q,则KQ⊥AD,在Rt△FMK中,FM•cos∠EFC=FK=x,∵∠EFC=∠B,∴tan∠EFC=2,∴MK=2x=PC,NP=y﹣2x,MP=CK=5﹣x=QD,∴AQ=8﹣(5﹣x)=3+x,QM=6﹣2x,∵∠AMN=90°,∵∠AMQ=∠PMN,∠AQM=∠MPN=90°,∴△AMQ∽△PMN,∴,解得:y=(0≤x≤1);(3)①当M在线段EF上时,∵AM=MN,△AMQ≌△NMP,∴△AMQ≌△NMP,∴QM=MP,∴6﹣2x=5﹣x,∴x=1,∴FM=,②当M在FE的延长线上时,∵∠AMN=90°,∴∠AMQ+∠NMH=∠NMH+∠MNH=90°,∴∠AMQ=∠MNH,在△AMQ与△NMH中,,∴△AQM≌△MNH,∴AQ=MH,由(2)知FK=x,CK=5﹣x=MH,MK=2x,=CH,∴AQ=DH=2x﹣6,∴2x﹣6=5﹣x,∴,∴FM==,2020年9月28日。
2019年上海市松江区中考数学二模试卷一、选择题(本大题共6小题,共24.0分)1.最小的素数是()A. 1B. 2C. 3D. 42.下列计算正确的是()A. B.C. D. .3.下列方程中,没有实数根的是()A. B. C. D.4.如图,一次函数y=kx+b的图象经过点(-1,0)与(0,2),则关于x的不等式kx+b>0的解集是()A.B.C.D.5.在直角坐标平面内,已知点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,那么r的取值范围为()A. B. C. D.6.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为()A. 1:3B. 1:4C. 1:5D. 1:6二、填空题(本大题共12小题,共48.0分)7.计算:=______.8.分解因式:2a2b-8b=______.9.方程=x的解是______.10.不等式组的解集是______.11.已知函数,那么______.(填“>”、“=”或“<”)12.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.13.在不透明的盒子中装有4个黑色棋子和若干个白色棋子,每个棋子除颜色外其它完全相同,从中随机摸出一个棋子,摸到黑色棋子的概率是,那么白色棋子的个数是______.14.某校初三(1)班40名同学的体育成绩如表所示,则这40名同学成绩的中位数是15.16.如图,在△ABC中,D、E分别是边AB、AC的中点.设,,用、表示为______.17.如图,高度相同的两根电线杆AB、CD均垂直于地面AF,某时刻电线杆AB的影子为地面上的线段AE,电线杆CD的影子为地面上的线段CF和坡面上的线段FG.已知坡面FG的坡比i=1:0.75,又AE=6米,CF=1米,FG=5米,那么电线杆AB的高度为______米.18.如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上.直线AC 交DE于点F,那么CF的长为______.三、计算题(本大题共1小题,共10.0分)19.计算:四、解答题(本大题共6小题,共68.0分)20.解方程组:.21.在梯形ABCD中,AB∥CD,BC⊥AB,且AD⊥BD,BD=6,sin A=,求梯形ABCD的面积.22.小明、小军是同班同学.某日,两人放学后去体育中心游泳,小明16:00从学校出发,小军16:03也从学校出发,沿相同的路线追赶小明.设小明出发x分钟后,与体育中心的距离为y米.如图,线段AB表示y与x之间的函数关系.(1)求y与x之间的函数解析式;(不要求写出定义域)(2)如果小军的速度是小明的1.5倍,那么小军用了多少分钟追上小明?此时他们距离体育中心多少米?23.如图,已知▱ABCD中,AB=AC,CO⊥AD,垂足为点O,延长CO、BA交于点E,联结DE.(1)求证:四边形ACDE是菱形;(2)联结OB,交AC于点F,如果OF=OC,求证:2AB2=BF•BO.24.如图,抛物线y=ax2+4x+c过点A(6,0)、B(3,),与y轴交于点C.联结AB并延长,交y轴于点D.(1)求该抛物线的表达式;(2)求△ADC的面积;(3)点P在线段AC上,如果△OAP和△DCA相似,求点P的坐标.25.如图,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.点O在边BC上,以O为圆心,OB为半径的弧经过点A.P是弧AB上的一个动点.(1)求半径OB的长;(2)如果点P是弧AB的中点,联结PC,求∠PCB的正切值;(3)如果BA平分∠PBC,延长BP、CA交于点D,求线段DP的长.答案和解析1.【答案】B【解析】解:根据素数的定义,最小的素数是2,故选:B.在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数).大于1的自然数若不是素数素数,则称之为合数.本题考查素数的定义,解题的关键是理解素数的定义,属于中考基础题.2.【答案】C【解析】解:A.a2+a2=2a2,此选项错误;B.(2a)3=8a3,此选项错误;C.3a2•(-a3)=-3a5,此选项正确;D.4a6÷2a2=2a4,此选项错误;故选:C.根据合并同类项法则、单项式的乘方、乘法和除法逐一计算可得.本题主要考查整式的混合运算,解题的关键是掌握合并同类项法则及单项式的乘方、乘法和除法法则.3.【答案】B【解析】解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.故选:B.分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.4.【答案】A【解析】解:由题意可得:一次函数y=kx+b中,y>0时,图象在x轴上方,x>-1,则关于x的不等式kx+b>0的解集是x>-1,故选:A.根据一次函数y=kx+b的图象经过点(-1,0),且y随x的增大而增大,得出当x>-1时,y>0,即可得到关于x的不等式kx+b>0的解集是x>-1.此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.5.【答案】D【解析】解:∵点M的坐标是(4,3),∴点M到x轴的距离是3,到y轴的距离是4,∵点M(4,3),以M为圆心,r为半径的圆与x轴相交,与y轴相离,∴r的取值范围是3<r<4,故选:D.先求出点M到x轴、y轴的距离,再根据直线和圆的位置关系得出即可.本题考查了点的坐标和直线与圆的位置关系,能熟记直线与圆的位置关系的内容是解此题的关键.6.【答案】C【解析】解:连接CE,∵AE∥BC,E为AD中点,∴.∴△FEC面积是△AEF面积的2倍.设△AEF面积为x,则△AEC面积为3x,∵E为AD中点,∴△DEC面积=△AEC面积=3x.∴四边形FCDE面积为5x,为1:5.所以S△AFE:S四边形FCDE故选:C.根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE 面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.本题主要考查相似三角形的判定和性质、平行四边形的性质,解题的关键是通过线段的比得到三角形面积的关系.7.【答案】6【解析】解:原式=5+1=6.故答案为:6.直接利用绝对值的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.8.【答案】2b(a+2)(a-2)【解析】解:2a2b-8b=2b(a2-4)=2b(a+2)(a-2).故答案为:2b(a+2)(a-2).先提取公因式2b,再对余下的多项式利用平方差公式继续分解即可求得答案.本题考查了用提公因式法和公式法进行因式分解的知识.注意一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.【答案】x=1【解析】解:原方程变形为4-3x=x2,整理得x2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x1=-4(舍去),x2=1.故答案为x=1.将无理方程化为一元二次方程,然后求解即可.本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.10.【答案】-2≤x<1【解析】解:解不等式①,得x≥-2,解不等式②,得x<1,所以,这个不等式组的解集是-2≤x<1,故答案为-2≤x<1.分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).11.【答案】>【解析】解:∵已知函数,∴==,==,∴()2=2,()2=,∵2>,∴>,∴>,故答案为:>.先求出=,=,再利用平方法判断出>,即可得出结论.此题是函数值问题,主要考查了无理数的比较大小的方和分母有理化,比较>是解本题的关键.12.【答案】y=3x+2【解析】解:设平移后直线的解析式为y=3x+b.把(0,2)代入直线解析式得2=b,解得 b=2.所以平移后直线的解析式为y=3x+2.故答案为:y=3x+2.根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,2)代入即可得出直线的函数解析式.本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.13.【答案】8【解析】解:设白色棋子的个数为x,根据题意得=,解得x=8,即白色棋子的个数为8.故答案为8.设白色棋子的个数为x,利用概率公式得到=,然后利用比例性质求出x即可.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.【答案】28分【解析】解:将这组数据从小到大的顺序排列后,处于中间位置的数是28分,28分,它们的平均数是28分,那么由中位数的定义可知,这组数据的中位数是28分.故答案为:28分.根据中位数的定义求解即可.本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.15.【答案】60【解析】解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.根据正六边形的六条边都相等即可得出结论.本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.16.【答案】+2【解析】解:∵D、E分别是边AB、AC的中点,∴DE∥BC,BC=2DE,∵=,∴=2,∴=+=+2,故答案为+2.利用三角形的中位线定理求出即可解决问题.本题考查平面向量,三角形的中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】12【解析】解:延长DG交AF的延长线于点H,作GM⊥BH于点M,∵i=1:0.75=,∴=,∵FG=5米,∴GM=4米,FM=3米,∵CF=1米,∴CM=4米,∵AE=CH=6米,∴MH=2米,∵GM⊥AF,DC⊥AF,∴GM∥DC,∴=,即=,∴CD=12米,∴AB=CD=12米,故答案为12.延长DG交AF的延长线于点H,作GM⊥BH于点M,解Rt△MCG,求出MF 与GM,进一步求出HM,继而根据平行线分线段成比例的性质求得CD的长,即可得到AB的长.此题考查了解直角三角形的应用-坡度坡角问题.注意构造直角三角形,并能借助于解直角三角形的知识求解此题是关键,注意数形结合思想的应用.也考查了平行投影.18.【答案】3【解析】解:∵如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.∴AB=,tan∠A=,∵将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上,直线AC交DE于点F,∴BD=AB=10,∠D=∠A,∴CD=BD-BC=10-6=4,在Rt△FCD中,∠DCF=90°,∴tanD=,即,∴CF=3.故答案为:3.由题意,可得BD=AB=10,tanD=tan∠A=,所以CD=4,在Rt△FCD中,∠DCF=90°,tanD=,即,可得CF=3.本题考查了旋转的性质,解直角三角形,正确的画出图形是解题的关键.19.【答案】解:=3+3-2+1-4+=3+3-2+1-4+2-=2.【解析】根据完全平方公式、负整数指数幂和分母有理化可以解答本题.本题考查完全平方公式、负整数指数幂和分母有理化,解答本题的关键是明确它们各自的计算方法.20.【答案】解:由②得:(x-3y)2=1,x-3y=1或x-3y=1,所以原方程组变为:,,解这两个方程组得:,所以原方程组的解为,.【解析】先由②得(x-3y)2=1,x-3y=1或x-3y=1,再把原方程组分解为:,,最后分别解这两个方程组即可.此题考查了高次方程,解答此类题目一般是先把高次方程分解为低次方程,再分别解低次方程.21.【答案】解:∵DC∥AB,AB⊥BC,∴∠C=∠ABC=90°,∵AD⊥BD,∴∠ADB=90°,∴∠A+∠ABD=90°,∠DBC+∠ABD=90°,∴∠A=∠DBC,∵sin A=,∴sin A=sin∠DBC=,∵BD=6,∴=,=,∴AB=9,DC=4,在Rt△DCB中,由勾股定理得:BC===2,∴梯形ABCD的面积是=(4+9)×2=13.【解析】求出∠A=∠DBC,解直角三角形求出AB和DC,根据勾股定理求出BC,再求出梯形的面积即可.本题考查了梯形和解直角三角形,能通过解直角三角形求出DC、BA的长度是解此题的关键.22.【答案】解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数解析式为y=-60x+600;(2)小明的速度为:600÷10=60米/分钟,则小军的速度为:60×1.5=90米/分钟,设小军用了a分钟追上小明,90a=60(a+3),解得,a=6,当a=6时,他们距离体育中心的距离是600-90×6=60米,答:小军用了6分钟追上小明,此时他们距离体育中心60米.【解析】(1)根据函数图象中的数据可以求得y与x之间的函数解析式;(2)根据图象中的数据可以分别得甲乙的速度,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23.【答案】(1)证明:∵CO⊥BC,∴∠BCE=90°,∵AB=AC,∴∠B=∠ACB,∵∠AEC+∠B=90°,∠ACE+∠ACB=90°,∴∠ACE=∠AEC,∴AE=AC,∴AE=AB,∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD=AE,∴四边形AEDC是平行四边形,∵AE=AC,∴四边形AEDC是菱形.(2)解:连接OB交AC于F.∵四边形AEDC是菱形,∴∠AEC=∠ACE,∵OF=OC,∴∠OFC=∠OCF=∠AFB,∴∠AFB=∠AEO,∵∠ABF=∠OBE,∴△BAF∽△BOE,∴=,∴BA•BE=BF•BO,∵BE=2BA,∴2AB2=BF•BO.【解析】(1)首先证明四边形AEDC是平行四边形,再证明AE=AC即可解决问题.(2)证明△BAF∽△BOE,可得=解决问题.本题考查菱形的性质和判定,平行四边形的判定,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识属于中考常考题型.24.【答案】解:(1)将A(6,0),B(3,)代入y=ax2+4x+c,得,,解得,a=-,c=-6,∴该抛物线解析式为:y=-x2+4x-6;(2)将A(6,0),B(3,)代入y=kx+b,得,,解得,k=-,b=3,∴y AB=-x+3,当x=0时,y=3,∴D(0,3),OD=3,在抛物线y=-x2+4x-6中,当x=0时,y=-6,∴C(0,-6),OC=6,∴DC=OC+OD=9,∵A(6,0),∴OA=6,∴S△ADC=DC•OA=27;(3)由(2)知,OC=OA=6,∴△AOC为等腰直角三角形,∴∠OAC=∠OCA=45°,AC=OA=6,如图所示,连接OP,过点P作PH⊥OA于H,则△PHA为等腰直角三角形,①当△DCA∽△OAP时,=,即=,∴AP=4,∴HP=HA=AP=4,OH=OA-HA=2,∴P(2,-4);②当△DCA∽△PAO时,=,即=,∴PA=,∴HP=HA=,∴OH=OA-AH=,∴P(,-),综上所述,点P的坐标为(2,-4)或(,-).【解析】(1)将A(6,0),B(3,)代入y=ax2+4x+c,即可求出a,c值,进一步写出抛物线解析式;(2)分别求抛物线,直线与坐标轴交点D,C的坐标,可直接求出△ADC的面积;(3)先求出∠OAC=∠OCA=45°,再分类讨论△OAP和△DCA相似的两种情况,求出AP长度,可利用特殊角进一步求出相关线段的长度,即可写出点P的坐标.本题考查了待定系数法求解析式,在二次函数图象中求三角形的面积,三角形相似的判定等,解题的关键是对于两个三角形在只有一组角相等时要分类讨论相似情况.25.【答案】解:(1)∵Rt△ABC中,∠ACB=90°,AC=,BC=16,∴AB==12,如图1,过O作OH⊥AB于H,则BH=AB=6,∵∠BHO=∠ACB=90°,∠B=∠B,∴△BHO∽△BCA,∴,∴=,∴OB=9;(2)如图2,连接OP交AB于H,∵点P是弧AB的中点,∴OP⊥AB,AH=BH=AB=6,在Rt△BHO中,OH===3,∴PH=9-3=6,∵点P是弧AB的中点,∴=,∴∠PCB=∠PBA,∴∠PCB的正切值=∠PBA的正切值===;(3)如图3,过A作AE⊥BD于E,连接CP,∵BA平分∠PBC,AC⊥BC,∴AE=AC=4,∵∠AED=∠ACB=90°,∠D=∠D,∴△ADE∽△BDC,∴=,设DE=x,∴=,∴AD=,在Rt△ACB与Rt△AEB中,,∴Rt△ACB≌Rt△AEB(HL),∴BE=BC=16,∵CD2+BC2=BD2,∴(4+)2+162=(16+x)2,解得:x=,∴AD=,BD=16+=,∴CD=,∵BC是⊙的直径,∴CP⊥BD,∴CP===,∴PD==.【解析】(1)根据勾股定理得到AB==12,如图1,过O作OH⊥AB于H,根据相似三角形的性质即可得到结论;(2)如图2,连接OP交AB于H,根据垂径定理得到OP⊥AB,AH=BH=AB=6,得到PH=9-3=6,根据圆周角定理得到∠PCB=∠PBA,根据三角函数的定义即可得到结论;(3)如图3,过A作AE⊥BD于E,连接CP,根据角平分线的性质得到AE=AC=4,根据相似三角形的性质得到AD=,根据全等三角形的性质得到BE=BC=16,根据勾股定理和三角形的面积公式即可得到结论.本题考查了圆周角定理,垂径定理,解直角三角形,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.。
上海市松江区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数2y ax bx c =++的x 与y 的不符对应值如下表: x 3-2- 1- 0 1 2 3 y 11 1 1- 1- 1 5且方程20ax bx c ++=的两根分别为1x ,2x 12()x x <,下面说法错误的是( ).A .2x =-,5y =B .212x <<C .当12x x x <<时,0y >D .当12x =时,y 有最小值 2.将抛物线y =x 2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )A .y =x 2+3x+6B .y =x 2+3xC .y =x 2﹣5x+10D .y =x 2﹣5x+43.如图,点E 是四边形ABCD 的边BC 延长线上的一点,则下列条件中不能判定AD ∥BE 的是( )A .12∠=∠B .34∠=∠C .D 5∠∠= D .B BAD 180∠∠+=o 4.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( ) A .70.2110⨯ B .62.110⨯ C .52110⨯ D .72.110⨯5.定义:若点P (a ,b )在函数y=的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y=ax 2+bx 称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x 2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( )A .命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题6.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.7.cos30°=()A.12B.22C.32D.38.如图所示的几何体的主视图是( )A.B.C.D.9.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是()A.着B.沉C.应D.冷10.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补11.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A .121x y x y -=⎧⎨-=⎩B .121x y x y -=-⎧⎨-=-⎩C .121x y x y -=-⎧⎨-=⎩D .121x y x y -=⎧⎨-=-⎩12.如图,在正方形ABCD 中,AB =12x x ,P 为对角线AC 上的动点,PQ ⊥AC 交折线A ﹣D ﹣C 于点Q ,设AP =x ,△APQ 的面积为y ,则y 与x 的函数图象正确的是()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,ABCDE 是正五边形,已知AG=1,则FG+JH+CD=_____.14.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP uuu r 可以用点P 的坐标表示为OP uuu r =(m ,n ),已知:OA u u u r =(x 1,y 1),OB uuu r =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r 互相垂直,下列四组向量:①OC u u u r =(2,1),OD uuu r =(﹣1,2);②OE uuu r =(cos30°,tan45°),OF uuu r =(﹣1,sin60°);③OG u u u r =3﹣2,﹣2),OH u u u r =32,12);④OC u u u r =(π0,2),u u u r ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).15.若关于x 的方程x 2﹣8x+m =0有两个相等的实数根,则m =_____.16.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠BAD =60°,则∠ACD =_____°.17.如图,直线4y x =+与双曲线k y x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.18.三个小伙伴各出资a 元,共同购买了价格为b 元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a 、b 的代数式表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:在△ABC 中,AC=BC ,D ,E ,F 分别是AB ,AC ,CB 的中点.求证:四边形DECF 是菱形.20.(6分)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.21.(6分)周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园.两人同时从学校出发,以a 米/分的速度匀速行驶.出发4.5分钟时,甲同学发现忘记带学生证,以1.5a 米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙.甲追上乙后,两人以相同的速度前往净月潭.乙骑自行车的速度始终不变.设甲、乙两名大学生距学校的路程为s (米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a、b的值.(2)求甲追上乙时,距学校的路程.(3)当两人相距500米时,直接写出t的值是.22.(8分)已知A、B、C三地在同一条路上,A地在B地的正南方3千米处,甲、乙两人分别从A、B 两地向正北方向的目的地C匀速直行,他们分别和A地的距离s(千米)与所用的时间t(小时)的函数关系如图所示.(1)图中的线段l1是(填“甲”或“乙”)的函数图象,C地在B地的正北方向千米处;(2)谁先到达C地?并求出甲乙两人到达C地的时间差;(3)如果速度慢的人在两人相遇后立刻提速,并且比先到者晚1小时到达C地,求他提速后的速度. 23.(8分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|133﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.(1)求被覆盖的这个数是多少?(2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.24.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.25.(10分)如图,直线y=﹣x+2与反比例函数kyx=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.求a,b 的值及反比例函数的解析式;若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.26.(12分)解分式方程:- =27.(12分)解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩并在数轴上表示解集.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.【详解】A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确;B、方程ax2+bc+c=0的两根分别是x1、x2(x1<x2),且x=1时y=﹣1;x=2时,y=1,∴1<x2<2,故此选项正确;C、由题意可得出二次函数图像向上,∴当x1<x<x2时,y<0,故此选项错误;D、∵利用图表中x=0,1时对应y的值相等,∴当x=12时,y有最小值,故此选项正确,不合题意.所以选C.【点睛】此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.2.A【解析】【分析】先将抛物线解析式化为顶点式,左加右减的原则即可.【详解】,当向左平移2个单位长度,再向上平移3个单位长度,得.故选A.【点睛】本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;3.A【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】∵∠1=∠2,∴AB∥CD,选项A符合题意;∵∠3=∠4,∴AD∥BC,选项B不合题意;∵∠D=∠5,∴AD∥BC,选项C不合题意;∵∠B+∠BAD=180°,∴AD∥BC,选项D不合题意,故选A.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】210万=2100000,2100000=2.1×106,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型6.D【解析】【分析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.7.C【解析】【分析】直接根据特殊角的锐角三角函数值求解即可.【详解】3cos30︒=故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.8.C【解析】【分析】主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C.【点睛】考核知识点:组合体的三视图.9.A【解析】【分析】正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.故选:A【点睛】本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键10.C【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D 错误.故答案选C.考点:角的度量.11.C【解析】【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:1 21 x yx y-=-⎧⎨-=⎩.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.12.B【解析】∵在正方形ABCD中, AB=∴AC=4,AD=DC=DAP=∠DCA=45o,当点Q在AD上时,PA=PQ,∴DP=AP=x,∴S =211·22PQ AP x = ; 当点Q 在DC 上时,PC =PQCP =4-x,∴S =221111·(4)(4)(168)482222PC PQ x x x x x x =--=-+=-+; 所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q 在AP 、DC 上这两种情况.二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解析】【详解】根据对称性可知:GJ ∥BH ,GB ∥JH ,∴四边形JHBG 是平行四边形,∴JH=BG ,同理可证:四边形CDFB 是平行四边形,∴CD=FB ,∴FG+JH+CD=FG+BG+FB=2BF ,设FG=x ,∵∠AFG=∠AFB ,∠FAG=∠ABF=36°,∴△AFG ∽△BFA ,∴AF 2=FG•BF ,∵AF=AG=BG=1,∴x (x+1)=1,∴x=12(负根已经舍弃),∴BF=12+1=12,∴..14.①③④【解析】分析:根据两个向量垂直的判定方法一一判断即可;详解:①∵2×(−1)+1×2=0,∴OC u u u v 与OD u u u v 垂直;②∵cos301tan45sin6022⨯+⋅=+=o o o ∴OE uuu v 与OF u u u v 不垂直.③∵()1202+-⨯=, ∴OG u u u v 与OH u u u v 垂直. ④∵()02210π⨯+⨯-=,∴OM u u u u v 与ON u u u v垂直.故答案为:①③④.点睛:考查平面向量,解题的关键是掌握向量垂直的定义.15.1【解析】【分析】根据判别式的意义得到△=(﹣8)2﹣4m =0,然后解关于m 的方程即可.【详解】△=(﹣8)2﹣4m =0,解得m =1,故答案为:1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 16.1【解析】【分析】连接BD .根据圆周角定理可得.【详解】解:如图,连接BD .∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【点睛】考核知识点:圆周角定理.理解定义是关键.17.(0,52).【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y轴的交点为:(0,52).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.18.(3a﹣b)【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b).点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【详解】证明:∵D、E是AB、AC的中点∴DE=BC,EC=AC∵D、F是AB、BC的中点∴DF=AC ,FC=BC∴DE=FC=BC ,EC=DF=AC∵AC=BC∴DE=EC=FC=DF∴四边形DECF 是菱形20.(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6). 【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得;(3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩,则直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6)其中0<t<6,则N(t,﹣t+6),∴PN=PM﹣MN=﹣12t2+2t+6﹣(﹣t+6)=﹣12t2+2t+6+t﹣6=﹣12t2+3t,∴S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•(AG+BM)=12 PN•OB=12×(﹣12t2+3t)×6=﹣32t2+9t=﹣32(t﹣3)2+272,∴当t=3时,△PAB的面积有最大值;(3)△PDE为等腰直角三角形,则PE=PD,点P(m,-12m2+2m+6),函数的对称轴为:x=2,则点E的横坐标为:4-m,则PE=|2m-4|,即-12m2+2m+6+m-6=|2m-4|,解得:m=4或-2或-2和)故点P的坐标为:(4,6)或(,).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.21.(1)a的值为200,b 的值为30;(2)甲追上乙时,与学校的距离4100米;(3)1.1或17.1.【解析】【分析】(1)根据速度=路程÷时间,即可解决问题.(2)首先求出甲返回用的时间,再列出方程即可解决问题.(3)分两种情形列出方程即可解决问题.【详解】解:(1)由题意a=9004.5=200,b=6000200=30,∴a=200,b=30.(2)9001.5200+4.1=7.1,设t分钟甲追上乙,由题意,300(t−7.1)=200t,解得t=22.1,22.1×200=4100,∴甲追上乙时,距学校的路程4100米.(3)两人相距100米是的时间为t分钟.由题意:1.1×200(t−4.1)+200(t−4.1)=100,解得t=1.1分钟,或300(t−7.1)+100=200t,解得t=17.1分钟,故答案为1.1分钟或17.1分钟.点睛:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析即图象的变化趋势得出函数的类型和所需要的条件,结合实际意义得到正确的结论.22.(1)乙;3;(2)甲先到达,到达目的地的时间差为32小时;(3)速度慢的人提速后的速度为43千米/小时.【解析】分析:(1)根据题意结合所给函数图象进行判断即可;(2)由所给函数图象中的信息先求出二人所对应的函数解析式,再由解析式结合图中信息求出二人到达C地的时间并进行比较、判断即可得到本问答案;(3)根据图象中的信息结合(2)中的结论进行解答即可.详解:(1)由题意结合图象中的信息可知:图中线段l1是乙的图象;C地在B地的正北方6-3=3(千米)处. (2)甲先到达.设甲的函数解析式为s=kt,则有4=t,∴s=4t.∴当s=6时,t=3 2 .设乙的函数解析式为s=nt+3,则有4=n+3,即n=1. ∴乙的函数解析式为s=t+3.∴当s=6时,t=3.∴甲、乙到达目的地的时间差为:33322-=(小时).(3)设提速后乙的速度为v千米/小时,∵相遇处距离A地4千米,而C地距A地6千米,∴相遇后需行2千米.又∵原来相遇后乙行2小时才到达C地,∴乙提速后2千米应用时1.5小时.即322v=,解得:43v=,答:速度慢的人提速后的速度为43千米/小时.点睛:本题考查的是由函数图象中获取相关信息来解决问题的能力,解题的关键是结合题意弄清以下两点:(1)函数图象上点的横坐标和纵坐标各自所表示是实际意义;(2)图象中各关键点(起点、终点、交点和转折点)的实际意义.23.(1)23;(2)α=75°.【解析】【分析】(1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值计算得出答案.【详解】解:(1)原式=1+3﹣1+3﹣□+1=1,∴□=1+3﹣1+3+1﹣1=23;(2)∵α为三角形一内角,∴0°<α<180°,∴﹣15°<(α﹣15)°<165°,∵2tan(α﹣15)°=23,∴α﹣15°=60°,∴α=75°.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.24.(1)证明见解析;(2).【解析】试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.试题解析:(1)连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO, OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.25.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123n-,0)或(331n+0).【解析】【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=12×3×|n+1|,S△BDP=12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=kx(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x ;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1+23或m=−1−23(舍),∴M(−1+23,0)③当MB=AB时,(m−3)2+1=32,∴m=3+31或m=3−31(舍),∴M(3+31,0)即:满足条件的M(−1+23,0)或(3+31,0).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.26.方程无解【解析】【分析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.【详解】解:方程的两边同乘(x+1)(x−1),得:,,∴此方程无解【点睛】本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.27.﹣12<x≤0,不等式组的解集表示在数轴上见解析.【解析】【分析】先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式2x+1>0,得:x>﹣12,解不等式2323x x-+≥,得:x≤0,则不等式组的解集为﹣12<x≤0,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.。