统计学第11章习题
- 格式:docx
- 大小:19.71 KB
- 文档页数:6
统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
十一章1. 解:回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;在线性回归中,按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多元线性回归分析。
相关分析,相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关分析和回归分析是研究客观现象之间数量联系的重要统计方法。
既可以从描述统计的角度,也可以从推断统计的角度来说明。
所谓相关分析,就是用一个指标来表明现象间相互依存关系的密切程度。
所谓回归分析,就是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
它们具有共同的研究对象,在具体应用时,相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。
只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。
由于相关分析不能指出变量间相互关系的具体形式,所以回归分析要对具有相关关系的变量之间的数量联系进行测定,从而为估算和预测提供了一个重要的方法。
在有关管理问题的定量分析中,推断统计加具有更加广泛的应用价值。
需要指出的是,相关分析和回归分析只是定量分析的手段。
通过相关与回归分析,虽然可以从数量上反映现象之间的联系形式及其密切程度,但是现象内在联系的判断和因果关系的确定,必须以有关学科的理论为指导,结合专业知识和实际经验进行分析研究,才能正确解决。
因此,在应用时要把定性分析和定量分析结合起来,在定性分析的基础上开展定量分析。
第11章一元线性回归(相关与回归)学习指导一、本章基本知识梳理基本知识点含义或公式相关关系 客观现象之间确实存在的、但在数量表现上不是严格对应的依存关系。
函数关系 客观现象之间确实存在的、而且数量表现上是严格对应的依存关系。
因果关系有相关关系的现象中能够明确其中一种现象(变量)是引起另一种现象(变量)变化的原因,另一种现象是这种现象变化的结果。
起影响作用的现象(变量)称为“自变量”;而受自变量影响发生变动的现象(变量)称为“因变量”。
因果关系∊相关关系,但相关关系中还包括互为因果关系的情况。
相关关系的种类 按涉及变量多少分为单相关、复相关;按相关方向分为正相关、负相关;按相关形态分为线性相关、非线性相关等。
线性(直线) 相关系数 简称相关系数,反映具有直线相关关系的两个变量关系的密切程度。
()()∑∑∑∑∑∑∑---==2222y yn x xn yx xy n SS S r yx xy相关系数的 显著性检验 ——t 检验 ()().2;,212:0:,0:020221Hn t t Hn t t rn r t HH,拒绝不能拒绝检验统计量-〉-〈--=≠=ααρρ回归方程中的 参数β0和β1为回归直线的截距、起始值,表示在没有自变量x 的影响(即x =0)时,其他各种因素对因变量y 的平均影响;β1为回归系数、斜率,表示自变量x 每变动一个单位,因变量y 的平均变动量。
β1的最小平方估计:∑∑∑∑∑⎪⎭⎫ ⎝⎛--=221x x n yx xy nβ估计标准误差反映因变量实际值与其估计值之间的平均差异程度,表明其估计值对实际值的代表性强弱。
其值越大,实际值与估计值之间的平均差异程度越大,估计值的代表性越差。
()代替。
用大样本条件下,分母可;n n yyS e 2ˆ2--=∑总离差平方和S S T反映因变量的n 个观察值与其均值的总离差。
回归离差平方和S S R 反映自变量x 的变化对因变量y 取值变化的影响;或者说,是由于x 与y 之间的线性关系引起的y 取值的变化,也称为可解释的平方和。
目录第一章P10 (1)第二章P34 (2)第三章P66 (3)第四章P94 (8)第七章P176 (11)第八章P212 (15)第10 章P258 (17)第11 章P291 (21)第13 章P348 (26)第14 章P376 (30)第一章P10一、思考题1.1什么是统计学?1.2解释描述统计和推断统计。
1.3统计数据可分为哪几种类型?不同类型的数据各有什么特点?1.4解释分类数据、顺序数据和数值型数据的含义。
1.5举例说明总体、样本、参数、统计量、变量这几个概念。
1.6变量可分为哪几类?1.7举例说明离散型变量和连续型变量。
1.8请举出统计应用的几个例子。
1.9请举出应用统计的几个领域。
1.1 指出下面变量的类型:(1)年龄(2)性别(3)汽车产量(4)员工对企业某项改革措施的态度(赞成、中立、反对)(5)购买商品时的支付方式(现金、信用卡、支票)(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2 某研究部门准备抽取 2000 个职工家庭推断该城市所有职工家庭的年人均收入。
要求:(1)描述总体和样本。
(2)指出参数和统计量。
(1)总体是该市所有职工家庭的集合;样本是抽中的 2000 个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的 2000 个职工家庭的年人均收入。
1.3 一家研究机构从 IT 从业者中随机抽取 1000 人作为样本进行调查,其中 60%的人回答他们的月收入在5000 元以上,50%的人回答他们的消费支付方式是用信用卡。
回答下列问题:(1)这一研究的总体是什么?(2)月收入是分类变量、顺序变量还是数值型变量?(3)消费支付方式是分类变量、顺序变量还是数值型变量?(4)这一研究涉及截面数据还是时间序列数据?(1)总体是所有 IT 从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4 一项调查表明,消费者每月在网上购物的平均花费是 200 元,他们选择在网上购物的主要原因是“价格便宜”。
第十一章 多元线性回归与logistic 回归一、教学大纲要求(一)掌握内容1.多元线性回归分析的概念:多元线性回归、偏回归系数、残差。
2.多元线性回归的分析步骤:多元线性回归中偏回归系数及常数项的求法、多元线性回归的应用。
3.多元线性回归分析中的假设检验:建立假设、计算检验统计量、确定P 值下结论。
4.logistic 回归模型结构:模型结构、发病概率比数、比数比。
5.logistic 回归参数估计方法。
6.logistic 回归筛选自变量:似然比检验统计量的计算公式;筛选自变量的方法。
(二)熟悉内容 常用统计软件(SPSS 及SAS )多元线性回归分析方法:数据准备、操作步骤与结果输出。
(三)了解内容 标准化偏回归系数的解释意义。
二、教学内容精要(一) 多元线性回归分析的概念将直线回归分析方法加以推广,用回归方程定量地刻画一个应变量Y 与多个自变量X 间的线形依存关系,称为多元线形回归(multiple linear regression ),简称多元回归(multiple regression )基本形式:01122ˆk kY b b X b X b X =+++⋅⋅⋅+ 式中Y ˆ为各自变量取某定值条件下应变量均数的估计值,1X ,2X ,…,k X 为自变量,k 为自变量个数,0b 为回归方程常数项,也称为截距,其意义同直线回归,1b ,2b ,…, k b 称为偏回归系数(partial regression coefficient ),j b 表示在除j X 以外的自变量固定条件下,j X 每改变一个单位后Y 的平均改变量。
(二) 多元线性回归的分析步骤Y ˆ是与一组自变量1X ,2X ,…,kX 相对应的变量Y 的平均估计值。
多元回归方程中的回归系数1b ,2b ,…, k b 可用最小二乘法求得,也就是求出能使估计值Yˆ和实际观察值Y 的残差平方和22)ˆ(∑∑-=Y Y e i 为最小值的一组回归系数1b ,2b ,…, k b 值。
第11章多重线性回归分析思考与练习参考答案一、最佳选择题1.逐步回归分析中,若增加自变量的个数,则(D)。
A.回归平方和与残差平方和均增大B.回归平方和与残差平方和均减小C.总平方和与回归平方和均增大D.回归平方和增大,残差平方和减小E.总平方和与回归平方和均减小2.下面关于自变量筛选的统计学标准中错误的是(E)。
A.残差平方和(SS残差)缩小B.确定系数(R)增大2C.残差的均方(MS残差)缩小D.调整确定系数(Rad)增大2E.Cp统计量增大3.多重线性回归分析中,能直接反映自变量解释因变量变异百分比的指标为(C)。
A.复相关系数B.简单相关系数C.确定系数D.偏回归系数E.偏相关系数4.多重线性回归分析中的共线性是指(E)。
A.Y关于各个自变量的回归系数相同B.Y关于各个自变量的回归系数与截距都相同C.Y变量与各个自变量的相关系数相同D.Y与自变量间有较高的复相关E.自变量间有较高的相关性5.多重线性回归分析中,若对某一自变量的值加上一个不为零的常数K,则有(D)。
A.截距和该偏回归系数值均不变B.该偏回归系数值为原有偏回归系数值的K 倍C.该偏回归系数值会改变,但无规律D.截距改变,但所有偏回归系数值均不改变E.所有偏回归系数值均不会改变二、思考题1.多重线性回归分析的用途有哪些?答:多重线性回归在生物医学研究中有广泛的应用,归纳起来,可以包括以下几个方面:定量地建立一个反应变量与多个解释变量之间的线性关系,筛选危险因素,通过较易测量的变量估计不易测量的变量,通过解释变量预测反应变量,通过反应变量控制解释变量。
2.多重线性回归模型中偏回归系数的含义是什么?答:偏回归系数的含义是:在控制其他自变量的水平不变的情况下,该自变量每改变一个单位,反应变量平均改变的单位数。
3.请解释用于多重线性回归参数估计的最小二乘法的含义。
答:最小二乘法的含义是:残差的平方和达到最小。
4.如何判断和处理多重共线性?答:如果自变量之间存在较强的相关,则存在多重共线性。
第十一章非参数检验第一节符号检验符号检验的方法·符号检验的特点和作用第二节配对符号秩检验配对符号秩检验的方法·配对符号秩检验的效力第三节秩和检验秩和检验的方法·秩和检验的近似第四节游程检验游程的概念·游程检验的方法·差符号游程检验第五节累计频数检验累计频数检验的方法·累计频数检验的应用一、填空1.非参数检验,泛指“对分布类型已知的总体进行参数检验”()的所有检验方法。
2.符号检验的零假设就是配对观察结果的差平均起来等于()。
3.理论研究表明,对于配对样本非正态分布的差值d,()是最佳检验。
4.秩和检验检验统计量U是U1和U2中较()的一个。
5.秩尺度之统计量的均值和标准差只取决于()。
6.()常被用作经验分布与理论分布的比较。
7.绝对值相等的值,应将它们的秩()。
8.符号检验,在分布自由检验中称为()。
9.符号检验和配对符号秩检验,都只适用于()样本。
10.数据序列ABBABAAABABBABBAAAAAB的总游程数是()二、单项选择1.下列检验中,不属于非参数统计的方法的是()。
A总体是否服从正态分布 B 总体的方差是否为某一个值C 样本的取得是否具有随机性D 两组随机变量之间是否相互独立2.下列情况中,最适合非参数统计的方法是()。
A反映两个大学新生成绩的差别B 反映两个大学新生家庭人均收入的差别C 反映两个大学三年级学生对就业前景的看法差别D反映两个大学在校生消费水平的差别3.不属于非参数检验的是()。
A符号检验B游程检验C累计频数检验 D F检验4.在累计频数检验中,卡方的自由度为()。
A n1B 2C n2D n1+n25.配对符号秩检验的效力( )。
A 小于符号检验B 大于t 检验C 介于符号检验与t 检验之间D 无法与符号检验及t 检验比较 6.如果我们说非参数检验的效力是80%,下列哪种解释正确。
( )A 如果用参数检验需要100个数据,那么在同等的检验效力下,非参数检验只要80个数据;B 如果用非参数检验需要100个数据,那么在同等的检验效力下,参数检验只要80个数据;C 如果用参数检验需要100个数据,那么在同等的检验效力下,非参数检验只要20个数据;D 如果用非参数检验需要100个数据,那么在同等的检验效力下,参数检验只要20个数据;7.对于秩和检验,U 1、U 2和n 1、 n 2的关系是( )。
单项选择题:
1、下列各项中属于指数的是:
(A) 人均粮食产量 (B )平均价格 (C )发展速度 (D )人口数
2、指数按其所表明的经济指标性质不同,分为:
(A) 个体指数和总指数 (B )数量指标指数和质量指标指
数
(C )定基指数和环比指数
(D )平均指数和总指数
4、以某一固定时期作分母而计算出来的指数是:
(A )环比指数 (B )定基指数 (C) 数量指标指数 (D )质量指标指数 5、某百货公司今年与去年相比,所有商品的价格平均提高了 10%,销售量平均下降了
10%,则商品销售额(
)
A 、上升
B 、下降
C 、保持不变
D 、可能上升也可能下降 6、某企业销售额增长了 5%,销售价格下降了
3%,则销售量: (A )增长8% ( B )增长% (C )增长%
(D )增长%
7、在编制综合指数时,要求指数中分子和分母的权数必须是(
)
A 、同一时期的
B 、不同时期的
C 、基期的
D 、报告期的 8、编制单位成本指数
时,同度量因素一般应采用:
(A )报告期销售量(B )基期销售量 (C )基期销售价格 (D )报告期销售价格
9、
q 1p 0
q 0 p 0 表示:
(A) 由于价格变动引起的产值增减数 (B) 由于价格变动引起的产量增减数 (C) 由于产量变动引起的价格增减数 (D)
由于产量变动引起的产值增减数
3、指数按对象范围不同,可分为:
(A )个体指数和总指数
(C )定基指数和环比指数 (B) 数量指标指数和质量指标指数 (D )平均指数和综合指数
10、按照个体指数和报告期销售额计算的价格指数是(
11、最常用的加权调和平均数是:
k
P
(B )
P o q o (A )
kq
k q P o q o
P o q o
1 P o q o k q
(C
k
p
P o q o
P0
1
P o q o k p
k
P
(D )
P
1
P4 k
P
12、在指数体系中,总量指数与各因素指数之间的数量关系是(
)
A 、总量指数等于各因素指数之和
B 、总量指数等于各因素指数之差
C 、总量指数等于各因素指数之积
D 、总量指数等于各因素指数之商
13、消费价格指数反映了( )
A 、 城乡商品零售价格的变动趋势和程度
B 、 城乡居民购买生活消费品价格的变动趋势和程度
C 、 城乡居民购买服务项目价格的变动趋势和程度
D 、 城乡居民购买生活消费品和服务项目价格的变动趋势和程度
、计算题
1、某百货商场报告年的商品零售额为 420万元,报告年比基年增加了 30万元, 零
售物价上涨%,试计算该商场商品零售额变动中由于零售价格和零售量变动 的影响程度和影响的绝对额。
A 、综合指数 C 、总平均数指数
B 、加权调和平均指数 D 、加权算术平均指数
2、某超市对A、B、C三地开通了购物直通车,超市每天都会记录乘坐直通车的顾客的
人次和消费额,下表中的数据为星期一和星期日的统计数据
(1)计算人均消费额和人次的加权综合指数; (2)用指数体系分析顾客总消费量
答案
一单选题
1-5 C B A B B 11-13 D C D
二、计算题
该商场商品零售额比基年提高了 %,总零售额增加30万元
(2)零售物价变动对零售额影响:
p 0q 1 401.94万元
p 0q 0
420 401.94 18.08万元
零售量对零售额的影响:
P °q 1 401・
94
P o q 。
390
6-10 C A A D D
P o q o
pg 420万 元 1.0769
;
P °q 。
420 30 390万元
P4
P °q
1.045
pg 420万元
(3)综上
万元=万元+万元。
报告年零售价格也上升了,由于零售价上升使得零售额增加了 %,
增加的绝对额为万元;
2、解:(1)人均消费额用派氏指数计算,可得:
日购物人次指数用拉氏指数计算,可得:
23o 7o 15o 12o
34o 89 64360
12396% iq=
P o q o
18o 7o 12o 12o
28o 89
123.96 /u
5192o
P4 Pq P o q 1
(2)总消费额指数为
P o q o
P o q 1
P o q o
829oo
6436。
=6436。
5192o
=%
顾客总消费额增长量为
P o q i
P o q 。
401.94 390 11.914万 元
皿1
P 1q 1 P o q 1 P o q o
P o q 1
P o q o
即=*
P o q o )
pg
P o qJ (
P o q 1
P o q o ), 30
所以,报告年零售量 加的绝对额为万元;
上升, 由于零售量的上升使得零售额增加了 3%,增
lp=
P o q 1
23o 1oo 15o 15o 34o 11o
23o 7o 15o 12o 34o 89
829oo 6436o
128.81%
7
( p1q1 p0q0 ) ( p1q1 p0q1) ( p0q1 p0q0)
=18540+12440 =30980(元)
综上,周日与周一相比,人均消费额的增加使总消费额增长了%,绝对增加了18540 元;
人次增多使总消费额增长了%,绝对增长了12440 元。