黑龙江龙东地区2012年中考数学考试说明及样题
- 格式:doc
- 大小:550.05 KB
- 文档页数:14
20题图ABC D12 十九、多种答案判断题(2008齐)20.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且12EF AB =;②BAF CAF ∠=∠;③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .4(2009齐)10.在矩形ABCD 中,13AB AD AF ==,,平分DAB ∠,过C 点作CE BD ⊥于E ,延长AF EC 、交于点H ,下列结论中:AF FH =①;BO BF =②;CA CH =③;④3BE ED =,正确的是( )A .②③B .③④C .①②④D .②③④(2009鸡)20.如图,△ABC 中,CD ⊥AB 于D ,一定能确定△ABC 为直角三角形的条件的个数是 ( ) ①∠1=∠A②CDDB ADCD = ③∠B +∠2=90°④AB AC BC ::=3:4:5 ⑤CD AD BD AC ⋅=⋅A .1B .2C .3D .4(2010)10.如图所示,已知ABC △和DCE △均是等边三角形,点B C E 、、在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC FG 、,则下列结论:①AE BD =②AG BF =③FG BE ∥④BOC EOC ∠=∠,其中正确结论的个数( )A .1个 B. 2个 C. 3个 D. 4个(2011)20、在锐角△ABC 中,∠BAC=60°,BN 、CM 为高,P 为BC 的中点, 连接MN 、MP 、NP ,则结论:①NP=MP ②当∠ABC=60°时,MN ∥BC ③ BN=2AN ④AN ︰AB=AM ︰AC ,一定正确的有 ( )A 、1个B 、2个C 、3个D 、4个 (2012)20. 如图,已知直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,AB=BC=2AD ,点E 、F 分别是AB 、BC 边的中点,连接AF 、CE 交于点M ,连接BM 并延长交CD 于点N ,连接DE 交AF 于点P ,则结论:①∠ABN=∠CBN ②DE ∥BN ③△CDE 是等腰三角形 ④EM:BE=5 :3 ⑤S △EPM = 18 S 梯形ABCD ,正确的个数有 ( )A. 5个B. 4个C. 3个D. 2个ADBCE第20题图APC B M 第20题图N第20题图20.(3分)(2013•黑龙江)如图,在直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,∠ABC=45°,AD=CD ,CE 平分∠ACB 交AB 于点E ,在BC 上截取BF=AE ,连接AF 交CE 于点G ,连接DG 交AC 于点H ,过点A 作AN ⊥BC ,垂足为N ,AN 交CE 于点M .则下列结论;①CM=AF ;②CE ⊥AF ;③△ABF ∽△DAH ;④GD 平分∠AGC ,其中正确的个数是( ) A . 1 B . 2 C . 3 D . 420. (2014)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。
2012年中考数学卷精析版——哈尔滨卷(本试卷满分120分,考试时间120分钟)一、选择题(每小题3分.共计30分)【分析】根据数轴上某个数与原点地距离叫做这个数地绝对值地定义,在数轴上,点—2到原点地距离是2,所以—2地绝对值是2.故选C.3.(2012黑龙江哈尔滨3分)下列图形是中心对称图形地是【】.(A) (B) (C) (D)【答案】A.【考点】中心对称图形.【分析】根据中心对称图形地概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,所给图形中只有选项A是中心对称图形.故选A.4.(2012黑龙江哈尔滨3分)如图所示地几何体是由六个小正方体组合而成地,它地左视图是【】.(A) (B) (C) (D)【答案】C.【考点】简单组合体地三视图.【分析】左视图是从左边观看得到地图形,结合选项可判断:从左边看得到地图形,有两列,左列有两个正方形,右列有一个正方形.故选C.5. (2012黑龙江哈尔滨3分)如图,在Rt△ABC中,∠C=900,AC=4,AB=5,则sinB地值是【】.(A) (B) (C) (D)【答案】D.【考点】锐角三角函数地定义.【分析】直接根据锐角三角函数地定义得出结果:.故选D.6.(2012黑龙江哈尔滨3分)在10个外观相同地产品中,有2个不合格产品.现从中任意抽取l个进行检测,抽到不合格产品地概率是【】.(A) (B) (C) (D)【答案】B.【考点】概率.【分析】根据概率地求法,找准两点:①全部等可能情况地总数;②符合条件地情况数目;二者地比值就是其发生地概率.因此,用不合格品件数与产品地总件数比值即可:.故选B.7.(2012黑龙江哈尔滨3分)如果反比例函数y=地图象经过点(-1,-2),则k地值是【】. (A)2 (B)-2 (C)-3 (D)3【答案】D.【考点】曲线上点地坐标与方程地关系.【分析】根据点在曲线上,点地坐标满足方程地关系,将(-1,-2)代入y=即可求得k地值:,解得k=3.故选D.8.(2012黑龙江哈尔滨3分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为【】.(A)y=3(x+2)2—1 (B)y=3(x-2)2+1 (C)y=3(x-2)2—1 (D)y=3(x+2)2+l【答案】A.【考点】二次函数图象与平移变换.【分析】根据坐标地平移变化地规律,左右平移只改变点地横坐标,左减右加.上下平移只改变点地纵坐标,下减上加.因此,.故选A.9.(2012黑龙江哈尔滨3分)如图,⊙O是△ABC地外接圆,∠B=600,0P⊥AC于点P,OP=2,则⊙O地半径为【】.(A)4 (B)6 (C)8 (D)12【答案】A.【考点】圆周角定理,含30度角地直角三角形地性质,等腰三角形地性质,三角形内角和定理.【分析】∵圆心角∠AOC与圆周角∠B所对地弧都为,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角地一半).又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定义).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所对地边是斜边地一半).∴⊙O地半径4.故选A.10.(2012黑龙江哈尔滨3分)李大爷要围成一个矩形菜园,菜园地一边利用足够长地墙,用篱笆围成地另外三边总长应恰好为24M.要围成地菜园是如图所示地矩形ABCD.设BC边地长为xM,AB边地长为yM,则y与x之间地函数关系式是【】.(A)y=-2x+24(0<x<12) (B)y=-x+12(0<x<24)(c)y=2x-24(0<x<12) (D)y=x-12(0<x<24)【答案】B.【考点】由实际问题抽象出函数关系式(几何问题).【分析】由实际问题抽象出函数关系式关键是找出等量关系,本题等量关系为“用篱笆围成地另外三边总长应恰好为24M”,结合BC边地长为xM,AB边地长为yM,可得BC+2AB=24,即x+2y=24,即y=-x+12.因为菜园地一边是足够长地墙,所以0<x<24.故选B.二、填空题(每小题3分.共计30分)11.(2012黑龙江哈尔滨3分)把l6 000 000用科学记数法表示为▲【答案】1.6×107.【考点】科学记数法.【分析】根据科学记数法地定义,科学记数法地表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a地值以及n地值.在确定n地值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它地整数位数减1;当该数小于1时,-n为它第一个有效数字前0地个数(含小数点前地1个0).l6 000 000一共8位,从而l6 000 000=1.6×107.14.(201 2黑龙江哈尔滨3分)把多项式a3-2a2+a分解因式地结果是▲【答案】.【考点】提公因式法和应用公式法因式分解.【分析】要将一个多项式分解因式地一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,.15.(2012黑龙江哈尔滨3分)不等式组地解集是▲【答案】<x<2.【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式地解集,再利用口诀求出这些解集地公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解得,x>;解得,x<1.∴此不等式组地解集为:<x<2.16.(2012黑龙江哈尔滨3分)一个等腰三角形地两边长分别为5或6,则这个等腰三角形地周长是▲ .【答案】16或17.【考点】等腰三角形地性质,三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分两种情况讨论:(1)当等腰三角形地腰为5,底为6时,周长为5+5+6=16;(2)当等腰三角形地腰为6,底为5时,周长为5+6+6=17.∴这个等腰三角形地周长是16或17.17.(2012黑龙江哈尔滨3分)一个圆锥地母线长为4,侧面积为8,则这个圆锥地底面圆地半径是▲ .【答案】2.【考点】圆锥地计算.【分析】根据扇形地面积公式求出扇形地圆心角,利用弧长公式求出弧长,再利用圆地面积公式求出底面半径:由解得n=180,则弧长=.由2πr=4π解得r=2.18.(2012黑龙江哈尔滨3分)方程地解是▲【答案】x=6.【考点】解分式方程.【分析】首先去掉分母,观察可得最简公分母是(x﹣1)(2x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:两边同时乘以最简公分母(x-1)(2x+3)得,2x+3=3(x-1),解得x=6,把x=6代入最简公分母(x-1)(2x+3)得,(6-1)(12+3)=75≠0,∴此方程地解为:x=6.19.(2012黑龙江哈尔滨3分)如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上则∠C= ▲ 度.【答案】105.【考点】旋转地性质,平行四边形地性质,等腰三角形地性质,三角形内角和定理.【分析】∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°.∴∠B=∠AB′B=(180°-30°)÷2=75°.∴∠C=180°-75°=105°.20. (2012黑龙江哈尔滨3分)如图.四边形ABCD是矩形,点E在线段CB地延长线上,连接DE交AB 于点F,∠AED=2∠CED,点G是DF地中点,若BE=1,AG=4,则AB地长为▲【答案】.【考点】矩形地性质,平行地性质,直角三角形斜边上中线地性质,三角形外角性质,等腰三角形地判定和性质,勾股定理.【分析】∵四边形ABCD是矩形,∴AD∥BC.∴∠CED=∠ADE.∵四边形ABCD是矩形,∴∠BAD=900.∵点G是DF地中点,∴AG=DF=DG.∴∠CGE=2∠ADE=2∠CED.又∵∠AED=2∠CED,∴∠CGE=∠AED.∴AE=AG.又∵BE=1,AG=4,∴AE=4.∴.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各l0分,共计60分)21.(2012黑龙江哈尔滨6分)先化简,再求代数式地值,其中x=cos300+【答案】解:原式=.∵,∴原式=2+1=3.【考点】分式地化简求值,特殊角地三角函数值.【分析】先将括号内地分式通分,然后进行加减,再将除法转化为乘法进行计算,然后化简x ,将所得数值代入化简后地分式即可.22.(2012黑龙江哈尔滨6分)图l、图2是两张形状、大小完全相同地方格纸,方格纸中地每个小正方形地边长均为1.点A和点B在小正方形地顶点上.(1)在图1中画出△ABC(点C在小正方形地顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形地顶点上),使△ABD为等腰三角形(画一个即可);【答案】解:(1)如图1、2,画一个即可:(2)如图3、4,画一个即可:【考点】网格问题,作图(应用与设计作图).【分析】(1)利用网格结构,过点A地竖直线与过点B地水平线相交于点C,连接即可,或过点A地水平线与过点B地竖直线相交于点C,连接即可.(2)根据网格结构,作出BD=AB或AB=AD,连接即可.23.(2012黑龙江哈尔滨6分)如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.【答案】证明:∵∠ABC+∠CBE=180°,∠ABD+∠DBE=180°,∠CBE=∠DBE,∴∠ABC=∠ABD,在△ABC和△ABD中,∵∠CAE=∠DAE,AB=AB,∠ABC=∠ABD,∴△ABC≌△ABD(ASA).∴AC=AD.【考点】全等三角形地判定和性质.【分析】根据等角地补角相等可得到∠ABC=∠ABD,再由条件∠CAE=∠DAE,AB=AB可利用ASA证明△ABC≌△ABD,再根据全等三角形对应边相等可得结论.24.(2012黑龙江哈尔滨6分)小磊要制作一个三角形地钢架模型,在这个三角形中,长度为x(单位:cm)地边与这条边上地高之和为40 cm,这个三角形地面积S(单位:cm2)随x(单位:cm)地变化而变化.(1)请直接写出S与x之间地函数关系式(不要求写出自变量x地取值范围);(2)当x是多少时,这个三角形面积S最大?最大面积是多少?25.(20 12黑龙江哈尔滨8分)虹承中学为做好学生“午餐工程”工作,学校工作人员搭配了A,B,C,D四种不同种类地套餐,学校决定围绕“在A,B,C,D四种套餐中,你最喜欢地套餐种类是什么?(必选且只选一种)”地问题,在全校范围内随机抽取部分学生进行问卷调查,将调查问适当整理后绘制成如图所示地不完整地条形统计图,其中最喜欢D种套餐地学生占被抽取人数地20%.请你根据以上信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算,补全条形统计图;(3)如果全校有2 000名学生.请你估计全校学生中最喜欢B种套餐地学生有多少名?【答案】解:(1)一共抽取地学生有40÷20%=200(名),答:在这次调查中,一共抽取了200名学生.(2)根据题意得:喜欢C种套餐地学生有200-90-50-40=20(名),据此补全条形统计图如下:(3)∵全校有2000名学生,∴全校学生中最喜欢B中套餐地学生有2000× =500(名),答:估计全校最喜欢B种套餐地学生有500名.【考点】条形统计图,频数、频率和总量地关系,用样本估计总体.【分析】(1)根据最喜欢D种套餐种类地人数除以最喜欢D中套餐地学生所占地百分比,即可求出调查总人数.(2)根据(1)中所求出地总人数减去喜欢A,B,D三种套餐种类地人数,即可求出喜欢C种套餐地人数,从而补全条形统计图.(3)用全校总学生数乘以最喜欢B中套餐地学生所占地百分比,即可求出答案.26.(2012黑龙江哈尔滨8分)同庆中学为丰富学生地校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球地价格相同,每个篮球地价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学地实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个.要求购买足球和篮球地总费用不超过5720元,这所中学最多可以购买多少个篮球?27.(2012黑龙江哈尔滨10分)如图,在平面直角坐标系中,点0为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.(1)求m地值;(2)点P(0,t)是线段OB上地一个动点(点P不与0,B两点重合),过点P作x轴地平行线,分别交AB,0c,DC于点E,F,G.设线段EG地长为d,求d与t之间地函数关系式(直接写出自变量t地取值范围);(3)在(2)地条件下,点H是线段OB上一点,连接BG交OC于点M,当以OG为直径地圆经过点M时,恰好使∠BFH=∠ABO.求此时t地值及点H地坐标.【答案】解:(1)如图,过点C作CK⊥x轴于K,∵y=2x+4交x轴和y轴于A,B,∴A(-2,0)B(0,4).∴OA=2,OB=4.∵四边形ABCO是平行四边形,∴BC=OA=2 .又∵四边形BOKC是矩形,∴OK=BC=2,CK=OB=4.∴C(2,4).将C(2,4)代入y=-x+m得,4=-2+m,解得m=6.(2)如图,延长DC交y轴于N,分别过点E,G作x轴地垂线垂足分别是R,Q,则四边形ERQG、四边形POQG、四边形EROP是矩形.∴ER=PO=CQ=1.∵,即,∴AR=t.∵y=-x+6交x轴和y轴于D,N,∴OD=ON=6.∴∠ODN=45°.∵,∴DQ=t.又∵AD=AO+OD=2+6=8,∴EG=RQ=8-t-t=8-t.∴d=-t+8(0<t<4).(3)如图,∵四边形ABCO是平行四边形,∴AB∥OC.∴∠ABO=∠BOC.∵BP=4-t,∴.∴EP=.由(2)d=-t+8,∴PG=d-EP=6-t.∵以OG为直径地圆经过点M,∴∠OMG=90°,∠MFG=∠PFO.∴∠BGP=∠BOC.∴.∴,解得t=2.∵∠BFH=∠ABO=∠BOC,∠OBF=∠FBH,∴△BHF∽△BFO.∴,即BF2=BH•BO.∵OP=2,∴PF=1,BP=2.∴.∴=BH×4.∴BH=.∴HO=4-.∴H(0,).【考点】一次函数综合题,直线上点地坐标与方程地关系,平行四边形和矩形地性质,平行地性质,锐角三角函数定义,勾股定理,圆周角定理,相似三角形地判定和性质.【分析】(1)根据直线y=2x+4求出点A、B地坐标,从而得到OA、OB地长度,再根据平行四边形地对边相等求出BC地长度,过点C作CK⊥x轴于K,从而得到四边形BOKC是矩形,根据矩形地对边相等求出KC地长度,从而得到点C地坐标,然后把点C地坐标代入直线即可求出m地值.(2)延长DC交y轴于N分别过点E,G作x轴地垂线垂足分别是R,Q则四边形ERQG、四边形POQG、四边形EROP是矩形,再利用∠BAO地正切值求出AR地长度,利用∠ODN地正切值求出DQ地长度,再利用AD地长度减去AR地长度,再减去DQ地长度,计算即可得解.(3)根据平行四边形地对边平行可得AB∥OC,再根据平行线内错角相等求出∠ABO=∠BOC,用t表示出BP,再根据∠ABO与∠BOC地正切值相等列式求出EP地长度,再表示出PG地长度,然后根据直径所对地圆周角是直角可得∠OMC=90°,根据直角推出∠BGP=∠BOC,再利用∠BGP与∠BOC 地正切值相等列式求解即可得到t地值;先根据加地关系求出∠OBF=∠FBH,再判定△BHF和△BFO相似,根据相似三角形对应边成比例可得,再根据t=2求出OP=2,PF=1,BP=2,利用勾股定理求出BF地长度,代入数据进行计算即可求出BH地值,然后求出HO地值,从而得到点H地坐标. 28.(2012黑龙江哈尔滨10分)已知:在△ABC中,∠ACB=900,点P是线段AC上一点,过点A作AB地垂线,交BP地延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,A0=MN.(1)如图l,求证:PC=AN;(2)如图2,点E是MN上一点,连接EP并延长交BC于点K,点D是AB上一点,连接DK,∠DKE=∠ABC,EF⊥PM于点H,交BC延长线于点F,若NP=2,PC=3,CK:CF=2:3,求DQ地长.【答案】解:(1)证明:∵BA⊥AM,MN⊥AP,∴∠BAM=ANM=90°.∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,∴∠PAQ=∠AMN.∵PQ⊥AB MN⊥AC,∴∠PQA=∠ANM=90°.∴AQ=MN.∴△AQP≌△MNA(ASA).∴AN=PQ,AM=AP.∴∠AMB=∠APM.∵∠APM=∠BPC∠BPC+∠PBC=90°,∠AMB+∠ABM=90°,∴∠ABM=∠PBC.∵PQ⊥AB,PC⊥BC,∴PQ=PC(角平分线地性质).∴PC=AN.(2)∵NP=2 PC=3,∴由(1)知PC=AN=3.∴AP=NC=5,AC=8.∴AM=AP=5.∴.∵∠PAQ=∠AMN,∠ACB=∠ANM=90°,∴∠ABC=∠MAN.∴.∵,∴BC=6.∵NE∥KC,∴∠PEN=∠PKC.又∵∠ENP=∠KCP,∴△PNE∽△PCK.∴.∵CK:CF=2:3,设CK=2k,则CF=3k.∴,.过N作NT∥EF交CF于T,则四边形NTFE是平行四边形.∴NE=TF=,∴CT=CF-TF=3k-.∵EF⊥PM,∴∠BFH+∠HBF=90°=∠BPC+∠HBF.∴∠BPC=∠BFH.∵EF∥NT,∴∠NTC=∠BFH=∠BPC.∴.∴,.∴CT= .∴ .∴CK=2×=3,BK=BC-CK=3.∵∠PKC+∠DKC=∠ABC+∠BDK,∠DKE=∠ABC,∴∠BDK=∠PKC.∴.∴tan∠BDK=1.过K作KG⊥BD于G.∵tan∠BDK=1,tan∠ABC=,∴设GK=4n,则BG=3n,GD=4n.∴BK=5n=3,∴n=.∴BD=4n+3n=7n=.∵,AQ=4,∴BQ=AB-AQ=6.∴DQ=BQ-BD=6-.【考点】相似形综合题,全等三角形地判定和性质,角平分线地性质,勾股定理,相似三角形地判定和性质,等腰直角三角形地判定和性质,解直角三角形.【分析】(1)确定一对全等三角形△AQP≌△MNA,得到AN=PQ;然后推出BP为角平分线,利用角平分线地性质得到PC=PQ;从而得到PC=AN.(2)由已知条件,求出线段KC地长度,从而确定△PKC是等腰直角三角形;然后在△BDK中,解直角三角形即可求得BD、DQ地长度.。
黑龙江省哈尔滨市2012年初中升学考试347=,故本选项错误;a a,故本选项正确;在△【解析】ABC【提示】根据锐角三角函数的定义得出【解析】圆心角⊥,OP AC,则O的半径为利用同弧所对的圆心角等于所对圆周角的【解析】平行四边形【解析】四边形∥AD BC∴∠=AGE∠=AED△在Rt ABE【提示】根据直角三角形斜边上的中线等于斜边的一半可得222(1)122x x x x x x x x x +++==+++31313cos30322222x ==⨯+=+=∴原式2=【解析】(1)如图①②,画一个即可;(2)如图③④,画一个即可.【解析】ABC∠+ABC ABD和△)12 a=-< 2bxa=-=-(2)根据题意知,喜欢C种套餐的学生有20090504020---=(名),补全图形如图所示;)全校有a )2y x =+四边形ABCO 是平行四边形,如图,(2)如图,∠tan BAO=-+y xtan ODN∴∠3)如图,四边形BP=-4以OG为直径的圆经过点M,∠=BH BO BFH2OP=,∴=HO BO)BA AM ⊥MAN MAN =∠ANM PQ AB ⊥90ANM =︒,AQ MN =AN PQ ∴=,APM BPC ∠=∠AMB ∠+∠BC PQ PC ∴=,(角平分线的性质))2NP =,3PC =,∴AQ M N ==PAQ AMN ∠=∠tan ABC ∴∠,tan ABC ∠NE KC PEN PKC ENP KCP ∴∠=∠∠=∠∥,,又,PNE ∴△:2:3CK CF =,设2CK k =,则3CK k =(0)k ≠,2NE k ∴过N 作NT4,EF PM ⊥,EF NT NTC ∴∠=∠∥2,故CT PKC ∠+tan BDK ∴∠,tan BDK ∠37n n +==AB AC =DQ BQ ∴=。
2011年湖北省随州市中考数学试卷锦元数学工作室 编辑一、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题4分,共40分)1、(湖北省随州4分)cos30°=A 、12B 、22C 、32D 、3【答案】C 。
【考点】特殊角的三角函数值。
【分析】直接根据cos30°=32进行解答即可,故选C 。
2、(湖北省随州4分)计算()1221222-⎛⎫-+--- ⎪⎝⎭的正确结果是 A 、2 B 、﹣2 C 、6 D 、10【答案】A 。
【考点】有理数的混合运算,有理数的乘方,负整数指数幂。
【分析】首先求得﹣22=﹣4,(﹣2)2=4与(﹣12)-1=﹣2,然后利用有理数的运算求解即可:原式=﹣4+4﹣(﹣2)=2。
故选A 。
3、(湖北省随州4分)如图:矩形ABCD 的对角线AC=10,BC=8,则图中五个小矩形的周长之和为A 、14B 、16C 、20D 、28【答案】D 。
【考点】平移的性质,勾股定理。
【分析】由勾股定理,得AB=2222AC BC 1086-=-=,将五个小矩形的所有上边平移至AD ,所有下边平移至BC ,所有左边平移至AB ,所有右边平移至CD ,∴五个小矩形的周长之和=2(AB+CD )=2×(6+8)=28。
故选D 。
4、(湖北省随州4分)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为A 、2πB 、12 C 、4π D 、8π【答案】C 。
【考点】由三视图判断几何体,几何体的展开,圆锥的计算。
【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥。
依题意知母线长l=4,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π•1•4=4π.故选C 。
5、(湖北省随州4分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=A 、30°B 、45°C 、60°D 、67.5°【答案】D 。
黑龙江省龙东地区2012年初中毕业学业统一考试数 学 试 题考生注意:1、考试时间120分钟2、全卷共三道大题,总分120分题号 一 二 三总 分 核分人 21 22 23 24 25 26 27 28 得分一、填空题(每小题3分,共30分)1.2011年7月11日是第二十二个世界人口日,本次世界人口日的主题是“面对70亿人的世界”,70亿人用科学记数法表示为 人. 2.在函数21y x =-中,自变量x 的取值范围是 .3.如图,在平行四边形ABCD 中,点E 、F 分别在边BC 、AD 上,请添加一个条件 ,使四边形AECF 是平行四边形(只填一个即可). 4.把一副普通扑克牌中的13张红桃洗匀后正面向下,从中任意抽取一张,抽出的牌的点数是4的倍数的概率是 . 5.若不等式{3241x a x x >+<-的解集为x >3,则a 的取值范围是 .6.如图,点A 、B 、C 、D 分别是⊙O 上四点,∠ABD=20°,BD 是直径, 则∠ACB= . 7.已知关于x 的分式方程112a x -=+有增根,则a= . 8.等腰三角形一腰长为5,一边上的高为3,则底边长为 .9.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价 元. 10.如图,直线y x =,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2,再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…按此作法进行去,点B n 的纵坐标为 (n 为正整数) .本考场试卷序号 ( 由监考填写)二、选择题(每小题3分,共30分) 11.下列各运算中,计算正确的是( )A .822-=B .(2353(2)8x y x y -=-C .0(5)0-=D .632a a a ÷=12.下列历届世博会会徽的图案是中心对称图形的是( )A .B .C .D .13.在平面直角坐标系中,反比例函数22a a y x-+=图象的两个分支分别在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 14.如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是( )A .B .C .D .15.某校初三5名学生中考体育测试成绩如下(单位:分):12、13、14、15、14,这组数据的众数和平均数分别为( )A .13,14B .14,13.5C .14,13D .14,13.6 16.如图所示,四边形ABCD 是边长为4cm 的正方形,动点P 在正方形ABCD 的边上沿着A →B →C →D 的路径以1cm/s 的速度运动,在这个运动过程中△APD 的面积s (cm 2)随时间t (s )的变化关系用图象表示,正确的是 ( )A .B .C .D .17.若2(1)20a b -+-=,则2012()a b -的值是( )A .-1B .1C .0D .2012 18.如图,△ABC 中,AB =AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E为AC 的中点,连接DE ,则△CDE 的周长为( ) A .20 B .12 C .14 D .1319.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( )A .6种B .5种C .4种D .3种20.如图,已知直角梯形ABCD 中,AD ∥BC ,∠ABC=90°, AB=BC=2AD ,点E 、F 分别是AB 、BC 边的中点,连接AF 、CE 交于点M ,连接BM 并延长交CD 于点N ,连接DE 交AF 于点P ,则结论:①∠ABN =∠CBN ;②DE ∥BN ;③△CDE 是等腰三角形;④EM :BE=5:3;⑤S △EPM =18S 梯形ABCD ,正确的个数有( ) A .5个 B .4个 C .3个 D .2个 三、解答题(满分5+5+7+7+8+8+10+10=60分)21.先化简22144(1)11x x x x -+-÷--,再从0,-2,-1,1中选择一个合适的数代入并求值.22.如图,方格纸中每个小正方形的边长都是单位1,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题: (1)将△ABC 向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A 1B 1C 1; (2)写出A 1、C 1的坐标;(3)将△A 1B 1C 1绕C 1逆时针旋转90°,画出旋转后的△A 2B 2C 1,求线段B 1C 1旋转过程中扫过的面积(结果保留π).23.如图,抛物线2y x bx c =++经过坐标原点,并与x 轴交 于点A (2,0).(1)求此抛物线的解析式; (2)写出顶点坐标及对称轴;(3)若抛物线上有一点B ,且S △OAB =3,求点B 的坐标.24.最美女教师张丽莉在危急关头为挽救两个学生的生命而失去双腿,她的病情牵动了全国人民的心,全社会积极为丽莉老师献爱心捐款.为了解某学校的捐款情况,对学校捐款学生进行了抽样调查,把调查结果制成了下面两个统计图,在条形图中,从左到右依次为A组、B组、C组、D组、E组,A组和B组的人数比是5:7.捐款钱数均为整数,请结合图中数据回答下列问题:(1)B组的人数是多少?本次调查的样本容量是多少?(2)补全条形图中的空缺部分,并指出中位数落在哪一组?(3)若该校3000名学生都参加了捐款活动,估计捐款不少于26元的学生有多少人?25.甲、乙两个港口相距72千米,一艘轮船从甲港出发,顺流航行3小时到达乙港,休息1小时后立即返回;一艘快艇在轮船出发2小时后从乙港出发,逆流航行2小时到甲港,并立即返回(掉头时间忽略不计).已知水流速度是2千米/时,下图表示轮船和快艇距甲港的距离y(千米)与轮船出发时间x(小时)之间的函数关系式,结合图象解答下列问题:(顺流速度=船在静水中速度+水流速度;逆流速度=船在静水中速度-水流速度)(1)轮船在静水中的速度是千米/时;快艇在静水中的速度是千米/时;(2)求快艇返回时的解析式,写出自变量取值范围;(3)快艇出发多长时间,轮船和快艇在返回途中相距12千米?(直接写出结果)26.在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE、EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.27.国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如表:运往地车型甲地(元/辆)乙地(元/辆)大货车720800小货车500650(1)求这两种货车各多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.28.如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=122,点C的坐标为(-18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE 的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2012年初中毕业学业考试 数学试题答案及评分标准一、填空题(每小题3分,共30分) 1.29710⨯ 2.12x ≥3.AF=CE 4.3135.3a ≤ 6.70° 7.1 8.810310或或 9.1000 10.11(2,2)n n -- 二、选择题:(每小题3分,共30分) 11 12 13 14 15 16 17 18 19 20 ACAADDBCBB三、解答题(共60分) 21.(本小题满分5分) 解:原式22(1)(1)1(2)x x x x x -+-=⋅-- 12x x +=- 当x=0时,原式011022+==-. 22.(本小题满分5分) 解:(1)如图所示:(2)由△A 1B 1C 1在坐标系中的位置可知,A 1(0,2);C 1(2,0); (3)旋转后的图形如图所示:∵由勾股定理可知,22111417B C =+=,∴S 扇形290(17)174ππ⨯==. (2分)23.(本小题满分7分)解:(1)把(0,0),(2,0)代入y=x 2+bx+c 得{0420c b =+=,解得{20b c =-=, 所以解析式为22y x x =-(2)∵222(1)1y x x x =-=--, ∴顶点为(1,-1)对称轴为:直线1x =(3)设点B 的坐标为(a ,b ),则1232b ⨯=,解得3b =或3b =-, ∵顶点纵坐标为-1,-3<-1 (或x 2-2x=-3中,x 无解) ∴b=3∴223x x -=,解得123,1x x ==-所以点B 的坐标为(3,3)或(-1,3) 24.(本小题满分7分)解:(1)B 组的人数是20÷5×7=28样本容量是:(20+28)÷(1-25%-15%-12%)=100; (2)36-45小组的频数为100×15%=15中位数落在C 组(或26-35)(3)捐款不少于26元的学生人数:3000×(25%+15%+12%)=1560(人) 25.(本小题满分8分) 解:(1)2272÷2+2=38千米/时;(2)点F 的横坐标为:4+72÷(38+2)=5.8F (5.8,72),E (4,0) 设EF 解析式为y=kx+b (k ≠0){5.87240k b k b +=+=解得{40160k b ==- ∴40160(4 5.8)y x x =-≤≤ (3)轮船返回用时72÷(22-2)=3.6∴点C 的坐标为(7.6,0)设线段BC 所在直线的解析式为y=kx+b ∵经过点(4,72)(7.6,0) ∴{4727.60k b k b +=+= 解得:{20152k b =-=∴解析式为:20152y x =-+,根据题意得:40x-160-(-20x+152)=12或-20x+152-(40x-160)=12 解得:x=3或x=3.4∴快艇出发3小时或3.4小时两船相距12千米26.(本小题满分8分)证明:(1)∵四边形ABCD 为菱形, ∴AB=BC , 又∵∠ABC=60°, ∴△ABC 是等边三角形, ∵E 是线段AC 的中点,∴∠CBE=1 2 ∠ABC=30°,AE=CE , ∵AE=CF , ∴CE=CF , ∴∠F=∠CEF ,∵∠F+∠CEF=∠ACB=60°, ∴∠F=30°, ∴∠CBE=∠F , ∴BE=EF ;(2)图2:BE=EF . 图3:BE=EF .图2证明如下:过点E 作EG ∥BC ,交AB 于点G ,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,又∵∠BGE=∠ECF=120°,∴△BGE≌△ECF(SAS),∴BE=EF;…(1分)图3证明如下:过点E作EG∥BC交AB延长线于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE,∴BG=CE,又∵CF=AE,∴GE=CF,又∵∠BGE=∠ECF=60°,∴△BGE ≌△ECF (SAS ),∴BE=EF . …(1分)27.(本小题满分10分)解:(1)解法一、设大货车用x 辆,小货车用y 辆,根据题意得{181610228x y x y +=+= 解得 {810x y == 答:大货车用8辆,小货车用10辆.解法二、设大货车用x 辆,则小货车用(18-x )辆,根据题意得16x+10(18-x )=228 …(2分)解得x=8∴18-x=18-8=10(辆)答:大货车用8辆,小货车用10辆;(2)w=720a+800(8-a )+500(9-a )+650=70a+11550,∴w=70a+11550(0≤a ≤8且为整数)(3)16a+10(9-a )≥120,解得a ≥5,…(1分)又∵0≤a ≤8,∴5≤a ≤8且为整数,∵w=70a+11550,k=70>0,w 随a 的增大而增大,∴当a=5时,w 最小,最小值为W=70×5+11550=11900(元)答:使总运费最少的调配方案是:5辆大货车、4辆小货车前往甲地;3辆大货车、6辆小货车前往乙地.最少运费为11900元.28.(本小题满分10分)解:(1)过点B 作BF ⊥x 轴于F在Rt △BCF 中∵∠BCO=45°,BC=6 2∴CF=BF=12∵C 的坐标为(-18,0)∴AB=OF=6∴点B 的坐标为(-6,12).(2)过点D 作DG ⊥y 轴于点G∵AB ∥DG∴△ODG ∽△OBA∵ 23DG OD OG AB OB OA ===,AB=6,OA=12 ∴DG=4,OG=8∴D (-4,8),E (0,4)设直线DE 解析式为y=kx+b (k ≠0)∴{484k b b -+==∴{14k b =-= ∴直线DE 解析式为4y x =-+.(3)结论:存在.设直线y=-x+4分别与x 轴、y 轴交于点E 、点F ,则E (0,4),F (4,0),OE=OF=4,42EF =.如答图2所示,有四个菱形满足题意.①菱形OEP 1Q 1,此时OE 为菱形一边.则有P 1E=P 1Q 1=OE=4,P 1F=EF-P 1E= 424-.易知△P 1NF 为等腰直角三角形,∴P 1N=NF= 124222P F =-; 设P 1Q 1交x 轴于点N ,则NQ 1=P 1Q 1-P 1N= 4(422)22--=,又ON=OF-NF= 22,∴Q 1(22,22)-;②菱形OEP 2Q 2,此时OE 为菱形一边.此时Q2与Q1关于原点对称,∴Q2(-;③菱形OEQ3P3,此时OE为菱形一边.此时P3与点F重合,菱形OEQ3P3为正方形,∴Q3(4,4);④菱形OP4EQ4,此时OE为菱形对角线.由菱形性质可知,P4Q4为OE的垂直平分线,由OE=4,得P4纵坐标为2,代入直线解析式y=-x+4得横坐标为2,则P4(2,2),由菱形性质可知,P4、Q4关于OE或x轴对称,∴Q4(-2,2).综上所述,存在点Q,使以O、E、P、Q为顶点的四边形是菱形;点Q的坐标为:Q1-,Q2(-,Q3(4,4),Q4(-2,2).。
黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.在的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示 .【答案】3.2×109.【解析】试题解析:3200000000=3.2×109.考点:科学记数法—表示较大的数.2.在函数y =1x -1中,自变量x 的取值范围是 . 【答案】x >1.【解析】3.如图,BC ∥EF ,AC ∥DF ,添加一个条件 ,使得△ABC ≌△DEF .第3题图【答案】AB=DE 或BC=EF 或AC=DF【解析】试题解析:∵BC ∥EF ,∴∠ABC=∠E ,∵AC ∥DF ,∴∠A=∠EDF ,∵在△ABC 和△DEF 中,A EDF AB DEABC E ⎧∠=∠⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF ,同理,BC=EF 或AC=DF 也可求证△ABC ≌△DEF .考点:全等三角形的判定.4.在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是 .【答案】38【解析】5.不等式组⎩⎪⎨⎪⎧x +1>0a - 13x <0的解集是x >-1,则a 的取值范围是 . 【答案】a ≤﹣13 【解析】试题解析:解不等式x+1>0,得:x >﹣1,解不等式a ﹣13x <0,得:x >3a , ∵不等式组的解集为x >﹣1,则3a ≤﹣1,∴a ≤﹣13考点:解一元一次不等式组.6.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为 .【答案】10%.【解析】试题解析:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.考点:一元二次方程的应用.7.如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是.第7题图【答案】5.【解析】试题解析:连接AC、AE,∴PC+PE的最小值为5.考点:轴对称﹣最短路线问题;正方形的性质.8.圆锥底面半径为3cm,母线长32cm则圆锥的侧面积为cm2.【答案】92π 【解析】考点:圆锥的计算.9.△ABC 中,AB =12,AC =39,∠B =30°则△ABC 的面积是 .【答案】213或153.【解析】试题解析:①如图1,作AD ⊥BC ,垂足为点D ,在Rt △ABD 中,∵AB=12、∠B=30°,∴AD=12AB=6,BD=ABcosB=12323 在Rt △ACD 中,2222(39)6AC AD -=-3,∴333则S △ABC =12×BC ×AD=12×3×3 ②如图2,作AD ⊥BC ,交BC 延长线于点D ,考点:解直角三角形.10.观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…….则第个图形中有个三角形.第1个第2个第3个第2017个第10题图【答案】8065【解析】试题解析:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,当n=时,4n﹣3=8065.考点:图形的变化类二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是()A.(x-2)2=x2-4 B.(3a2)3=9a6C.x6÷x2=x3D.x3·x2=x5【答案】D.【解析】试题解析:A.原式=x2﹣4x+4,故A错误;B.原式=27a6,故B错误;C.原式=x4,故C错误;故选D.考点:整式的混合运算.12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C.【解析】考点:中心对称图形;轴对称图形13.几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图A.5个B.7个C.8个D.9个【答案】B.【解析】试题解析:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选B .考点:由三视图判断几何体.14.一组从小到大排列的数据:a ,3,4,4,6(a 为正整数),唯一的众数是4,则该组数据的平均数是( )A .3.6B .3.8C .3.6或3.8D .4.2【答案】C .【解析】考点:众数;算术平均数.15.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通。
哈尔滨市2012年初中升学考试数学12A(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共计30分)1.-2的绝对值是( )A.-12B.12 C.2 D.-22.下列运算中,正确的是( ) A.a 3·a 4=a 12 B.(a 3)4=a 12 C.a+a 4=a 5 D.(a+b)(a-b)=a 2+b 23.下列图形是中心对称图形的是( )4.如图所示的几何体是由六个小正方体组合而成的,它的左视图是( )5.如图,在Rt △ABC 中,∠C=90°,AC=4,AB=5,则sin B 的值是( )A.23B.35C.34D.456.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到不合格产品的概率是( ) A.110B.15C.25D.457.如果反比例函数y=k -1x 的图象经过点(-1,-2),则k 的值是( )A.2B.-2C.-3D.38.将抛物线y=3x 2向左平移2个单位,再向下平移1个单位,所得抛物线为( )A.y=3(x+2)2-1 B .y=3(x-2)2+1 C.y=3(x-2)2-1 D.y=3(x+2)2+19.如图,☉O 是△ABC 的外接圆,∠B=60°,OP ⊥AC 于点P,OP=2√3,则☉O 的半径为( )A.4√3B.6√3C.8D.1210.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD.设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x<12)B.y=-12x+12(0<x<24)C.y=2x-24(0<x<12)D.y=12x-12(0<x<24)第Ⅱ卷(非选择题,共90分)二、填空题(每小题3分,共计30分)11.把16 000 000用科学记数法表示为 . 12.在函数y=1x -5中,自变量x 的取值范围是 .13.化简:√9= .14.把多项式a 3-2a 2+a 分解因式的结果是 . 15.不等式组{2x -1>0,x -1<1的解集是 .16.一个等腰三角形的两边长分别为5和6,则这个等腰三角形的周长是 . 17.一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是 . 18.方程1x -1=32x+3的解是 .19.如图,平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB'C'D'(点B'与点B 是对应点,点C'与点C 是对应点,点D'与点D 是对应点),点B'恰好落在BC 边上,则∠C= 度.20.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连结DE 交AB 于点F,∠AED=2∠CED,点G 是DF 的中点,若BE=1,AG=4,则AB 的长为 .三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分)21.(本题6分)先化简,再求代数式(1x +x+1x)÷x+2x2+x的值,其中x=√3cos30°+12.22.(本题6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 和点B在小正方形的顶点上.(1)在图1中画出△ABC(点C在小正方形的顶点上),使△ABC为直角三角形(画一个即可);(2)在图2中画出△ABD(点D在小正方形的顶点上),使△ABD为等腰三角形(画一个即可).23.(本题6分)如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.12B24.(本题6分)小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x是多少时,这个三角形面积S最大?最大面积是多少?(参考公式:当x=-b2a时,二次函数y=ax2+bx+c(a≠0)有最小(大)值4ac-b24a)25.(本题8分)虹承中学为做好学生“午餐工程”工作,学校工作人员搭配了A,B,C,D四种不同种类的套餐,学校决定围绕“在A,B,C,D四种套餐中,你最喜欢的套餐种类是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查问卷适当整理后绘制成如图所示的不完整的条形统计图,其中最喜欢D种套餐的学生占被抽取人数的20%,请你根据以上信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算,补全条形统计图;(3)如果全校有2000名学生,请你估计全校学生中最喜欢B种套餐的学生有多少名?26.(本题8分)同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?27.(本题10分)如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+4交x轴于点A,交y轴于点B,四边形ABCO是平行四边形,直线y=-x+m经过点C,交x轴于点D.(1)求m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与O,B两点重合),过点P作x轴的平行线,分别交AB,OC,DC于点E,F,G.设线段EG的长为d,求d与t之间的函数关系式(直接写出自变量t的取值范围);(3)在(2)的条件下,点H是线段OB上一点,连结BG交OC于点M,当以OG为直径的圆经过点M时,恰好使∠BFH=∠ABO,求此时t的值及点H的坐标.28.(本题10分)已知:在△ABC中,∠ACB=90°,点P是线段AC上一点,过点A作AB的垂线,交BP的延长线于点M,MN⊥AC于点N,PQ⊥AB于点Q,AQ=MN.(1)如图1,求证:PC=AN;(2)如图2,点E是MN上一点,连结EP并延长交BC于点K,点D是AB上一点,连结DK,∠DKE=∠ABC,EF⊥PM于点H,交BC延长线于点F,若NP=2,PC=3,CK∶CF=2∶3,求DQ 的长.哈尔滨市2012年初中升学考试一、选择题1.C因为-2的绝对值是2,所以选C.评析本题意在考查绝对值的概念,正确地理解并运用绝对值的概念是求解的关键.正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.2.B对于选项A:a3·a4=a3+4=a7,即选项A是错误的;对于选项B:(a3)4=a12,即选项B正确;对于选项C:由于a与a4不是同类项,所以不能合并,即选项C是错误的;对于选项D:(a+b)(a-b)=a2-b2,即选项D错误.故应选B.评析本题考查了整式的运算,关键是要能正确理解并灵活运用整式运算的有关法则.注意同底数幂的乘法法则是底数不变,指数相加,而不是相乘;幂的乘方法则是底数不变,指数相乘;合并同类项要遵循两个不变,即字母不变,相同字母的指数也不变;注意平方差公式的结构形式.3.A选项A旋转180°后可以与自身重合,所以A图案是中心对称图形,故应选A.评析本题意在考查中心对称图形的概念,正确地分析图案的特征,利用中心对称图形的概念判定是求解的关键.判断方法:如果这个图形绕某一点旋转180°后能与自身重合,则这个图形是中心对称图形.4.C这个几何体的左视图由三个小正方体搭成,故左视图是C选项.评析本题考查的是几何体的视图,关键是要分清上、下、左、右各个方位.主视图是指从立体图形的正面看到的平面图,左视图指从立体图形的左面看到的平面图,俯视图指从立体图形的上面看到的平面图.5.D Rt△ABC中,因为∠C=90°,AC=4,AB=5,所以由正弦的定义,得sin B=ACAB =45,故应选D.评析本题考查锐角三角函数的求法,关键是要正确理解锐角三角函数的概念.根据锐角三角函数的定义可求某个锐角的三角函数值:正弦:在直角三角形中,锐角α的对边与斜边之比叫做∠α的正弦,记作sinα,即sinα=∠α的对边斜边.余弦:在直角三角形中,锐角α的邻边与斜边之比叫做∠α的余弦,记作cosα,即cosα=∠α的邻边斜边.正切:在直角三角形中,锐角α的对边与邻边之比叫做∠α的正切,记作tanα,即tanα=∠α的对边∠α的邻边.6.B因为10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,所以抽到不合格产品的概率是210=15,故应选B.评析本题考查概率的概念,关键是要弄清楚出现可能结果的意义.古典概型E,设它的所有可能结果是n个等可能的情形,事件A包含其中的m个情形,则定义事件A的概率为:P(A)=mn.7.D因为反比例函数y=k-1x 的图象经过点(-1,-2),所以-2=k-1-1,得k=3,故应选D.评析本题考查反比例函数的知识,关键是能正确理解点与图象的关系.即已知点在反比例函数的图象上,那么这点的坐标一定满足该反比例函数的解析式,反之也成立.8.A因为抛物线y=3x2的顶点坐标为(0,0),所以向左平移2个单位,再向下平移1个单位的顶点坐标为(-2,-1),即所得抛物线为y=3(x+2)2-1,故应选A.评析本题考查了二次函数的图象的特征,关键是要正确理解平移的意义和二次函数顶点坐标的知识.二次函数图象的平移规律:左加右减,上加下减.9.A因为∠B=60°,所以∠AOC=120°,又因为OP⊥AC,所以∠AOP=∠COP=60°,所以∠OAP=30°,又因为OP=2√3,所以OA=4√3,即☉O的半径为4√3,故应选A.评析本题考查三角形的外接圆、圆周角、圆心角、弦心距、含有30°角的直角三角形的性质等知识,关键要能利用圆周角与圆心角的关系求出∠AOP的大小.从条件出发,将问题转化到含有30°角的直角三角形中求得☉O的半径.x+12,而菜园的一边利用足够长的墙,所以0<x<24,故应10.B根据题意,得x+2y=24,所以y=-12选B.评析本题考查的是矩形的长与宽之间的函数关系,关键是要掌握矩形的对边相等的性质.注意矩形的周长等于(长+宽)×2.二、填空题11.答案 1.6×107解析16000000=1.6×107.评析本题考查的是科学记数法的知识,关键是确定a和n.科学记数法的形式是a×10n,其中1≤|a|<10,指数n是整数位数减1.12.答案x≠5解析依题意,得x-5≠0,得x≠5,即自变量x的取值范围是x≠5.评析本题考查了函数自变量的取值范围,知道分式的分母不能为0是求解的关键.13.答案3解析因为32=9,所以9的算术平方根是3,即√9=3.评析本题考查二次根式的化简,关键是要能正确理解一个正数的算术平方根的意义.知道1~20的平方,可以顺利地求解此类问题.14.答案a(a-1)2解析a3-2a2+a=a(a2-2a+1)=a(a-1)2.评析本题考查因式分解的知识,掌握因式分解的一般方法是解决问题的关键.分解因式关键是选择合适的方法.分解因式的步骤是一提(提公因式)、二套(套公式)、三验(检验是否分解彻底).套公式时可根据需分解多项式的项数进行选择:如果是两项,一般是平方差公式;三项,一般是完全平方公式.15.答案12<x<2解析解不等式2x-1>0,得x>12,解不等式x-1<1,得x<2,所以不等式组{2x-1>0,x-1<1的解集是12<x<2.评析本题考查解不等式组,关键是先求出每个不等式的解集,最后确定不等式组的解集.不等式组解集的确定法则:同大取大、同小取小、大小小大取中间、大大小小是无解.16.答案16或17解析当5是等腰三角形的腰长时,那么6就是底边长,所以这个等腰三角形的周长是5+5+6=16;当6是等腰三角形的腰长时,那么5就是底边长,所以这个等腰三角形的周长是6+6+5=17.所以这个等腰三角形的周长是16或17.评析本题考查等腰三角形和三角形的三边关系,考虑到哪是底边,哪是腰是正确求解的关键.另外,遇到等腰三角形的边角问题时,一定要注意分情况讨论求解,才能避免错误.17.答案2解析设圆锥底面的半径为r,由S=12lr,得l=2×8π÷4=4π,而扇形的弧长等于圆锥的底面周长,所以2πr=4π,解得r=2.即这个圆锥的底面圆的半径是2.评析本题意在考查圆锥的侧面展开图的有关计算,关键要能正确理解母线、侧面积等. 18.答案x=6解析去分母,得2x+3=3(x-1),解得x=6,经检验,x=6是原方程的解.评析本题考查分式方程的解法,关键是要能通过去分母,将分式方程转化为整式方程,注意不要忘记验根.19.答案105解析因为旋转30°,所以∠BAB'=30°,又因为点B'在BC上,AB=AB',所以∠B=75°,因为四边形ABCD是平行四边形,所以AB∥CD,所以∠B+∠C=180°,所以∠C=105°.评析本题考查的是图形的旋转、等腰三角形和平行四边形的性质及平行四边形的有关计算,关键是要能正确理解旋转的特征和平行四边形的性质.旋转前后图形的形状、大小都不发生改变,而平行四边形的对边平行,邻角互补.20.答案 √15解析 因为四边形ABCD 是矩形,所以∠ABE=∠BAD=90°,AD ∥BE,又因为点G 是DF 的中点,所以在Rt △DAF 中,AG=DG=FG,所以∠ADG=∠GAD=∠DEC,所以∠AGF=2∠ADG=2∠DEC,因为∠AED=2∠CED,所以∠AED=∠AGE,所以AE=AG,由AG=4,知AE=4,在Rt △ABE 中,因为BE=1,所以由勾股定理,得AB=√AE 2-BE 2=√42-12=√15. 评析 本题意在考查矩形的性质、直角三角形斜边上中线的性质以及勾股定理.关键是要能将已知条件转化到直角三角形中来处理.将已知条件结合图形转化到直角三角形中来,以便于运用勾股定理求解. 三、解答题 21.解析 原式=x+2x·x 2+x x+2=x+2x·x(x+1)x+2=x+1,(2分)∵x=√3cos 30°+12=√3×√32+12=32+12=2,(4分)∴原式=2+1=3.(6分)评析 本题考查的是分式的化简与求值和特殊角的三角函数值,求解的关键是要能先对已知分式化简,并求出x 的具体值,最后再代入计算.注意运算顺序,先算括号里的,后算括号外的,除法运算转化为乘法运算,同时将异分母转化为同分母,当然也可以把除法转化为乘法后用乘法分配律进行计算,注意灵活运用分式的基本性质、因式分解、除法运算法则等进行变化. 22.解析 (1)正确画图(参考图1~图4,画出一个即可).(3分) (2)正确画图(参考图5~图8,画出一个即可).(6分)评析 本题考查的是直角三角形、等腰三角形,关键是要在格点上寻求符合要求的点,这是一道开放型试题.23.证明 ∵∠ABC+∠CBE=180°, ∠ABD+∠DBE=180°,∠CBE=∠DBE, ∴∠ABC=∠ABD.(2分) 在△ABC 和△ABD 中,{∠CAE =∠DAE,AB =AB,∠ABC =∠ABD,∴△ABC ≌△ABD.(5分) ∴AC=AD.(6分)评析 本题考查的是全等三角形的判定和性质.关键是要能正确地寻求满足三角形全等的条件.一般三角形全等的判定方法有:SAS,ASA,AAS,SSS;直角三角形除了用一般方法判定外还可以用HL.24.解析 (1)S=-12x 2+20x.(2分) (2)解法一:∵a=-12<0,∴S 有最大值, ∴当x=-b2a =-202×(-12)=20时,(4分)S 有最大值,为4ac -b 24a =4×(-12)×0-2024×(-12)=200.∴当x 为20 cm 时,三角形面积最大,最大面积是200 cm 2.(6分) 解法二:∵a=-12<0,∴S 有最大值, ∴当x=-b2a =-202×(-12)=20时,(4分)S 有最大值,为S=-12×202+20×20=200.∴当x 为20 cm 时,三角形面积最大,最大面积是200 cm 2.(6分)评析 本题考查了利用二次函数解决生活中的问题,关键是要能依据题意,正确地寻找等量关系.25.解析 (1)40÷20%=200(名).∴在这次调查中,一共抽取了200名学生.(2分) (2)200-90-50-40=20(名).(4分) 正确画图.(5分)(3)解法一:2 000×50200=500(名).(7分) ∴估计全校最喜欢B 种套餐的学生有500名.(8分) 解法二:50200×100%=25%,(6分)2 000×25%=500(名).(7分)∴估计全校最喜欢B 种套餐的学生有500名.(8分)评析 本题考查了统计的知识,关键是要能读懂题目,准确地从统计图中捕捉信息. 26.解析 (1)设购买一个足球需要x 元,购买一个篮球需要y 元.根据题意得 {3x +2y =310,2x +5y =500,(2分)解得{x =50,y =80.∴购买一个足球需要50元,购买一个篮球需要80元.(4分) (2)解法一:设购买a 个篮球,则购买(96-a)个足球. 80a+50(96-a)≤5 720,(6分) a ≤3023,(7分)∵a 为整数,∴a 最多是30.∴这所中学最多可以购买30个篮球.(8分) 解法二:设购买n 个足球,则购买(96-n)个篮球, 50n+80(96-n)≤5 720,(6分) n ≥6513.(7分)∵n 为整数,∴n 最少是66,96-66=30,∴这所中学最多可以购买30个篮球.(8分)评析 本题考查的是用方程组和不等式解决问题.关键是要能寻求到等量关系和不等量关系.属中档题.27.解析 (1)解法一:如图,∵y=2x+4交x 轴和y 轴于A,B, ∴A(-2,0),B(0,4),∴OA=2,OB=4,∵四边形ABCO 是平行四边形, ∴BC=OA=2,过点C 作CK ⊥x 轴于K, 则四边形BOKC 是矩形,∴OK=BC=2,CK=OB=4, ∴C(2,4),(1分)代入y=-x+m 得4=-2+m, ∴m=6.(2分) 解法二:如图,∵y=2x+4交x 轴和y 轴于A,B, ∴A(-2,0),B(0,4),∴OA=2,OB=4, 延长DC 交y 轴于点N,∵y=-x+m 交x 轴和y 轴于D,N, ∴D(m,0),N(0,m),∴OD=ON, ∴∠ODN=∠OND=45°.∵四边形ABCO 是平行四边形, ∴BC ∥AO,BC=OA=2,∴∠NCB=∠ODN=∠OND=45°, ∴NB=BC=2.(1分) ∴ON=NB+OB=2+4=6, ∴m=6.(2分)(2)解法一:如图,延长DC 交y 轴于N,分别过点E,G 作x 轴的垂线,垂足分别是R,Q,则四边形ERQG、四边形POQG、四边形EROP是矩形,∴ER=PO=GQ=t,∵tan∠BAO=ERAR =OBOA,∴tAR=42,∴AR=12t.(3分)∵y=-x+6交x轴和y轴于D,N,∴OD=ON=6,∴∠ODN=45°,∵tan∠ODN=GQQD,∴DQ=t.(4分)又∵AD=AO+OD=2+6=8,∴EG=RQ=8-12t-t=8-32t,∴d=-32t+8(0<t<4).(6分)解法二:如图,∵EG∥AD,P(0,t),∴设E(x1,t),G(x2,t),把E(x1,t)代入y=2x+4得t=2x1+4,∴x1=t2-2,(3分)把G(x2,t)代入y=-x+6得t=-x2+6,∴x2=6-t,(4分)∴d=EG=x2-x1=(6-t)-(t2-2),∴d=-32t+8(0<t<4).(6分)(3)解法一:如图,∵四边形ABCO是平行四边形,∴AB∥OC,∴∠ABO=∠BOC,∵BP=4-t,∴tan∠ABO=EPBP =tan∠BOC=12,∴EP=2-t2,∴PG=d-EP=6-t.(7分)∵以OG 为直径的圆经过点M, ∴∠OMG=90°.(8分) ∵∠OPG=90°,∠MFG=∠PFO, ∴∠BGP=∠BOC,∴tan ∠BGP=BPPG =tan ∠BOC=12, ∴4-t 6-t =12,解得t=2.(9分)∵∠BFH=∠ABO=∠BOC,∠OBF=∠FBH, ∴△BHF ∽△BFO,∴BH BF =BFBO ,即BF 2=BH ·BO,∵OP=2,∴PF=1,BP=2,∴BF=√BP 2+PF 2=√5,∴5=BH×4, ∴BH=54,∴HO=4-54=114, ∴H (0,114).(10分) 解法二:如图,∵四边形ABCO 是平行四边形,∴AB ∥OC, ∴∠ABO=∠BOC.∵BP=4-t,∴tan ∠ABO=EPBP =tan ∠BOC=12, ∴EP=2-t2,∴PG=d-EP=6-t.(7分)∵以OG 为直径的圆经过点M, ∴∠OMG=90°.(8分) ∵∠OPG=90°,∠MFG=∠PFO, ∴∠BGP=∠BOC,∴tan ∠BGP=BPPG =tan ∠BOC=12, ∴4-t 6-t =12,解得t=2.(9分)∴OP=2,BP=4-t=2,∴PF=1, ∴OF=√12+22=√5=BF,∴∠OBF=∠BOC=∠BFH=∠ABO,∴BH=HF, 过点H 作HT ⊥BF 于点T, 则BT=12BF=√52,∴BH=BTcos ∠OBF =√522√5=54, ∴OH=4-54=114,∴H (0,114).(10分)解法三:如图,∵OA=2,OB=4,∴由勾股定理得AB=2√5. ∵P(0,t),∴BP=4-t,∵cos ∠ABO=BP BE =4-t BE =OBAB =2√5,∴BE=√52(4-t),(7分)∵以OG 为直径的圆经过点M,∴∠OMG=90°,(8分) ∵四边形ABCO 是平行四边形,∴AB ∥OC, ∴∠ABG=∠OMG=90°=∠BPG, ∴∠ABO+∠BEG=90°,∠BGE+∠BEG=90°, ∴∠ABO=∠BGE,∴sin ∠ABO=sin ∠BGE, ∴OA AB =BE EG =BEd,即=√52(4-t)8-3t2,∴t=2.(9分)∵∠BFH=∠ABO=∠BOC,∠OBF=∠FBH, ∴△BHF ∽△BFO,∴BH BF =BFBO ,即BF 2=BH ·BO,∵OP=2,∴PF=1,BP=2, ∴BF=√BP 2+PF 2=√5,∴5=BH×4,∴BH=54, ∴HO=4-54=114,∴H (0,114).(10分)评析 本题考查了一次函数、平行四边形、矩形、相似三角形、圆以及锐角三角函数等知识,关键是要能正确地理解题意,通过适当的辅助线将问题转化.注意充分发挥方程思想、转化思想、数形结合思想.属中等偏难题. 28.解析 (1)证明:证法一:如图.∵BA ⊥AM,MN ⊥AP,∴∠BAM=∠ANM=90°, ∴∠PAQ+∠MAN=∠MAN+∠AMN=90°, ∴∠PAQ=∠AMN.(1分)∵PQ ⊥AB,MN ⊥AC,∴∠PQA=∠ANM=90°, ∵AQ=MN,∴△AQP ≌△MNA,(2分) ∴AN=PQ,AM=AP,∴∠AMB=∠APM. ∵∠APM=∠BPC,∠BPC+∠PBC=90°,∠AMB+∠ABM=90°, ∴∠ABM=∠PBC.(3分)∵PQ⊥AB,PC⊥BC,∴PQ=PC,(4分)∴PC=AN.(5分)证法二:如图.∵BA⊥AM,MN⊥AC,∴∠BAM=∠ANM=90°,∴∠PAQ+∠MAN=∠MAN+∠AMN=90°,∴∠PAQ=∠AMN.(1分)∵PQ⊥AB,∴∠AQP=90°=∠ANM.∵AQ=MN,∴△PQA≌△ANM.(2分)∴AP=AM,PQ=AN,∴∠APM=∠AMP.∵∠AQP+∠BAM=180°,∴PQ∥MA,∴∠QPB=∠AMP.(3分)∵∠APM=∠BPC,∴∠QPB=∠BPC.∵∠BQP=∠BCP=90°,BP=BP,∴△BPQ≌△BPC,(4分)∴PQ=PC,∴PC=AN.(5分)(2)解法一:如图.∵NP=2,PC=3,∴由(1)知PC=AN=3,∴AP=NC=5,AC=8,∴AM=AP=5,∴AQ=MN=√AM2-AN2=4.(6分)∵∠PAQ=∠AMN,∠ACB=∠ANM=90°,∴∠ABC=∠MAN,∴tan∠ABC=tan∠MAN=MNAN =4 3 .∵tan∠ABC=ACBC,∴BC=6.(7分)∵NE∥KC,∴∠PEN=∠PKC,又∵∠ENP=∠KCP,∴△PNE∽△PCK,∴NECK =NPPC,∵CK∶CF=2∶3,设CK=2k,则CF=3k,∴NE2k =23,NE=43k,过N作NT∥EF交CF于T,则四边形NTFE是平行四边形,∴NE=TF=43k,∴CT=CF-TF=3k-43k=53k.∵EF⊥PM,∴∠BFH+∠HBF=90°=∠BPC+∠HBF,∴∠BPC=∠BFH.∵EF∥NT,∴∠NTC=∠BFH=∠BPC.∵tan∠NTC=tan∠BPC=BCPC =2,∴tan∠NTC=NCCT=2,∴CT=53k=52,∴k=32.(8分)∴CK=2×32=3,BK=BC-CK=3.∵∠PKC+∠DKE=∠ABC+∠BDK,∠DKE=∠ABC, ∴∠BDK=∠PKC,tan ∠PKC=PCKC =1,∴tan ∠BDK=1,过K 作KG ⊥BD 于G.∵tan ∠BDK=1,tan ∠ABC=43, ∴设GK=4n,则BG=3n,GD=4n,∴BK=5n=3,∴n=35,∴BD=4n+3n=7n=215.(9分) ∵AB=√AC 2+BC 2=10,AQ=4,∴BQ=AB-AQ=6, ∴DQ=BQ-BD=6-215=95.(10分)解法二:如图.∵NP=2,PC=3,∴由(1)知AN=PC=3, ∴AP=NC=5,AC=8,∴AM=AP=5, ∴AQ=MN=√AM 2-AN 2=4.(6分) ∵NM ∥BC,∴∠NMP=∠PBC.又∵∠MNP=∠BCP,∴△MNP ∽△BCP, ∴MN BC =NPPC ,∴4BC =23,∴BC=6.(7分)作ER ⊥CF 于R,则四边形NERC 是矩形, ∴ER=NC=5,NE=CR, ∵∠BHF=∠BCP=90°, ∴∠EFR=90°-∠HBF,∠BPC=90°-∠HBF, ∴∠EFR=∠BPC,∴tan ∠EFR=tan ∠BPC, ∴ER RF =BCPC ,即5RF =63,∴RF=52,∵NE ∥KC,∴∠NEP=∠PKC.又∵∠ENP=∠KCP,∴△NEP ∽△CKP,∴NE KC =NP PC =23, ∵CK ∶CF=2∶3,设CK=2k,CF=3k, ∴NE=CR=43k,CR=CF-RF=3k-52,∴3k-52=43k,∴k=32,(8分)∴CK=3,CR=2,∴BK=3.在CF 的延长线上取点G,使∠EGR=∠ABC, ∴tan ∠EGR=tan ∠ABC,∴ER RG =AC BC =43,∴RG=34ER=154,EG=√ER2+RG2=254,KG=KC+CR+RG=354,∵∠DKE+∠EKC=∠ABC+∠BDK,∠ABC=∠DKE,∴∠BDK=∠EKC,∴△BDK∽△GKE,∴BDKG =BK EG,∴BD·EG=BK·KG,∴BD×254=3×354,∴BD=215.(9分)∵AB=√AC2+BC2=10,AQ=4,∴BQ=AB-AQ=6,∴DQ=BQ-BD=6-215=95.(10分)解法三:如图.∵NP=2,PC=3,∴由(1)知AN=PC=3,∴AP=NC=5,AC=8,∴AM=AP=5,∴AQ=MN=√AM2-AN2=4.(6分)∵NM∥BC,∴∠EMH=∠PBC,∠PEN=∠PKC.又∵∠PNE=∠PCK,∴△PNE∽△PCK,△PNM∽△PCB,∴NECK =PNPC,MNBC=PNPC,∵CK∶CF=2∶3,设CK=2k,则CF=3k,∴NE2k =23,4BC=23,∴NE=43k,BC=6.(7分)∴BF=6+3k,ME=MN-NE=4-43k,tan∠ABC=ACBC =43,BP=√PC2+BC2=3√5,∴sin∠EMH=sin∠PBC=PCBP =√55,∵EF⊥PM,∴FH=BFsin∠PBC=√55(6+3k),EH=EMsin∠EMH=√55(4-43k).过E作ER⊥BF于R,则四边形NCRE是矩形,∴ER=NC=5.∵∠RFE+∠REF=∠RFE+∠PBC=90°,∴∠REF=∠PBC.∴tan∠REF=tan∠PBC=12,∵tan∠REF=RFRE,∴RF=52,∴EF=√ER2+RF2=5√52,∵EH+FH=EF,∴√55(4-43k)+√55(6+3k)=5√52,∴k=32,(8分)∴CK=2×32=3,BK=BC-CK=3.∵∠PKC+∠DKE=∠ABC+∠BDK,∠DKE=∠ABC,∴∠BDK=∠PKC.∵tan∠PKC=1,∴tan∠BDK=1,过K作KG⊥BD于G.∵tan∠BDK=1,tan∠ABC=43,∴设GK=4n,则BG=3n,GD=4n,∴BK=5n=3,∴n=35,∴BD=4n+3n=7n=215.(9分)∵AB=√AC2+BC2=10,AQ=4,∴BQ=AB-AQ=6,∴DQ=BQ-BD=6-215=95.(10分)评析本题综合考查了直角三角形、全等三角形、相似三角形、锐角三角函数、特殊四边形、勾股定理等知识.属难题.关键是要能充分利用图形的性质,添加适当的辅助线,将问题转化.另外,本题强化了全等三角形和相似三角形以及锐角三角形的功能地位,充分使用了几何知识来解决问题.。
2012年全国中考数学压轴题分类解析汇编专题4:三角形四边形存在性问题24. (2012黑龙江龙东地区10分)如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,,点C的坐标为(-18,0)。
(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由。
【答案】解:(1)过点B作BF⊥x轴于F,在Rt△BCF中∵∠BCO=45°,BC=12,∴CF=BF=12 。
∵C 的坐标为(-18,0),∴AB=OF=6。
∴点B的坐标为(-6,12)。
(2)过点D作DG⊥y轴于点G,∵OD=2BD,∴OD=23 OB。
∵AB∥DG,∴△ODG∽△OBA 。
∵D G O D O G2AB O B O A3===,AB=6,OA=12,∴DG=4,OG=8。
∴D(-4,8),E(0,4)。
设直线DE解析式为y=kx+b(k≠0)∴4k b8b4-+=⎧⎨=⎩,解得k1b4=-⎧⎨=⎩。
∴直线DE解析式为y=-x+4。
(3)结论:存在。
点Q 的坐标为:( ,-),(- ,),(4,4),(-2,2)。
【考点】一次函数综合题,等腰直角三角形判定和性质,相似三角形判定和性质,待定系数法,直线上点的坐标与方程的关系,菱形的判定和性质。
【分析】(1)构造等腰直角三角形BCF ,求出BF 、CF 的长度,即可求出B 点坐标。
(2)已知E 点坐标,欲求直线DE 的解析式,需要求出D 点的坐标.构造△ODG∽△OBA,由线段比例关系求出D 点坐标,从而可以求出直线DE 的解析式。
(3)如图所示,符合题意的点Q 有4个:设直线y=-x+4分别与x 轴、y 轴交于点E 、点F ,则E (0,4),F (4,0),OE=OF=4,。
龙东中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 3.14D. 1/3答案:B2. 一个二次函数的图像开口向上,且经过点(1,0)和(-1,0),下列哪个选项是该二次函数的对称轴?A. x = 0B. x = 1C. x = -1D. x = 2答案:A3. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 14答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. ±3B. 3C. -3D. 9答案:A5. 下列哪个选项是不等式2x - 3 > 5的解集?A. x > 4B. x < 4C. x > 1D. x < 1答案:A6. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 一个长方体的长、宽、高分别为3cm、4cm和5cm,那么它的体积是多少?A. 60cm³B. 48cm³C. 36cm³D. 12cm³答案:A8. 一个等差数列的前三项分别为2、5、8,那么它的第10项是多少?A. 27B. 29C. 31D. 23答案:C9. 一个正五边形的内角和是多少?A. 540°B. 360°C. 720°D. 1080°答案:A10. 一个函数y = 2x + 3的图像与x轴的交点坐标是什么?A. (-3/2, 0)B. (3/2, 0)C. (0, 3)D. (0, -3)答案:A二、填空题(每题3分,共15分)11. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是_________。
答案:512. 如果一个数的立方等于-8,那么这个数是_________。
答案:-213. 一个圆的周长为12π,那么它的半径是_________。
2012年中考数学样题参考答案选择题(每题3分,共30分)一、BADCD BADBA二、填空题(每题3分,共18分)11. 15; 12. 6; 13. (-4,3) 14.38; 15.53; 16. 4n ;三、解答题(每小题8分,共16分)17..解:原式21=····································································· 6分3=··················································································· 8分18. 解:原式=213(3)32(2)(2)a a a a a a a +---÷-++- ······················································ 2分 =213(2)(2)32(3)a a a a a a a +-+---+-· ··········································································· 3分 1233a a a a +-=--- ······························································································ 4分 =33a - ········································································································ 6分 a 取值时只要不取2,2-,3就可以. ······························································· 7分求值正确.原式 ····························································································· 9分四、解答题(每小题9分,共18分)19.(1)200 ······································································································· 2分 (2)补充图:扇形图中补充的 跳绳25% ························································· 3分 其它20% ······································································································ 4分 条形图中补充的高为50 ···················································································· 5分(3)54 ········································································································ 7分 (4)解:1860×40%=744(人)答:最喜欢“球类”活动的学生约有744人. ······················································ 9分 20.解:(1)根据题意可列表或树状图如下:第一次第二次12341 —— (1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4) 4(4,1)(4,2)(4,3)——·············································································· 5分···························································································· 5分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23= ···················································································· 7分 (2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ····················································································· 9分五、解答证明题(每小题8分,共16分) 21.(1)证明:∵AD 平分∠BAC∴∠BAD=21∠BAC . (1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3)1234 第一次摸球第二次摸球∵AE 平分∠BAF . ∴∠BAE=21∠BAF . 2分 ∵∠BAC+∠BAF=180°∴∠BAD+∠BAE=21 (∠BAC+∠BAF )= 21×180°=90° ∴∠DAE=90°.即DA ⊥AE . 4分 (2)AB=DE 5分 理由是:∵AB=AC ,AD 平分∠BAC . ∴AD ⊥BC ,即∠ADB=90°. ∵BE ⊥AE .∴∠AEB=90° 又∵∠DAE=90°(已证),∴四边形AEBD 是矩形.故AB=DE . 8分22、解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ··················································································· 2分(2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,···················································································· 5分∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ······ 6分 (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ········································· 8分六、解答证明题(23小题10分,24小题12分,共22分) 23、证明:(1) 连结AC ,如图∵C 是弧BD 的中点∴∠BDC =∠DBC 1分 又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB ∴ ∠BCE=∠BAC∠BCE =∠DBC 3分 ∴ CF =BF 4分因此,CF =BF . (2)解法一:作CG ⊥AD 于点G , ∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线.·············· 5分 ∴ CE =CG ,AE =AG 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG∴BE =DG 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 8分又 △BCE ∽△BAC∴ 212BC BEAB ==· 9分 32±=BC (舍去负值)∴32=BC 10分(2)解法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , 5分 在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= 6分 又∵CF BF =, ∴EF CF 3= 利用勾股定理得:EF EF BF BE 2222=-= 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=28分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF 9分 ∴3222=+=CE BE BC 10分24.解:(1)解方程01682=+-x x ,得421==x x由实数m 是方程01682=+-x x 的一个实数根,得m=4 ∴点A ,C 的坐标分别是A (4,0)和C (0,4). 1分将A (4,0)和C (0,4)的坐标分别代人c bx x y ++-=221 得⎩⎨⎧==⇒⎩⎨⎧==++-414048c b c c b ∴抛物线的解析式为4212++-=x x y 3分 (2)由4212++-=x x y ,令y=0,得04212=++-x x ,解此方程得2,421-==x x∴点B 的坐标为B (2,0),故AB=6, S △ABC =21·AB ·CO=12 4分设AD=k (0≤k ≤6), ∵ED ∥BC ∴△ADE ∽△ABC ,从而36)6()(222k k AB AD S S ABC ADE ===∆∆ ∴32k S ADE=∆ (5分) 同理可知,3)6(2-=∆k S BDF6分∴S 四边形DECF =S △ABC -S △ADE -S △BDF=6)3(3243222+--=+-k k k (7分) 当且仅当k =3时,S 四边形DECF 有最大值为6,此时D (1,0) 8分 (3)存在满足条件的点N ,使得∠NOB=∠AMO ,设点N (y x ,) ∵若M 是⊙G 的优弧ACO 上的一个动点∴∠NOB=∠AMO=∠ACO=45° 9分 ①当点N 在x 轴上方时,tan45°=x y xy-=⇒=-1 又∵4212++-=x x y ∴4212++-x x 3220842±=⇒=--⇒-=x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (232,322--) 10分 ②当点N 在x 轴下方时,tan45°=x y xy=⇒=--1 又∵4212++-=x x y ∴22842122±=⇒=⇒=++-x x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (22,22--) 12分。
2012年中考数学学科考试说明一、指导思想数学学科命题要依据《数学课程标准》,关注学生学情,兼顾教材,有利于指导课程改革,有利于加强学科教与学的正确导向,考试要面向全体学生、注重过程,渗透思想,突出能力,强调应用,考查学生运用知识的能力,有利于培养学生的创新意识和实践能力。
要从数学学科的特点出发,坚持考查数学基础知识、基本技能、数学思想方法和思维能力的方向;从促进学生学会学习的角度,考查获取新知识、独立学习的能力;从培养学生实践能力的角度,考查应用数学的意识,分析和解决在相关学科、生产和生活中带有实际意义的数学问题的能力;从培养学生数学能力的角度,考查发现问题、提出问题、探索和研究问题的能力;从培养学生数学素质的角度,考查对数学本质属性的理解和掌握程度、学科间的知识渗透,考查运用学科知识的能力和包括数学知识、技能、能力和个性品质等方面的数学素质。
适当对学科内知识的综合运用能力的考查,以考查学生综合应用能力,培养学生的探究能力。
二、命题范围在《全日制义务教育数学课程标准(实验稿)》的全部知识和技能中选择命题内容。
以人教版“六·三”学制数学义务教育教材为准,以八、九年级教材为主。
三、考查内容与说明(一)考查内容在《全日制义务教育数学课程标准(实验稿)》的全部知识和技能中选择命题内容.根据我省教学及教材使用情况,考查知识点具体如下:数与代数1.有理数:(1)理解有理数的意义;(2)会比较有理数大小;(3)借助数轴理解相反数和绝对值的意义;(4)会求有理数的相反数;(5)会求有理数的绝对值;(6)掌握有理数的加、减、乘、除、乘方;(7)掌握简单的混合运算;(8)理解有理数的运算律;(9)能灵活处理较大数字的信息。
注:绝对值符号内不含字母;有理数的加、减、乘、除、乘方及简单的混合运算以三步为主。
2.实数:(1)了解平(立)方根、算术平方根的概念;(2)会用根号表示数的平(立)方根;(3)会求平(立)方根;(4)了解无理数、实数的概念,理解实数与数轴上的点一一对应;(5)能用有理数估计无理数的大致范围;(6)了解近似数、有效数字的概念;(7)了解二次根式的概念及其加、减、乘、除运算法则;(8)会进行实数的简单四则运算。
注:实数的简单四则运算不要求分母有理化。
3.代数式:(1)理解代数式的意义及表示;(2)理解代数式的实际背景或几何意义;(3)会求代数式的值。
4.整式与分式:(1)了解整数指数幂的意义及基本性质;(2)会用科学记数法表示数;(3)了解整式的概念,会进行简单的整式加、减运算及简单的乘法运算;(4)会推导乘法公式并能进行简单运算;(5)会用提公因式法、公式法进行因式分解;(6)掌握分式及基本性质;(7)会进行简单的分式加、减、乘、除运算。
注:简单的整式乘法运算中,多项式相乘仅指一次式相乘;乘法公式指:(a+b)(a-b)=a2-b2,(a+b)2=a2+2ab+b2;因式分解(指数是正整数)时,直接用公式不超过二次。
5.方程(组):(1)会列方程解应用题;(2)用观察、画图或计算器等手段估计方程的解;(3)会解一元一次方程;(4)会解简单的二元一次方程组;(5)会解可化为一元一次方程的分式方程;(6)掌握一元二次方程及其解法;(7)根据具体问题的实际意义,检验结果是否合理。
注:解可化为一元一次方程的分式方程,方程中的分式不超过两个;会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。
6.不等式(组):(1)掌握不等式及基本性质;(2)会解简单的一元一次不等式并能在数轴上表示出解集;(3)会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集;(4)掌握一元一次不等式(组)的实际运用。
7.函数:(1)理解具体问题中的数量关系及变化规律;(2)了解常量、变量的意义;(3)了解函数的概念及三种表示方法;(4)掌握函数的自变量取值范围、会求出函数值;(5)掌握一次函数及表达式;(6)掌握一次函数的图象及性质;(7)理解正比例函数;(8)能根据一次函数的图象求二元一次方程组的近似解;(9)能用一次函数解决实际问题;(10)掌握反比例函数及表达式;(11)掌握反比例函数的图象及性质;(12)能用反比例函数解决某些实际问题;(13)掌握二次函数及表达式;(14)掌握二次函数的图象及性质;(15)会根据公式确定图象的顶点、开口方向、对称轴;(16)掌握二次函数的应用;(17)会利用二次函数的图象求一元二次方程的近似解。
注:确定简单的整式、分式和简单实际问题中的函数的自变量取值范围;会根据公式确定二次函数图象的顶点、开口方向和对称轴,公式不要求记忆和推导。
空间与图形8.相交线与平行线:(1)理解点、线、面;(2)掌握角并会比较角的大小;(3)掌握角度的简单换算;(4)了解角平分线及性质;(5)了解补(余)角及性质、对顶角及性质;(6)了解垂线,垂线段及性质;(7)了解线段垂直平分线及性质;(8)知道过一点有且仅有一条直线垂直于已知直线;(9)掌握平行线的性质;(10)掌握过直线外一点有且仅有一条直线平行于已知直线;(11)理解平行线间的距离。
9.三角形:(1)了解三角形有关概念(内角、外角、角平分线、中线、高);(2)会画出任意三角形的角平分线、中线、高;(3)了解三角形的稳定性;(4)掌握三角形的中位线及性质;(5)了解全等三角形的概念;(6)掌握三角形全等的条件;(7)了解等腰三角形的有关概念;(8)掌握等腰三角形的性质和一个三角形是等腰三角形的条件;(9)了解等边三角形及探索其性质;(10)了解直角三角形的概念;(11)掌握直角三角形的性质和一个三角形是直角三角形的条件;(12)掌握勾股定理及逆定理。
10.四边形:(1)探索并了解多边形的内角和与外角和的公式;(2)了解正多边形的概念;(3)掌握平行四边形、矩形、菱形、正方形、梯形的概念及性质;(4)掌握四边形是平行四边形、矩形、菱形、正方形的条件,了解四边形的不稳定性;(5)探索并了解等腰梯形的性质及四边形是等腰梯形的条件;(6)探索并了解线段、矩形、平行四边形、三角形的重心及物理意义;(7)理解平面图形的镶嵌。
11.圆:(1)理解圆的有关概念;(2)了解弧、弦、圆心角的关系;(3)探索并了解点与圆、直线与圆、圆与圆的位置关系;(4)了解圆周角与圆心角的关系;(5)了解直径所对圆周角的特征;(6)了解三角形的内心和外心;(7)了解切线的概念;(8)探索并了解切线的性质和判定;(9)会计算弧长及扇形面积公式;(10)会计算圆锥的侧面积和全面积。
12.尺规作图注:尺规作图在作法后不要求证明。
13.视图与投影:(1)会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型;(2)了解直棱柱、圆锥的侧面展开图;(3)了解视点、视角、盲区的涵义;(4)了解中心投影和平行投影。
14.图形的轴对称:(1)认识轴对称及探索其基本性质;(2)能利用轴对称作图,并能指出对称轴;(3)探索基本图形的轴对称及其相关性质;(4)了解并欣赏物体的镜面对称,能利用轴对称进行图案设计。
15.图形的平移:(1)认识平移及探索其基本性质;(2)了解平移作图;(3)利用平移进行图案设计。
16.图形的旋转:(1)认识旋转及探索其基本性质;(2)能作出简单平面图形旋转后图形;(3)探索图形之间的变换关系;(4)灵活运用轴对称、平移和旋转的组合进行图案设计。
17.图形的相似:(1)了解比例的基本性质,线段的比、成比例线段,黄金分割;(2)探索相似图形的性质;(3)了解三角形相似的概念和探索两个三角形相似的条件;(4)掌握位似及应用;(5)利用图形相似解决实际问题;(6)掌握锐角三角函数(sinA,cosA,tanA);(7)知道30°、45°、60°角的三角函数值;(8)运用三角函数解决与直角三角形有关的简单实际问题。
18.图形与坐标:(1)认识并能画平面直角坐标系;(2)能在方格纸上建立直角坐标系;(3)掌握图形变换后点的坐标的变化;(4)灵活运用不同方式确定物体的位置。
19.图形与证明:(1)理解证明的必要性;(2)了解定义、命题、定理的定义;(3)会识别两个互逆命题;(4)理解反例的作用;(5)体会反证法的含义;(6)掌握用综合法证明的格式及依据;(7)掌握四条基本事实;(8)由(7)中的基本事实证明八个命题。
统计与概率20.统计:(1)会收集、整理、描述和分析数据;(2)掌握总体、个体、样本;(3)会用扇形统计图表示数据;(4)会计算加权平均数;(5)会计算极差和方差;(6)理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题;(7)能用样本平均数、方差来估计总体的平均数和方差;(8)理解并认识统计的应用。
21.概率:(1)了解概率的意义;(2)运用列举法计算简单事件发生的概率;(3)理解并认识概率的应用。
说明:严格按照《全日制义务教育数学课程标准(实验稿)》中的规定执行,加强对圆与二次函数的有关知识的考查,其难易程度不超过教材上例、习题的难度。
(二)说明1.试题更注重对学生基础知识、基本技能和学习能力的考查.适当增加题量降低难度.个别试题源于课本,但赋予一定的新意或灵活性,使试题源于课本又异于课本,降低几何证明题的难度,适当增加合情推理题;依据课标不出偏、难、怪题,不出计算和证明烦琐或人为编造似是而非的题目,使学生复习时真正做到减轻负担,以利于学生更好地得到全面发展.2.试题更强调理论联系实际,联系社会、接触生活的试题,加强对学生分析问题、归纳能力的测试,以利于学生适应社会、适应生活。
3.注重对学生综合运用知识分析、解决问题能力的考查,以利于发挥学生的创造性,并进一步培养学生的创新意识和实践能力。
.四、试卷长度与难度考试采用闭卷笔答方式,满分值为120分,考试时间为120分钟。
数与式46℅空间与图形42℅概率与统计12℅。
试题易、中、难内容各占80%、15%、5%。
五、试卷题型题型分为填空题,单项选择题,解答题(其中包括计算题、简答题、情境应用问题、动手实践题、图象信息题、信息给予题、数形结合题等)。
数学试卷(样卷)一、填空题(每小题3分共30分) 1.我国第六次人口普查显示,全国人口为1 370 536 875人,将这个总人口数(保留三个有效数字)用科学记数法表示为2.若式子xx --232有意义,则x 的取值范围是__________ 3.已知x 2+3x =7,则代数式3x 2 +9x -2的值为 .4.一个扇形的圆心角为90°,半径为2,则这个扇形的弧长为5.如图,已知AC FE =,BC DE =,点A 、D 、B 、F 在一条直线上,要使△ABC ≌△FDE ,还需添加一个..条件,这个条件可以是 .6.如图,一只鸽子飞翔在空中,然后随意落在如图所示的某个格子中(每个格子除颜色外完全相同),则白鸽落在白色格子中的机会是___.7、如图,点M 是反比例函数2y x=(0>x )图象上任意一点,MN ⊥y 轴于N ,点P 是x 轴上的动点,则△MNP 的面积为8.不等式组24030x x ->⎧⎨->⎩,的解集为 9、一所中学的数学研究小组10位教师年龄分别是55、40、40、48、36、36、37、25、33、这10位教师年龄的中位数是9.小亮记录了他7天中每天完成家庭作业所需的时间,结果如下(单位:分)80、70、90、60、70、70、80,这组数据的中位数是_______10.试写出一个开口向上,对称轴为直线2x =,且与y 轴的交点的坐标为(0,3)的抛物线的解析式是_______________________.二.选择题(每小题3分共30分)5题 A C D B E F 6题 y N M P x O 第7题11.平面内点A (-1,2)和点B (-1,6)的对称轴是( )A .x 轴B .y 轴C .直线y=4D .直线x=-112.已知α是锐角,3cos 2α=,则α等于( ) A .30° B .45° C .60° D .90°13.如图,在平行四边形ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上,图中面积相等的四边形共有( )A .2对;B .3对;C .4对;D .5对.14.如图,正方形ABCD 的边BC 在等腰直角三角形PQR 的底边QR 上,其余两个顶点A 、D 在PQ 、PR 上,则PA ∶PQ =( )A.1∶2B.1∶2C.1∶3D.2∶315.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A 、450a 元B 、225a 元C 、150a 元D 、300a 元16某读书小组的学生将自己的图书向本组其他成员各赠送一本,全组共互赠89本,如果全组有x 名学生,则根据题意可列方程为 ( )A 、x (x +1)=89B 、2x (x -1)=89C 、3x (x +1)=89D 、x (x -1)=8917.在直角坐标系中,O 为坐标原点,A(1,1),在x 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )(A)4个 (B)3个 (C)2个 (D)1个18.二次函数22(3)5y x =--+图象的开口方向、对称轴和顶点坐标分别为( ).(A )开口向下,对称轴为3x =-,顶点坐标为(3,5)(B )开口向下,对称轴为3x =,顶点坐标为(3,5)(C )开口向上,对称轴为3x =-,顶点坐标为(-3,5)13题 P R Q C B D A 14题 150° 20m 30m 15题19.如图,O 是边长为1的正ABC △的中心,将ABC △绕点O 逆时针方向旋转180 ,得111A B C △,则111A B C △与ABC △重叠部分(图中阴影部分)的面积为( )A .38B .34C .36D .38 19题图20.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C .7D .5或721.(本题 5 分)先化简再求值 (442-+x x )÷xx x 2422+- 其中x=-1 22.(本题6 分)已知一元二次方程x 2-4x +k =0有两个不相等的实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值.23.(本题6 分)如图,⊙O 的直径AB =4,∠ABC =30°,BC =43,D 是线段BC 的中点.(1)试判断点D 与⊙O 的位置关系,并说明理由;(2)过点D 作DE ⊥AC ,垂足为点E ,求证:直线DE 是⊙O 的切线.24.(本题 7 分) 某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).AC 1BC A 1 B 1 O O ED C BA ∙4号 25% 30% 1号 3号 2号 500株幼苗中各品种幼苗所占百分比统计图 成活数(株) 135 85 117 50 100 150 各品种幼苗成活数统计图(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整;(3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.25.(本题 8 分)在一次远足活动中,小聪由甲地步行到乙地后原路返回,小明由甲地步行到乙地后原路返回,到达途中的丙地时发现物品可能遗忘在乙地,于是从丙返回乙地,然后沿原路返回.两人同时出发,步行过程中保持匀速.设步行的时间为t (h ),两人离甲地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)分别求出小明由甲地出发首次到达乙地及由乙地到达丙地所用的时间.(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.26.(本题 8 分)如图,O 是边长为a 的正方形ABCD 的对称中心,P 为OD 上一点,OP b = (202b a <<),连结AP ,把一个边长均大于2a 的直角三角板的直角顶点放置于P 点处,让三角板绕P 点旋转,旋转时保持三角板的两直角边分别与正方形的BC 、CD 边(含端点)相交,其交点为E 、F .(1)在旋转过程中,PE 的长能否与AP 的长相等?若能,请作出此时点E 的位置,并给 2 t (h) O A B C S (km) 10 8 (第25题图)出证明,若不能,请说明理由.(2)探究在旋转过程中,线段EF 与AP 长的大小关系,并对你得出的结论给予证明.27.(本题 10 分)某木材加工厂,计划一年加工2400立方米地板。