2016届高考数学知识讲解总复习导学案13.doc
- 格式:doc
- 大小:133.92 KB
- 文档页数:3
2016高考导航第1讲 集合的概念与运算1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法.(1)真子集AB(2)不含任何元素的集合叫做空集,记作∅,并规定空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D 答案:B 2.(2014·高考北京卷)已知集合A ={x |x 2-2x =0},B ={0,1,2},则A ∩B =( ) A .{0} B .{0,1} C .{0,2} D .{0,1,2} 答案:C 3.(2014·高考浙江卷)设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( ) A .∅ B .{2} C .{5} D .{2,5} 解析:选B.因为A ={x ∈N |x ≤-5或x ≥5}, 所以∁U A ={x ∈N |2≤x <5},故∁U A ={2}.1.辨明五个易误点(1)认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)要注意区分元素与集合的从属关系;以及集合与集合的包含关系.(3)易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身. (4)运用数轴图示法易忽视端点是实心还是空心.(5)在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.2.巧用两种数学思想 (1)数形结合思想数轴和Venn 图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn 图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题.(2)转化与化归思想在集合的运算关系和两个集合的包含关系之间往往存在一定的联系,在一定的情况下可以相互转化,如A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅,在解题中运用这种转化能有效地简化解题过程.[做一做]4.由a 2,2-a ,4组成一个三元素集合A ,则实数a 的值可以是( ) A .1 B .-2 C .6 D .2 答案:C5.已知集合A ={-1,0,4},集合B ={x |x 2-2x -3≤0,x ∈N },全集为U ,则图中阴影部分表示的集合是________.解析:∵B ={x |x 2-2x -3≤0,x ∈N }={x |-1≤x ≤3,x ∈N }={0,1,2,3}.而图中阴影部分表示的为属于A 且不属于B 的元素构成的集合,故该集合为{-1,4}.答案:{-1,4},[学生用书P 2~P 3])考点一__集合的基本概念______________________(1)(2013·高考山东卷)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(2)已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2 015=________. [解析] (1)当x =0,y =0时,x -y =0;当x =0,y =1时,x -y =-1; 当x =0,y =2时,x -y =-2;当x =1,y =0时,x -y =1; 当x =1,y =1时,x -y =0;当x =1,y =2时,x -y =-1; 当x =2,y =0时,x -y =2;当x =2,y =1时,x -y =1;当x =2,y =2时,x -y =0.根据集合中元素的互异性知,B 中元素有0,-1,-2,1,2,共5个.(2)由M =N 知, ⎩⎪⎨⎪⎧n =1log 2n =m 或⎩⎪⎨⎪⎧n =m log 2n =1, ∴⎩⎪⎨⎪⎧n =1m =0或⎩⎪⎨⎪⎧m =2n =2, 故(m -n )2 015=-1或0. [答案] (1)C (2)-1或0若将本例(1)中的集合B 更换为B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则集合B中有________个元素.解析:当x =0时,y =0;当x =1时,y =0或y =1;当x =2时,y =0,1,2.故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素. 答案:6[规律方法] 解决集合的概念问题应关注两点1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.1.已知集合M={1,m+2,m2+4},且5∈M,则m的值为()A.1或-1 B.1或3C.-1或3 D.1,-1或3解析:选B.∵5∈{1,m+2,m2+4},∴m+2=5或m2+4=5,即m=3或m=±1.当m=3时,M={1,5,13};当m=1时,M={1,3,5};当m=-1时,M={1,1,5}不满足互异性.∴m的值为3或1.考点二__集合间的基本关系__________________(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A ⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4(2)已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A⊆B,则实数c的取值范围是()A.(0,1] B.[1,+∞)C.(0,1) D.(1,+∞)[解析](1)由x2-3x+2=0,得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)法一:因为A={x|y=lg(x-x2)}={x|x-x2>0}=(0,1),B={x|x2-cx<0,c>0}=(0,c).因为A⊆B,画出数轴,如图所示,得c≥1,即实数c的取值范围是[1,+∞).法二:因为A={x|y=lg(x-x2)}={x|x-x2>0}=(0,1),取c=1,则B=(0,1),所以A⊆B成立,故可排除C,D;取c=2,则B=(0,2),所以A⊆B成立,故可排除A.[答案](1)D(2)B[规律方法](1)判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.(2)子集与真子集的区别与联系:集合A的真子集一定是其子集,而集合A的子集不一定是其真子集;若集合A有n个元素,则其子集个数为2n,真子集个数为2n-1.[注意]题目中若有条件B⊆A,则应分B=∅和B≠∅两种情况进行讨论.2.(1)(2013·高考福建卷)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知集合A={x|-2≤x≤7},B={x|a+1<x<2a-1},若B A,则实数a的取值范围是________.解析:(1)∵A={1,a},B={1,2,3},A⊆B,∴a∈B且a≠1,∴a=2或3,∴“a=3”是“A⊆B”的充分而不必要条件.(2)当B=∅时,有a+1≥2a-1,则a≤2.当B≠∅时,若B A,如图.则⎩⎪⎨⎪⎧a +1≥-22a -1≤7a +1<2a -1,解得2<a ≤4. 综上,a 的取值范围为a ≤4. 答案:(1)A (2)(-∞,4]考点三__集合的基本运算(高频考点)____________集合的基本运算是历年各地高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题难度不大,多为低档题.高考对集合运算的考查主要有以下三个命题角度: (1)求集合间的交、并、补运算; (2)已知集合的运算结果求集合;(3)已知集合的运算结果求参数的值(或参数的取值范围).(1)已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤32},则A ∪B =( )A .∅B .(0,13]C .[13,1] D .(-∞,1](2)(2014·高考重庆卷)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.(3)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=________.(4)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.[解析] (1)由题意知,A =(0,1],B =(-∞,13],∴A ∪B =(-∞,1].故选D.(2)U ={1,2,3,4,5,6,7,8,9,10},画出Venn 图,如图所示,阴影部分就是所要求的集合,即(∁U A )∩B ={7,9}.(3)∵U ={1,2,3,4},∁U (A ∪B )={4},∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}. 又∁U B ={3,4},∴A ∩(∁U B )={3}.(4)A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <1,由B ={x |m <x <2},画出数轴,可得m =-1,n =1.[答案] (1)D (2){7,9} (3){3} (4)-1 1[规律方法] (1)在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时需注意端点值的取舍.(2)在解决有关A ∩B =∅时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.另外要注意分类讨论和数形结合思想的应用.3.(1)已知集合A ={x |y =x },B ={x |12<2x <4},则(∁R A )∩B 等于( )A .{x |-1<x <2}B .{x |-1<x <0}C .{x |x <1}D .{x |-2<x <0}(2)(2015·河北唐山模拟)集合M ={2,log 3a },N ={a ,b },若M ∩N ={1},则M ∪N =( ) A .{0,1,2} B .{0,1,3} C .{0,2,3} D .{1,2,3} (3)(2015·新乡市一中月考)设集合A ={x ||x -a |<1,x ∈R },B ={x |1<x <5,x ∈R },若A ∩B =∅,则实数a 的取值范围是( )A .{a |0≤a ≤6}B .{a |a ≤2或a ≥4}C .{a |a ≤0或a ≥6}D .{a |2≤a ≤4}解析:(1)选B.因为A ={x |y =x }={x |x ≥0},所以∁R A ={x |x <0}.又B ={x |12<2x <4}={x |-1<x <2},所以(∁R A )∩B ={x |-1<x <0}.(2)选D.因为M ∩N ={1},所以log 3a =1,即a =3,所以b =1,即M ={2,1},N ={3,1},所以M ∪N ={1,2,3},故选D.(3)选C.|x -a |<1⇔-1<x -a <1⇔a -1<x <a +1,又B ={x |1<x <5},A ∩B =∅,故a +1≤1或a -1≥5,即a ≤0或a ≥6.,[学生用书P 4])交汇创新——集合中的创新问题以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托.(1)如图所示的V enn 图中,A ,B 是非空集合,定义集合A #B 为阴影部分表示的集合.若x ,y ∈R ,A ={x |y =2x -x 2},B ={y |y =3x ,x >0},则A #B 为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1或x ≥2}D .{x |0≤x ≤1或x >2}(2)如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x ,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =________.[解析] (1)因为A ={x |0≤x ≤2},B ={y |y >1},A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},所以A #B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2},故选D.(2)由题意可知-2x =x 2+x ,∴x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.[答案] (1)D (2){0,6}[名师点评] 解决集合创新型问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.1.(2015·安徽安庆一中、安师大附中联考)设集合S ={A 0,A 1,A 2},在S 上定义运算⊕:A i ⊕A j =A k ,其中k 为i +j 被3除的余数,i ,j ∈{1,2,3},则使关系式(A i ⊕A j )⊕A i =A 0成立的有序数对(i ,j )总共有( )A .1对B .2对C .3对D .4对解析:选C.i =1时,j =1符合要求;i =2时,j =2符合要求;i =3时,j =3符合要求,所以使关系式(A i ⊕A j )⊕A i =A 0成立的有序数对(i ,j )有(1,1),(2,2),(3,3),共3对.2.(2015·广东揭阳模拟)对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M .对于两个集合A ,B ,定义集合A △B ={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A △B 的结果为________.解析:要使f A (x )·f B (x )=-1,必有x ∈{x |x ∈A 且x ∉B }∪{x |x ∈B 且x ∉A }={1,6,10,12},所以A △B ={1,6,10,12}.答案:{1,6,10,12}1.(2015·河南省洛阳市统一考试)已知集合A ={1,2,4},则集合B ={(x ,y )|x ∈A ,y ∈A }中元素的个数为( )A .3B .6C .8D .9解析:选D.集合B 中元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.2.已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( )A .AB B .B AC .A ⊆BD .B ⊆A解析:选B.由题意知A ={x |y =1-x 2,x ∈R },∴A ={x |-1≤x ≤1},∴B ={x |x =m 2,m ∈A }={x |0≤x ≤1},∴B A ,故选B.3.(2014·高考江西卷)设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则A ∩(∁R B )=( )A .(-3,0)B .(-3,-1)C .(-3,-1]D .(-3,3)解析:选C.由题意知,A ={x |x 2-9<0}={x |-3<x <3}, ∵B ={x |-1<x ≤5},∴∁R B ={x |x ≤-1或x >5}.∴A ∩(∁R B )={x |-3<x <3}∩{x |x ≤-1或x >5}={x |-3<x ≤-1}. 4.(2015·福建南安一中期末)全集U =R ,A ={x |x 2-2x ≤0},B ={y |y =cos x ,x ∈R },则图中阴影部分表示的集合为( )A .{x |x <-1或x >2}B .{x |-1≤x ≤2}C .{x |x ≤1}D .{x |0≤x ≤1}解析:选D.阴影部分表示的集合是A ∩B .依题意知,A ={x |0≤x ≤2},B ={y |-1≤y ≤1},∴A ∩B ={x |0≤x ≤1},故选D.5.(2015·山东临沂期中)已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞) 解析:选D.∵x 2-3x +2>0,∴x >2或x <1. ∴A ={x |x >2或x <1},∵B ={x |x ≤a }, ∴∁U B ={x |x >a }.∵∁U B ⊆A ,借助数轴可知a ≥2,故选D.6.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉{x |x 2-2x +a >0},∴1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,∴a ≤1. 答案:(-∞,1]7.(2015·江西八校联考)已知R 是实数集,集合M ={x |3x<1},N ={y |y =t -2t -3,t ≥3},则N ∩∁R M =________.解析:解不等式3x<1,得x <0或x >3,所以∁R M =[0,3].令t -3=x ,x ≥0,则t =x 2+3,所以y =x 2-2x +3≥2,即N =[2,+∞).所以N ∩∁R M =[2,3].答案:[2,3]8.已知全集U ={-2,-1,0,1,2},集合A =⎩⎨⎧⎭⎬⎫x |x =2n -1,x ,n ∈Z ,则∁U A =________.解析:因为A =⎩⎨⎧⎭⎬⎫x |x =2n -1,x ,n ∈Z ,当n =0时,x =-2;n =1时不合题意; n =2时,x =2;n =3时,x =1; n ≥4时,x ∉Z ;n =-1时,x =-1; n ≤-2时,x ∉Z .故A ={-2,2,1,-1},又U ={-2,-1,0,1,2},所以∁U A ={0}. 答案:{0}9.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B ); (2){9}=A ∩B .解:(1)∵9∈(A ∩B ), ∴2a -1=9或a 2=9, ∴a =5或a =3或a =-3. 当a =5时,A ={-4,9,25},B ={0,-4,9};当a =3时,a -5=1-a =-2,不满足集合元素的互异性; 当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 所以a =5或a =-3.(2)由(1)可知,当a =5时, A ∩B ={-4,9},不合题意, 当a =-3时,A ∩B ={9}. 所以a =-3. 10.(2015·河北衡水模拟)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若A ∪B =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2}, ∴∁I M ={x |x ∈R 且x ≠-3}, ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2}, ∵A ∪B =A ,∴B ⊆A , ∴B =∅或B ={2},当B =∅时,a -1>5-a ,得a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=25-a =2,解得a =3,综上所述,所求a 的取值范围为{a |a ≥3}.1.(2015·河南郑州模拟)已知集合A ={(x ,y )|x +y -1=0,x ,y ∈R },B ={(x ,y )|x 2+y 2=1,x ,y ∈R },则集合A ∩B 的元素个数是( )A .0B .1C .2D .3解析:选C.法一:(解方程组)集合A ∩B 的元素个数即为方程组⎩⎪⎨⎪⎧x +y -1=0x 2+y 2=1解的个数,解方程组得⎩⎪⎨⎪⎧x =0,y =1或⎩⎪⎨⎪⎧x =1,y =0,有两组解,故选C.法二:(数形结合)在同一坐标系下画出直线x +y -1=0和圆x 2+y 2=1的图象,如图,直线与圆有两个交点.即A ∩B 的元素个数是2,故选C.2.已知数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i两数中至少有一个属于A ,则称集合A 为“权集”,则( )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中可以有元素0D .“权集”中一定有元素1解析:选B.由于3×4与43均不属于数集{1,3,4},故A 不正确;由于1×2,1×3,1×6,2×3,62,63,11,22,33,66都属于数集{1,2,3,6},故B 正确;由“权集”的定义可知a ja i需有意义,故不能有0,同时不一定有1,C ,D 错误,故选B.3.已知集合A ={x |x 2-2x -8≤0},B ={x |x 2-(2m -3)x +m (m -3)≤0,m ∈R },若A ∩B =[2,4],则实数m =________.解析:由题知A =[-2,4],B =[m -3,m ],因为A ∩B =[2,4],故⎩⎪⎨⎪⎧m -3=2m ≥4,则m =5.答案:54.某校田径队共30人,主要专练100 m ,200 m 与400 m .其中练100 m 的有12人,练200 m 的有15人,只练400 m 的有8人.则参加100 m 的专练人数为________.解析:用Venn 图表示A 代表练100 m 的人员集合,B 代表练200 m 的人员集合,C 代表练400 m 的人员集合, U 代表田径队共30人的集合,设既练100 m 又练200 m 的人数为x ,则专练100 m 的人数为12-x . ∴12-x +15+8=30, 解得x =5.所以专练100 m 的人数为12-5=7. 答案:7 5.(2015·福建三明模拟)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.解:(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}.(2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意; ②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13. 综上知m ≥0即实数m 的取值范围为[0,+∞).6.(选做题)(2015·浙江金丽衢十二校第一次联考)已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“垂直对点集”.判断下列四个集合是否为“垂直对点集”.①M =⎩⎨⎧⎭⎬⎫(x ,y )|y =1x ;②M ={(x ,y )|y =sin x +1}; ③M ={(x ,y )|y =log 2x };④M ={(x ,y )|y =e x -2}.解:依题意, 要使得x 1x 2+y 1y 2=0成立,只需过原点任作一直线l 1与该函数的图象相交,再过原点作与l 1垂直的直线l 2也与该函数的图象相交即可.对于①,取l 1:y =x ,则l 2:y =-x 与函数y =1x图象没有交点,①中M 不是“垂直对点集”;③中取l 1:y =0,则l 2:x =0与函数y =log 2x 图象没有交点,③中M 不是“垂直对点集”;如图所示,作出②④中两个函数的图象知:过原点任作一直线l 1与该函数的图象相交,再过原点作与l 1垂直的直线l 2也与该函数的图象相交.故②④中的集合M 是“垂直对点集”.。
第8课时两条直线的交点教学过程一、问题情境由直线方程的概念,我们知道直线上的一点坐标与二元一次方程的解的关系,那么,如果两直线相交于一点,这一点坐标与这两条直线的方程有何关系?你能求出它们的交点坐标吗?二、数学建构(一)生成概念1.探究问题情境中的问题:设两条直线l1,l2的方程分别是A1x+B1y+C1=0,A2x+B2y+C2=0.如果它们有交点P(x0,y0),则P的坐标应同时满足两直线的方程,即A1x0+B1y0+C1=0,A2x0+B2y0+C2=0,所以(x0,y0)是方程组错误!未找到引用源。
的解;反之,若方程组错误!未找到引用源。
有唯一一个解(x0,y0),即P(x0,y0)同时满足两直线的方程,所以P(x0,y0)是两直线的唯一公共点,即交点.2.两直线方程与两直线位置关系的对应关系为:设两条直线的方程分别是l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0.(二)理解概念根据上面结论可知:研究两条直线l1,l2的位置关系(相交、重合、平行)可以转化为两条直线方程所得的方程组错误!未找到引用源。
的解的个数问题,这样就把研究“形”问题转化为“数”的问题.三、数学运用【例1】(教材P93例1)分别判断下列直线是否相交,若相交,求出它们的交点:(1)l1: 2x-y=7,l2: 3x+2y-7=0.(2)l1: 2x-6y+4=0,l2: 4x-12y+8=0.(3)l1: 4x+2y+4=0,l2:y=-2x+3.[1]解(1)因为方程组错误!未找到引用源。
的解为错误!未找到引用源。
所以直线l1与l2相交,交点坐标为(3,-1).(2)因为方程组错误!未找到引用源。
有无数组解,所以直线l1和l2重合.(3)因为方程组错误!未找到引用源。
无解,所以直线l1和l2没有公共点,故l1∥l2.【例2】(教材P94例2)直线l经过原点,且经过另外两条直线2x+3y+8=0,x-y-1=0的交点,求直线l的方程.[2]解法一因为方程组错误!未找到引用源。
学案37 数学归纳法导学目标: 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.自主梳理 1.归纳法由一系列有限的特殊事例得出一般结论的推理方法叫归纳法.根据推理过程中考查的对象是涉及事物的全体或部分可分为完全归纳法和不完全归纳法.2.数学归纳法设{P n }是一个与正整数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切正整数成立.3.数学归纳法公理(1)(归纳奠基)证明当n 取第一个值__________时命题成立.(2)(归纳递推)假设______________________时命题成立,证明当________时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.自我检测1.用数学归纳法证明:“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1)”在验证n =1时,左端计算所得的项为_______________________________________________________________.2.如果命题P (n )对于n =k (k ∈N *)时成立,则它对n =k +2也成立,又若P (n )对于n =2时成立,则下列结论中正确的序号有________.①P (n )对所有正整数n 成立; ②P (n )对所有正偶数n 成立; ③P (n )对所有正奇数n 成立;④P (n )对所有大于1的正整数n 成立.3.证明n +22<1+12+13+14+…+12n <n +1(n >1),当n =2时,中间式子等于______________.4.用数学归纳法证明“2n >n 2+1对于n >n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取________.5.在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列(S n 表示数列{a n }的前n 项和),则S 2,S 3,S 4分别为______________;由此猜想S n =__________.探究点一 用数学归纳法证明等式例1 对于n ∈N *,用数学归纳法证明:1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1 =16n (n +1)(n +2).变式迁移1 用数学归纳法证明:对任意的n ∈N *,1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12).探究点二 用数学归纳法证明不等式例2 用数学归纳法证明:对一切大于1的自然数,不等式⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12n -1>2n +12均成立.变式迁移2 已知m 为正整数,用数学归纳法证明:当x >-1时,(1+x )m≥1+mx .探究点三 用数学归纳法证明整除问题例3 用数学归纳法证明:当n ∈N *时,a n +1+(a +1)2n -1能被a 2+a +1整除.变式迁移3 用数学归纳法证明:当n 为正整数时,f (n )=32n +2-8n -9能被64整除.从特殊到一般的思想例 (14分)已知等差数列{a n }的公差d 大于0,且a 2、a 5是方程x 2-12x +27=0的两根,数列{b n }的前n 项和为T n ,且T n =1-12b n .(1)求数列{a n }、{b n }的通项公式;(2)设数列{a n }的前n 项和为S n ,试比较1b n与S n +1的大小,并说明理由.【答题模板】解 (1)由已知得⎩⎪⎨⎪⎧a 2+a 5=12a 2a 5=27,又∵{a n }的公差大于0,∴a 5>a 2,∴a 2=3,a 5=9.∴d =a 5-a 23=9-33=2,a 1=1,∴a n =1+(n -1)×2=2n -1.[2分]∵T n =1-12b n ,∴b 1=23,当n ≥2时,T n -1=1-12b n -1,∴b n =T n -T n -1=1-12b n -⎝ ⎛⎭⎪⎫1-12b n -1, 化简,得b n =13b n -1,[4分]∴{b n }是首项为23,公比为13的等比数列,即b n =23·⎝ ⎛⎭⎪⎫13n -1=23n ,∴a n =2n -1,b n =23n .[6分](2)∵S n =1+n -2n =n 2,∴S n +1=(n +1)2,1b n =3n2.以下比较1b n与S n +1的大小:当n =1时,1b 1=32,S 2=4,∴1b 1<S 2,当n =2时,1b 2=92,S 3=9,∴1b 2<S 3,当n =3时,1b 3=272,S 4=16,∴1b 3<S 4,当n =4时,1b 4=812,S 5=25,∴1b 4>S 5.[9分]猜想:n ≥4时,1b n>S n +1.下面用数学归纳法证明: ①当n =4时,已证.②假设当n =k (k ∈N *,k ≥4)时,1b k>S k +1,即3k2>(k +1)2.[11分] 那么,n =k +1时,1b k +1=3k +12=3·3k2>3(k +1)2=3k 2+6k +3=(k 2+4k +4)+2k 2+2k -1>[(k +1)+1]2=S (k +1)+1,∴n =k +1时,1b n>S n +1也成立.由①②可知n ∈N *,n ≥4时,1b n>S n +1都成立.综上所述,当n =1,2,3时,1b n <S n +1,当n ≥4时,1b n>S n +1.[14分]【突破思维障碍】1.归纳——猜想——证明是高考重点考查的内容之一,此类问题可分为归纳性问题和存在性问题,本例中归纳性问题需要从特殊情况入手,通过观察、分析、归纳、猜想,探索出一般规律.2.数列是定义在N *上的函数,这与数学归纳法运用的范围是一致的,并且数列的递推公式与归纳原理实质上是一致的,数列中有不少问题常用数学归纳法解决.【易错点剖析】1.严格按照数学归纳法的三个步骤书写,特别是对初始值的验证不可省略,有时要取两个(或两个以上)初始值进行验证;初始值的验证是归纳假设的基础.2.在进行n =k +1命题证明时,一定要用n =k 时的命题,没有用到该命题而推理证明的方法不是数学归纳法.1.数学归纳法:先证明当n 取第一个值n 0时命题成立,然后假设当n =k (k ∈N *,k ≥n 0)时命题成立,并证明当n =k +1时命题也成立,那么就证明了这个命题成立.这是因为第一步首先证明了n 取第一个值n 0时,命题成立,这样假设就有了存在的基础,至少k =n 0时命题成立,由假设合理推证出n =k +1时命题也成立,这实质上是证明了一种循环,如验证了n 0=1成立,又证明了n =k +1也成立,这就一定有n =2成立,n =2成立,则n =3成立,n =3成立,则n =4也成立,如此反复以至无穷,对所有n ≥n 0的整数就都成立了.2.(1)第①步验证n =n 0使命题成立时n 0不一定是1,是使命题成立的最小正整数.(2)第②步证明n =k +1时命题也成立的过程中一定要用到归纳递推,否则就不是数学归纳法.(满分:90分)一、填空题(每小题6分,共48分)1.用数学归纳法证明命题“当n 是正奇数时,x n +y n能被x +y 整除”,在第二步时,正确的证法是________(填序号).①假设n =k (k ∈N *)时命题成立,证明n =k +1命题成立;②假设n =k (k 是正奇数)时命题成立,证明n =k +1命题成立;③假设n =2k +1 (k ∈N *)时命题成立,证明n =k +1命题成立; ④假设n =k (k 是正奇数)时命题成立,证明n =k +2命题成立.2.已知f (n )=1n +1n +1+1n +2+…+1n2,则f (n )中共有____________项;当n =2时,f (2)=____________.3.如果命题P (n )对n =k 成立,则它对n =k +1也成立,现已知P (n )对n =4不成立,则下列结论正确的是________(填序号).①P (n )对n ∈N *成立;②P (n )对n >4且n ∈N *成立;③P (n )对n <4且n ∈N *成立;④P (n )对n ≤4且n ∈N *不成立.4.(2010·泰州模拟)用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上________________________________________________________________________.5.(2010·淮南调研)若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是____________________.6.用数学归纳法证明“1+2+3+…+n +…+3+2+1=n 2 (n ∈N *)”时,从n =k 到n =k +1时,该式左边应添加的代数式是________.7.(2010·南京模拟)用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是____________________.8.凸n 边形有f (n )条对角线,凸n +1边形有f (n +1)条对角线,则f (n +1)=f (n )+________.二、解答题(共42分)9.(12分)用数学归纳法证明1+n 2≤1+12+13+…+12n ≤12+n (n ∈N *).10.(14分)数列{a n }满足a n >0,S n =12(a n +1a n),求S 1,S 2,猜想S n ,并用数学归纳法证明.11.(16分)(高考预测题)已知函数f (x )=1x 2e -1|x |(其中e 为自然对数的底数).(1)判断f (x )的奇偶性;(2)在(-∞,0)上求函数f (x )的极值;(3)用数学归纳法证明:当x >0时,对任意正整数n 都有f (1x)<n !·x 2-n.学案37 数学归纳法答案自主梳理3.(1)n 0 (n 0∈N *) (2)n =k (k ∈N *,且k ≥n 0) n =k +1 自我检测1.1+a +a 2解析 当n =1时左端有n +2项,∴左端=1+a +a 2. 2.②解析 由n =2成立,根据递推关系“P (n )对于n =k 时成立,则它对n =k +2也成立”,可以推出n =4时成立,再推出n =6时成立,…,依次类推,P (n )对所有正偶数n 成立”.3.1+12+13+14解析 当n =2时,中间的式子1+12+13+122=1+12+13+14. 4.5解析 当n =1时,21=12+1;当n =2时,22<22+1;当n =3时,23<32+1;当n =4时,24<42+1.而当n =5时,25>52+1, ∴n 0=5.5.32,74,158,2n-12n -1 课堂活动区例1 解题导引 用数学归纳法证明与正整数有关的一些等式命题,关键在于弄清等式两边的构成规律:等式的两边各有多少项,由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.证明 设f (n )=1·n +2·(n -1)+3·(n -2)+…+(n -1)·2+n ·1. (1)当n =1时,左边=1,右边=1,等式成立;(2)假设当n =k (k ≥1且k ∈N *)时等式成立,即1·k +2·(k -1)+3·(k -2)+…+(k -1)·2+k ·1 =16k (k +1)(k +2), 则当n =k +1时,f (k +1)=1·(k +1)+2[(k +1)-1]+3[(k +1)-2]+…+[(k +1)-1]·2+(k +1)·1=f (k )+1+2+3+…+k +(k +1) =16k (k +1)(k +2)+12(k +1)(k +1+1) =16(k +1)(k +2)(k +3). 由(1)(2)可知当n ∈N *时等式都成立. 变式迁移1 证明 (1)当n =1时,左边=1-12=12=11+1=右边,∴等式成立.(2)假设当n =k (k ≥1,k ∈N *)时,等式成立,即 1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k . 则当n =k +1时, 1-12+13-14+…+12k -1-12k +12k +1-12k +2 =1k +1+1k +2+…+12k +12k +1-12k +2 =1k +1+1+1k +1+2+…+12k +12k +1+⎝ ⎛⎭⎪⎫1k +1-12k +2 =1k +1+1+1k +1+2+…+12k +12k +1+1k +, 即当n =k +1时,等式也成立,所以由(1)(2)知对任意的n ∈N *等式都成立.例2 解题导引 用数学归纳法证明不等式问题时,从n =k 到n =k +1的推证过程中,证明不等式的常用方法有比较法、分析法、综合法、放缩法等.证明 (1)当n =2时,左边=1+13=43;右边=52.∵左边>右边,∴不等式成立.(2)假设当n =k (k ≥2,且k ∈N *)时不等式成立,即⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1>2k +12.则当n =k +1时,⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1+15…⎝ ⎛⎭⎪⎫1+12k -1⎣⎢⎡⎦⎥⎤1+1k +-1>2k +12·2k +22k +1=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1=2k +32k +122k +1=k ++12.∴当n =k +1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n ,不等式都成立. 变式迁移2 证明 (1)当m =1时,原不等式成立;当m =2时,左边=1+2x +x 2,右边=1+2x ,因为x 2≥0,所以左边≥右边,原不等式成立;(2)假设当m =k (k ≥2,k ∈N *)时,不等式成立,即(1+x )k≥1+kx ,则当m =k +1时, ∵x >-1,∴1+x >0.于是在不等式(1+x )k≥1+kx 两边同时乘以1+x 得,(1+x )k ·(1+x )≥(1+kx )(1+x )=1+(k +1)x +kx 2≥1+(k +1)x .所以(1+x )k +1≥1+(k +1)x , 即当m =k +1时,不等式也成立.综合(1)(2)知,对一切正整数m ,不等式都成立.例3 解题导引 用数学归纳法证明整除问题,由k 过渡到k +1时常使用“配凑法”.在证明n =k +1成立时,先将n =k +1时的原式进行分拆、重组或者添加项等方式进行整理,最终将其变成一个或多个部分的和,其中每个部分都能被约定的数(或式子)整除,从而由部分的整除性得出整体的整除性,最终证得n =k +1时也成立.证明 (1)当n =1时,a 2+(a +1)=a 2+a +1能被a 2+a +1整除.(2)假设当n =k (k ≥1且k ∈N *)时, a k +1+(a +1)2k -1能被a 2+a +1整除, 则当n =k +1时,a k +2+(a +1)2k +1=a ·a k +1+(a +1)2(a +1)2k -1=a ·a k +1+a ·(a +1)2k -1+(a 2+a +1)(a +1)2k -1=a [a k +1+(a +1)2k -1]+(a 2+a +1)(a +1)2k -1,由假设可知a [a k +1+(a +1)2k -1]能被a 2+a +1整除, ∴a k +2+(a +1)2k +1也能被a 2+a +1整除, 即n =k +1时命题也成立.综合(1)(2)知,对任意的n ∈N *命题都成立.变式迁移3 证明 (1)当n =1时,f (1)=34-8-9=64, 命题显然成立.(2)假设当n =k (k ≥1,k ∈N *)时,f (k )=32k +2-8k -9能被64整除.则当n =k +1时, 32(k +1)+2-8(k +1)-9=9(32k +2-8k -9)+9·8k +9·9-8(k +1)-9=9(32k +2-8k -9)+64(k +1)即f (k +1)=9f (k )+64(k +1) ∴n =k +1时命题也成立.综合(1)(2)可知,对任意的n ∈N *,命题都成立. 课后练习区 1.④解析 ①、②、③中,k +1不一定表示奇数,只有④中k 为奇数,k +2为奇数.2.n 2-n +1 12+13+143.④解析 由题意可知,P (n )对n =3不成立(否则P (n )对n =4也成立).同理可推P (n )对n =2,n =1也不成立.4.(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析 ∵当n =k 时,左端=1+2+3+…+k 2, 当n =k +1时,左端=1+2+3+…+k 2+(k 2+1)+…+(k +1)2, ∴当n =k +1时,左端应在n =k 的基础上加上 (k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.5.f (k +1)=f (k )+(2k +1)2+(2k +2)2解析 ∵f (k )=12+22+…+(2k )2∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2,∴f (k +1)=f (k )+(2k +1)2+(2k +2)2. 6.2k +1解析 ∵当n =k +1时,左边=1+2+…+k +(k +1)+k +…+2+1,∴从n =k 到n =k +1时,应添加的代数式为(k +1)+k =2k +1.7.1k +k +解析 不等式的左边增加的式子是 12k +1+12k +2-1k +1=1k +k +. 8.n -1解析 ∵f (4)=f (3)+2,f (5)=f (4)+3, f (6)=f (5)+4,…,∴f (n +1)=f (n )+n -1.9.证明 (1)当n =1时,左边=1+12,右边=12+1,∴32≤1+12≤32,命题成立.(2分) 当n =2时,左边=1+22=2;右边=12+2=52,∴2<1+12+13+14<52,命题成立.(4分)(2)假设当n =k (k ≥2,k ∈N *)时命题成立,即1+k 2<1+12+13+…+12k <12+k ,(6分)则当n =k +1时, 1+12+13+…+12k +12k +1+12k +2+…+12k +2k >1+k 2+2k ·12k +1=1+k +12.(8分) 又1+12+13+…+12k +12k +1+12k +2+…+12k +2k <12+k +2k·12k =12+(k +1),即n =k +1时,命题也成立.(10分)由(1)(2)可知,命题对所有n ∈N *都成立.(12分) 10.解 ∵a n >0,∴S n >0,由S 1=12(a 1+1a 1),变形整理得S 21=1,取正根得S 1=1.由S 2=12(a 2+1a 2)及a 2=S 2-S 1=S 2-1得S 2=12(S 2-1+1S 2-1),变形整理得S 22=2,取正根得S 2= 2.同理可求得S 3= 3.由此猜想S n =n .(6分) 用数学归纳法证明如下:(1)当n =1时,上面已求出S 1=1,结论成立.(8分) (2)假设当n =k 时,结论成立,即S k =k .(9分) 那么,当n =k +1时,S k +1=12(a k +1+1a k +1)=12(S k +1-S k +1S k +1-S k )=12(S k +1-k +1S k +1-k ). 整理得S 2k +1=k +1,取正根得S k +1=k +1. 故当n =k +1时,结论成立.(13分)由(1)、(2)可知,对一切n ∈N *,S n =n 都成立. (14分)11.(1)解 ∵函数f (x )定义域为{x ∈R |x ≠0}且f (-x )=1-x 2e -1|-x |=1x 2e -1|x |=f (x ), ∴f (x )是偶函数.(4分)(2)解 当x <0时,f (x )=1x 2e 1x,f ′(x )=-2x 3e 1x +1x 2e 1x (-1x2)=-1x 4e 1x(2x +1),(6分)令f ′(x )=0有x =-12,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-12) -12(-12,0) f ′(x ) + 0 - f (x ) 增 极大值减由表可知:当x =-12时,f (x )取极大值4e -2,无极小值.(10分)(3)证明 当x >0时f (x )=1x 2e -1x,∴f (1x)=x 2e -x.考虑到:x >0时,不等式f (1x)<n !·x 2-n 等价于x 2e -x <n !·x 2-n ⇔x n <n !·e x(ⅰ)(12分)所以只要用数学归纳法证明不等式(ⅰ)对一切n ∈N *都成立即可.①当n =1时,设g (x )=e x-x (x >0),∵x>0时,g′(x)=e x-1>0,∴g(x)是增函数,故g(x)>g(0)=1>0,即e x>x(x>0).所以当n=1时,不等式(ⅰ)成立.(13分)②假设n=k(k≥1,k∈N*)时,不等式(ⅰ)成立,即x k<k!e x,当n=k+1时,设h(x)=(k+1)!·e x-x k+1(x>0),h′(x)=(k+1)!e x-(k+1)x k=(k+1)(k!e x-x k)>0,故h(x)=(k+1)!·e x-x k+1(x>0)为增函数,∴h(x)>h(0)=(k+1)!>0,∴x k+1<(k+1)!·e x,即n=k+1时,不等式(ⅰ)也成立,(15分)由①②知不等式(ⅰ)对一切n∈N*都成立,故当x>0时,原不等式对n∈N*都成立.(16分)。
§13.3 数学归纳法数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时结论成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时结论成立,证明当n =k +1时结论也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( × ) (2)所有与正整数有关的数学命题都必须用数学归纳法证明.( × ) (3)用数学归纳法证明问题时,归纳假设可以不用.( × )(4)不论是等式还是不等式,用数学归纳法证明时,由n =k 到n =k +1时,项数都增加了一项.( × )(5)用数学归纳法证明等式“1+2+22+…+2n +2=2n +3-1”,验证n =1时,左边式子应为1+2+22+23.( √ )(6)用数学归纳法证明凸n 边形的内角和公式时,n 0=3.( √ )1.若f (n )=1+12+13+…+16n -1(n ∈N *),则f (1)为________(用式子表示).答案 1+12+13+14+15解析 等式右边的分母是从1开始的连续的自然数,且最大分母为6n -1,则当n =1时,最大分母为5.2.设S n =1+12+13+14+…+12n ,则S n +1-S n =____________________(用式子表示).答案12n +1+12n +2+12n +3+…+12n +2n 解析 ∵S n +1=1+12+…+12n +12n +1+…+12n +2n ,S n =1+12+13+14+…+12n ,∴S n +1-S n =12n +1+12n +2+12n +3+…+12n +2n . 3.设f (n )=1n +1+1n +2+…+1n +n,n ∈N *,那么f (n +1)-f (n )=________(用式子表示). 答案12n +1-12n +2解析 f (n +1)-f (n )=1n +2+1n +3+…+1n +n +1n +1+n +1n +1+n +1-(1n +1+1n +2+…+1n +n )=12n +1+12n +2-1n +1=12n +1-12n +2. 4.用数学归纳法证明1+a +a 2+…+an +1=1-a n +21-a(a ≠1,n ∈N *),在验证n =1成立时,左边需计算的项是_______________________________________________________________. 答案 1+a +a 2解析 观察等式左边的特征得到n =1时的式子.题型一 用数学归纳法证明等式例1 求证:(n +1)(n +2)·…·(n +n )=2n·1·3·5·…·(2n -1)(n ∈N *). 思维点拨 n 从k 变到k +1,左边增乘了2(2k +1). 证明 ①当n =1时,等式左边=2,右边=2,故等式成立; ②假设当n =k 时等式成立,即(k +1)(k +2)·…·(k +k )=2k·1·3·5·…·(2k -1), 那么当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k +1) =(k +2)(k +3)·…·(k +k )(2k +1)(2k +2) =2k·1·3·5·…·(2k -1)(2k +1)·2 =2k +1·1·3·5·…·(2k -1)(2k +1),这就是说当n =k +1时等式也成立. 由①②可知,对所有n ∈N *等式成立. 思维升华 用数学归纳法证明恒等式应注意 (1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标. (3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法. 用数学归纳法证明:121×3+223×5+…+n 2n -n +=n n +n +(n ∈N *).证明 ①当n =1时,左边=121×3=13,右边=++=13, 左边=右边,等式成立. ②假设n =k 时,等式成立. 即121×3+223×5+…+k 2k -k +=k k +k +,当n =k +1时, 左边=121×3+223×5+…+k 2k -k ++k +2k +k +=k k +k ++k +2k +k +=k k +k ++k +2k +k +=k +k 2+5k +k +k +=k +k +k +,右边=k +k +1+k ++1]=k +k +k +,左边=右边,等式成立. 即对所有n ∈N *,原式都成立. 题型二 用数学归纳法证明不等式例2 已知函数f (x )=ax -32x 2的最大值不大于16,又当x ∈[14,12]时,f (x )≥18.(1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1.思维点拨 (1)利用题中条件分别确定a 的范围进而求a ; (2)利用数学归纳法证明. (1)解 由题意,知f (x )=ax -32x 2=-32(x -a 3)2+a26.又f (x )max ≤16,所以f (a 3)=a 26≤16.所以a 2≤1.又x ∈[14,12]时,f (x )≥18,所以⎩⎪⎨⎪⎧f1218,f1418,即⎩⎪⎨⎪⎧a 2-38≥18,a 4-332≥18,解得a ≥1.又因为a 2≤1,所以a =1. (2)证明 用数学归纳法证明: ①当n =1时,0<a 1<12,显然结论成立.因为当x ∈(0,12)时,0<f (x )≤16,所以0<a 2=f (a 1)≤16<13.故n =2时,原不等式也成立. ②假设当n =k 时,不等式0<a k <1k +1成立. 因为f (x )=ax -32x 2的对称轴为直线x =13,所以当x ∈(0,13]时,f (x )为增函数.所以由0<a k <1k +1≤13,得0<f (a k )<f (1k +1). 于是,0<a k +1=f (a k )<1k +1-32·1k +2+1k +2-1k +2=1k +2-k +4k +2k +<1k +2. 所以当n =k +1时,原不等式也成立. 根据①②,知对任何n ∈N *,不等式a n <1n +1成立. 思维升华 (1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,在归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法等证明.(2014·陕西)设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N *,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N *,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明. 解 由题设得,g (x )=x1+x(x ≥0).(1)由已知,g 1(x )=x 1+x ,g 2(x )=g (g 1(x ))=x1+x 1+x 1+x=x 1+2x ,g 3(x )=x1+3x,…,可猜想g n (x )=x1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x1+x ,结论成立.②假设n =k 时结论成立, 即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k x 1+g k x =x1+kx 1+x 1+kx=x 1+k +x,即结论成立.由①②可知,结论对n ∈N *成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x 恒成立.设φ(x )=ln(1+x )-ax 1+x (x ≥0),则φ′(x )=11+x-a+x2=x +1-a+x2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增. 又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立, ∴a ≤1时,ln(1+x )≥ax1+x恒成立(仅当x =0时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )≤0,∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax1+x不恒成立, 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,n -f (n )=n -ln(n +1),比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0. 令x =1n ,n ∈N *,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N *成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x ,x >0.令x =1n,n ∈N *,则lnn +1n >1n +1. 故有ln 2-ln 1>12,ln 3-ln 2>13,…,ln(n +1)-ln n >1n +1, 上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.题型三 归纳—猜想—证明例3 已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *.(1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.思维点拨 通过计算a 1,a 2,a 3寻求规律猜想{a n }的通项公式,然后用数学归纳法证明. (1)解 当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1(a 1>0).当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3(a 2>0). 同理可得a 3=7- 5.猜想a n =2n +1-2n -1(n ∈N *).(2)证明 ①由(1)知,当n =1,2,3时,通项公式成立. ②假设当n =k (k ≥3,k ∈N *)时,通项公式成立, 即a k =2k +1-2k -1. 由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k, 将a k =2k +1-2k -1代入上式并整理得a 2k +1+22k +1a k +1-2=0,解得:a k +1=2k +3-2k +1(a n >0). 即当n =k +1时,通项公式也成立.由①和②,可知对所有n ∈N *,a n =2n +1-2n -1都成立.思维升华 (1)利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理即演绎推理论证结论的正确性.(2)“归纳—猜想—证明”的基本步骤是“试验—归纳—猜想—证明”.高中阶段与数列结合的问题是最常见的问题.在数列{a n }中,a 1=2,a n +1=λa n +λn +1+(2-λ)2n (n ∈N *,λ>0).(1)求a 2,a 3,a 4;(2)猜想{a n }的通项公式,并加以证明. 解 (1)a 2=2λ+λ2+2(2-λ)=λ2+22,a 3=λ(λ2+22)+λ3+(2-λ)22=2λ3+23, a 4=λ(2λ3+23)+λ4+(2-λ)23=3λ4+24.(2)由(1)可猜想数列通项公式为a n =(n -1)λn +2n .下面用数学归纳法证明:①当n =1,2,3,4时,等式显然成立, ②假设当n =k (k ≥4,k ∈N *)时等式成立, 即a k =(k -1)λk+2k, 那么当n =k +1时,a k +1=λa k +λk +1+(2-λ)2k=λ(k -1)λk+λ2k+λk +1+2k +1-λ2k=(k -1)λk +1+λk +1+2k +1=[(k +1)-1]λk +1+2k +1,所以当n =k +1时,a n =(n -1)λn+2n,猜想成立,由①②知数列的通项公式为a n =(n -1)λn +2n (n ∈N *,λ>0).归纳—猜想—证明问题典例:(14分)数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)用数学归纳法证明(1)中的猜想.思维点拨 (1)由S 1=a 1算出a 1;由a n =S n -S n -1算出a 2,a 3,a 4…观察所得数值的特征猜出通项公式.(2)用数学归纳法证明. 规范解答(1)解 当n =1时,a 1=S 1=2-a 1,∴a 1=1. 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32.当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74.当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4,∴a 4=158.[4分]由此猜想a n =2n-12n -1(n ∈N *).[6分](2)证明 ①当n =1时,a 1=1,结论成立.[7分] ②假设n =k 时,结论成立,即a k =2k-12k -1,[8分]那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k=2+a k -a k +1, ∴2a k +1=2+a k .∴a k +1=2+a k 2=2+2k-12k -12=2k +1-12k.[12分] 这表明n =k +1时,结论成立.由①②知猜想a n =2n-12n -1(n ∈N *)成立.[14分]归纳—猜想—证明问题的一般步骤:第一步:计算数列前几项或特殊情况,观察规律猜测数列的通项或一般结论. 第二步:验证一般结论对第一个值n 0(n 0∈N *)成立.第三步:假设n =k (k ≥n 0)时结论成立,证明当n =k +1时结论也成立. 第四步:下结论,由上可知结论对任意n ≥n 0,n ∈N *成立.温馨提醒 解决数学归纳法中“归纳—猜想—证明”问题及不等式证明时,还有以下几点容易造成失分,在备考时要高度关注:(1)归纳整理不到位得不出正确结果,从而给猜想造成困难.(2)证明n =k 到n =k +1这一步时,忽略了假设条件去证明,造成使用的不是纯正的数学归纳法.(3)不等式证明过程中,不能正确合理地运用分析法、综合法来求证.另外需要熟练掌握数学归纳法中几种常见的推证技巧,只有这样,才能快速正确地解决问题.方法与技巧1.数学归纳法的两个步骤相互依存,缺一不可有一无二,是不完全归纳法,结论不一定可靠;有二无一,第二步就失去了递推的基础. 2.归纳假设的作用在用数学归纳法证明问题时,对于归纳假设要注意以下两点:(1)归纳假设就是已知条件;(2)在推证n =k +1时,必须用上归纳假设. 3.利用归纳假设的技巧在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n=k与n=k+1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.失误与防范1.数学归纳法证题时初始值n0不一定是1;2.推证n=k+1时一定要用上n=k时的假设,否则不是数学归纳法.A组专项基础训练(时间:40分钟)1.用数学归纳法证明2n>2n+1,n的第一个取值应是________.答案 3解析∵n=1时,21=2,2×1+1=3,2n>2n+1不成立;n=2时,22=4,2×2+1=5,2n>2n+1不成立;n=3时,23=8,2×3+1=7,2n>2n+1成立.∴n的第一个取值应是3.2.如果命题p(n)对n=k(k∈N*)成立,则它对n=k+2也成立.若p(n)对n=2也成立,则下列结论正确的是________.①p(n)对所有正整数n都成立;②p(n)对所有正偶数n都成立;③p(n)对所有正奇数n都成立;④p(n)对所有自然数n都成立.答案②解析n=2时,n=k,n=k+2成立,n为2,4,6,…所有正偶数.3.对于不等式n2+n<n+1(n∈N*),某同学用数学归纳法证明的过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*)时,不等式成立,即k2+k<k+1,则当n=k+1时,k +2+k+=k2+3k+2<k2+3k++k+=k+2=(k+1)+1.∴当n=k+1时,不等式成立,则上述证法________.①过程全部正确;②n=1验得不正确;③归纳假设不正确;④从n =k 到n =k +1的推理不正确.答案 ④解析 在n =k +1时,没有应用n =k 时的假设,不是数学归纳法.4.用数学归纳法证明“1+a +a 2+…+an +1=1-a n +21-a (a ≠1)”,在验证n =1时,左端计算所得的项为________.答案 1+a +a 25.已知f (n )=1n +1n +1+1n +2+…+1n 2,则f (n )中共有________项,f (2)=________. 答案 n 2-n +1 12+13+14解析 从n 到n 2共有n 2-n +1个数,所以f (n )中共有n 2-n +1项.6.设数列{a n }的前n 项和为S n ,且对任意的自然数n 都有(S n -1)2=a n S n ,通过计算S 1,S 2,S 3,猜想S n =________________.答案 nn +1解析 由(S 1-1)2=S 1·S 1,得S 1=12, 由(S 2-1)2=(S 2-S 1)S 2,得S 2=23, 依次得S 3=34,S 4=45,猜想S n =n n +1. 7.用数学归纳法证明不等式1n +1+1n +2+...+12n <1314(n ≥2,n ∈N *)的过程中,若设f (n )=1n +1+1n +2+ (12),则f (k +1)与f (k )的关系是______________________. 答案 f (k +1)=f (k )+12k +1-12k +2解析 f (k +1)=1k +1+1+1k +1+2+…+12k +12k +1+12k +2 =1k +1+1k +2+…+12k +12k +1+12k +2-1k +1=f (k )+12k +1-12k +2. 8.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)=________;当n >4时,f (n )=________(用n 表示).答案 5 12(n +1)(n -2) 解析 f (3)=2,f (4)=f (3)+3=2+3=5,f (n )=f (3)+3+4+…+(n -1)=2+3+4+…+(n -1)=12(n +1)(n -2). 9.用数学归纳法证明等式12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n n +2. 证明 (1)当n =1时,左边=12=1,右边=(-1)0·+2=1,∴原等式成立.(2)假设n =k 时,等式成立,即有12-22+32-42+…+(-1)k -1·k 2 =(-1)k -1k k +2.那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2 =(-1)k -1k k +2+(-1)k·(k +1)2 =(-1)k ·k +12[-k +2(k +1)] =(-1)k k +k +2.∴n =k +1时,等式也成立,由(1)(2)知对任意n ∈N *有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·n n +2. 10.已知数列{a n },a n ≥0,a 1=0,a 2n +1+a n +1-1=a 2n .求证:当n ∈N *时,a n <a n +1.证明 (1)当n =1时,因为a 2是方程a 22+a 2-1=0的正根,所以a 1<a 2.(2)假设当n =k 时,0≤a k <a k +1,则由a 2k +1-a 2k=(a 2k +2+a k +2-1)-(a 2k +1+a k +1-1)=(a k +2-a k +1)(a k +2+a k +1+1)>0,得a k +1<a k +2,即当n =k +1时,a n <a n +1也成立,根据(1)和(2),可知a n <a n +1对任何n ∈N *都成立.B 组 专项能力提升(时间:25分钟)1.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么,下列命题总成立的是________.①若f (1)<1成立,则f (10)<100成立;②若f (2)<4成立,则f (1)≥1成立;③若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立;④若f (4)≥16成立,则当k ≥4时,均有f (k )≥k 2成立.答案 ④解析 ∵f (k )≥k 2成立时,f (k +1)≥(k +1)2成立,∴f (4)≥16时,有f (5)≥52,f (6)≥62,…,f (k )≥k 2成立.2.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取________. 答案 8解析 左边=1+12+14+…+12n -1 =1-12n 1-12=2-12n -1, ∴由2-12n -1>12764,得n ≥8,n 的最小值是8. 3.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上________.答案 (k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2解析 等式左边是从1开始的连续自然数的和,直到n 2.故n =k +1时,最后一项是(k +1)2,而n =k 时,最后一项是k 2,应加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2.4.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小;(2)猜想f (n )与g (n )的大小关系,并给出证明.解 (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3). (2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明.①当n =1,2,3时,不等式显然成立,②假设当n =k (k ≥3,k ∈N *)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2. 那么,当n =k +1时,f (k +1)=f (k )+1k +3<32-12k 2+1k +3. 因为1k +2-[12k 2-1k +3] =k +3k +3-12k 2=-3k -1k +3k 2<0, 所以f (k +1)<32-1k +2=g (k +1). 由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.5.若不等式1n +1+1n +2+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明结论.解 当n =1时,11+1+11+2+13+1>a 24, 即2624>a 24,所以a <26. 而a 是正整数,所以取a =25,下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524. (1)当n =1时,已证得不等式成立.(2)假设当n =k 时,不等式成立,即1k +1+1k +2+…+13k +1>2524. 则当n =k +1时,有1k ++1+1k ++2+…+1k ++1 =1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+[13k +2+13k +4-2k +].因为13k +2+13k +4-2k +=k +k +k +-2k + =k +2-k 2+18k +k +k +k +=2k +k +k +>0, 所以当n =k +1时不等式也成立. 由(1)(2)知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>2524, 所以a 的最大值等于25.。
2016高考导航第1讲函数及其表示1.函数与映射的概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[做一做] 1.(2014·高考江西卷)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1] C .(-∞,0)∪(1,+∞) D .(-∞,0]∪[1,+∞) 答案:C2.设函数f (x )=错误!若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D.若a ≥0,则a +1=2,得a =1;若a <0,则-a +1=2,得a =-1.1.辨明两个易误点(1)易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.(2)分段函数是一个函数,而不是几个函数.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.2.函数解析式的四种常用求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f (1x)或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).[做一做] 3.(2015·长春模拟)下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3},f :x →x 的平方根; ②A =R ,B =R ,f :x →x 的倒数; ③A =R ,B =R ,f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1},f :A 中的数平方. 其中是A 到B 的映射的是( ) A .①③ B .②④ C .③④ D .②③ 答案:C4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________.答案:1x 2+5x(x ≠0)5.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________. 答案:x 2-4x +3,[学生用书P 14~P 15])考点一__函数的基本概念____________________以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx;f 2:y =1.(2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:(3)f 1:y =2x ;f 2[解] (1)不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R . (2)同一函数,x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. (3)同一函数.理由同(2).[规律方法] 两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.1.有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,(x ≥0)-1,(x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个;③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.解析:对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,(x ≥0)-1,(x <0)的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于④,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1.综上可知,正确的判断是②,③. 答案:②③考点二__分段函数(高频考点)____________________分段函数作为考查函数知识的最佳载体,以其考查知识容量大而成为高考命题的亮点,常以选择题、填空题的形式出现,试题难度不大,多为容易题或中档题.高考对分段函数的考查主要有以下四个命题角度: (1)由分段函数解析式,求函数值(或最值); (2)由分段函数解析式与方程,求参数的值; (3)由分段函数解析式,求解不等式;(4)由分段函数解析式,判断函数的奇偶性.(本章第4讲再讲解)(1)(2014·高考江西卷)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≥0,2-x ,x <0(a ∈R ),若f [f (-1)]=1,则a =( )A.14B.12 C .1 D .2(2)(2013·高考福建卷)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________. (3)(2015·榆林模拟)已知f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.[解析] (1)由题意得f (-1)=2-(-1)=2,f [f (-1)]=f (2)=a ·22=4a =1,∴a =14.(2)∵π4∈⎣⎡⎭⎫0,π2,∴f ⎝⎛⎭⎫π4=-tan π4=-1,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=f (-1)=2×(-1)3=-2. (3)由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. [答案] (1)A (2)-2 (3)[-4,2][规律方法] 解决分段函数求值问题的方法:(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.2.(1)(2015·福建南安一中上学期期末)已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( )A.12 B .-12C .1D .-1 (2)(2015·西城模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c (x ≤0),2(x >0),若f (-2)=f (0),f (-1)=-3,则方程f (x )=x 的解集为________.(3)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:(1)f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫-13+1=3sin ⎝⎛⎭⎫-π3+1=-32+1=-12. (2)当x ≤0时,f (x )=x 2+bx +c ,因为f (-2)=f (0),f (-1)=-3,则⎩⎪⎨⎪⎧(-2)2-2b +c =c ,(-1)2-b +c =-3, 解得⎩⎪⎨⎪⎧b =2,c =-2,故f (x )=⎩⎪⎨⎪⎧x 2+2x -2(x ≤0),2(x >0).当x ≤0时,由f (x )=x ,得x 2+2x -2=x ,解得x =-2或x =1(1>0,舍去). 当x >0时,由f (x )=x ,得x =2.所以方程f (x )=x 的解集为{-2,2}.(3)由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(1)B (2){-2,2} (3)(-1,3)考点三__求函数的解析式______________________(1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).(2)设f (x )=ax 2+bx +c (a ≠0),又f (0)=c =3.∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2, ∴⎩⎪⎨⎪⎧a =1,b =-1, ∴所求函数的解析式为f (x )=x 2-x +3.(3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).[规律方法] 求函数解析式常用的方法: (1)待定系数法;(2)换元法(换元后要注意新元的取值范围); (3)配凑法; (4)解方程组法.3.(1)已知f ⎝⎛⎭⎫x +1x =x 2+1x2,则f (x )的解析式为f (x )=__________; (2)已知f (x +1)=x +2x ,则f (x )的解析式为f (x )=__________;(3)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )的解析式为f (x )=__________;(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,则f (x )=________.解析:(1)由于f ⎝⎛⎭⎫x +1x =x 2+1x2=⎝⎛⎭⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)法一:设t =x +1, 则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1).(3)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2,∴a =1,b =2,f (x )=x 2+2x +c .又∵方程f (x )=0有两个相等的实根,∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.(4)在f (x )=2f ⎝⎛⎭⎫1x x -1中, 用1x 代替x , 得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f (x )x-1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.答案:(1)x 2-2(x ≥2或x ≤-2) (2)x 2-1(x ≥1) (3)x 2+2x +1 (4)23x +13,[学生用书P 15])方法思想——分类讨论思想在分段函数中的应用(2014·高考浙江卷)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.[解析] 若a >0,则f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,得a = 2. 若a ≤0,则f (a )=a 2+2a +2=(a +1)2+1>0, f (f (a ))=-(a 2+2a +2)2=2,此方程无解. [答案] 2若本例中的“f (f (a ))=2”变为“f (f (a ))≤2”,其他条件不变,求实数a 的取值范围.解:由题意得 ⎩⎪⎨⎪⎧f (a )<0,f 2(a )+2f (a )+2≤2或⎩⎪⎨⎪⎧f (a )>0,-f 2(a )≤2,解得f (a )≥-2. 由⎩⎪⎨⎪⎧a ≤0,a 2+2a +2≥-2或⎩⎪⎨⎪⎧a >0,-a 2≥-2, 解得a ≤ 2.[名师点评] (1)解答本题利用了分类讨论思想,分类讨论思想是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.因f (x )为分段函数,由于f (a )和a 正负不确定,应分情况讨论.(2)求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.(2015·山西四校联考)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(8-x ), x ≤0f (x -1)-f (x -2), x >0,则f (3)的值为( ) A .1 B .2 C .-2 D .-3解析:选D.f (3)=f (2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-log 28=-3.1.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12x D .f :x →y =x解析:选D.按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.2.下面各组函数中为相同函数的是( ) A .f (x )=(x -1)2,g (x )=x -1B .f (x )=x 2-1,g (x )=x +1·x -1C .f (x )=ln e x 与g (x )=e ln xD .f (x )=x 0与g (x )=1x解析:选D.函数的三要素相同的函数为相同函数,对于选项A ,f (x )=|x -1|与g (x )对应关系不同,故排除选项A ,选项B 、C 中两函数的定义域不同,排除选项B 、C ,故选D.3.(2015·北京朝阳期末)已知函数f (x )=⎩⎨⎧2x,x ≥0,-x ,x <0,则“a =2”是“f (a )=4成立的”( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.当a =2时,f (a )=f (2)=22=4,所以充分性成立;当f (a )=4时,有⎩⎪⎨⎪⎧a <0-a =4或⎩⎪⎨⎪⎧a ≥02a =4⇒a =-16或a =2,所以必要性不成立,故选A. 4.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x解析:选B.用待定系数法,设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1a -b +c =5,c =0解得⎩⎪⎨⎪⎧a =3b =-2,c =0∴g (x )=3x 2-2x . 5.设函数f (x )=⎩⎪⎨⎪⎧x 2+4x +6,x ≤0-x +6,x >0,则不等式f (x )<f (-1)的解集是( )A .(-3,-1)∪(3,+∞)B .(-3,-1)∪(2,+∞)C .(-3,+∞)D .(-∞,-3)∪(-1,3)解析:选A.f (-1)=3,f (x )<3,当x ≤0时, x 2+4x +6<3,解得x ∈(-3,-1);当x >0时, -x +6<3,解得x ∈(3,+∞),故不等式的解集为(-3,-1)∪(3,+∞),故选A.6.设函数f (x )满足f (x )=1+f ⎝⎛⎭⎫12log 2x ,则f (2)=________.解析:由已知得f ⎝⎛⎭⎫12=1-f ⎝⎛⎭⎫12·log 22,则f ⎝⎛⎭⎫12=12,则f (x )=1+12·log 2x ,故f (2)=1+12·log 22=32. 答案:327.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.解析:由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0-12x ,0≤x ≤2. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0-12x ,0≤x ≤28.已知函数f (x )=⎩⎪⎨⎪⎧(a -1)x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝⎛⎭⎫122=14.答案:149.(2015·上海徐汇模拟)已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2));(2)求f (g (x ))与g (f (x ))的表达式. 解:(1)g (2)=1,f (g (2))=f (1)=0; f (2)=3,g (f (2))=g (3)=2.(2)当x >0时,f (g (x ))=f (x -1)=(x -1)2-1=x 2-2x ; 当x <0时,f (g (x ))=f (2-x )=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.同理可得g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x <-1或x >1,3-x 2,-1<x <1. 10.设x ≥0时,f (x )=2;x <0时,f (x )=1,又规定:g (x )=3f (x -1)-f (x -2)2(x >0),试写出y =g (x )的表达式,并画出其图象.解:当0<x <1时,x -1<0,x -2<0,∴g (x )=3-12=1;当1≤x <2时,x -1≥0,x -2<0,∴g (x )=6-12=52;当x ≥2时,x -1>0,x -2≥0,∴g (x )=6-22=2.故g (x )=⎩⎪⎨⎪⎧1,(0<x <1),52,(1≤x <2),2,(x ≥2).其图象如图所示:1.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4解析:选D.由已知可得M =N ,故⎩⎪⎨⎪⎧a 2-4a =-2b 2-4b +1=-1⇒⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0, 所以a ,b 是方程x 2-4x +2=0的两根,故a +b =4.2.具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③ D .① 解析:选B.对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x>1, 即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈(1,2], 当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6].故当x ∈[-2,2]时,f (x )∈[-4,6].答案:[-4,6]4.设M 是由满足下列性质的函数f (x )构成的集合:在定义域内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立.已知下列函数:①f (x )=1x;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos πx .其中属于集合M 的函数是________.(写出所有满足要求的函数的序号)解析:对于①,1x +1=1x+1显然无实数解;对于②,方程2x +1=2x +2,解得x =1;对于③,方程lg[(x +1)2+2]=lg(x 2+2)+lg 3,显然也无实数解;对于④,方程cos[π(x +1)]=cosπx +cos π,即cos πx =12,显然存在x 使之成立. 答案:②④5.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解:(1)行车所用时间为t =130x(h), y =130x ×2×⎝⎛⎭⎫2+x 2360+14×130x,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610, 当且仅当2 340x =1318x , 即x =1810时,上述不等式中等号成立.故当x =1810时,这次行车的总费用最低,最低费用为2610元.6.(选做题)规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x ); (2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围.解:(1)∵x =716时,4x =74, ∴f 1(x )=⎣⎡⎦⎤74=1.∵g (x )=74-⎣⎡⎦⎤74=34. ∴f 2(x )=f 1[g (x )]=f 1⎝⎛⎭⎫34=[3]=3.(2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12. 故x 的取值范围是⎣⎡⎭⎫716,12.。
新高考数学大一轮复习第13讲 椭圆中的垂直问题一、问题综述 1.椭圆中的垂直问题主要有以下几类:(1),P Q 是椭圆上的两个动点,且满足OP OQ ⊥,即椭圆的正交中心角问题,此时有()f x ,中心O 到直线PQ 的距离d 为定值, 且22222a b d a b =+;(2)椭圆的正交焦点弦问题,即经过椭圆的焦点有两条直线互相垂直,分别交椭圆于,A B 和,C D ,则222112a b AB CD ab ++=; (3)经过非焦点的两条弦互相垂直问题. 2.椭圆中的垂直问题的主要策略:(1)利用斜率之积等于1-,但要注意斜率是否存在; (2)利用向量数量积等于0.3.几类与垂直相关或可利用与垂直类似的方法的问题: (1)形如“以AB 为直径的圆过原点” ,则0OA OB ⋅=;(2)形如“椭圆上存在两点,A B 关于直线l 对称”,则直线AB 与直线l 垂直;(3)形如“直线l 与椭圆交于,A B 两点,AOB ∠为锐角”,则0OA OB ⋅>.4.在处理椭圆垂直弦问题时,强化对称意识,可减少运算.二、典例分析类型1:椭圆中的正交中心角问题 例1. 在中心为O 的椭圆22221x y a b+=上任取两点,P Q ,使OP OQ ⊥,求证:(1)()f x ;(2)中心O 到直线PQ 的距离d 是否为定值? 证明:设直线OP 的斜率为k①当k 存在时,且0k ≠.设()()1122,,,P x y Q x y ,则,OP OQ 的方程分别为:y kx =,1y x k=-,由方程组O 得1l ,()22222222211112221a b OP x y x k x k b a k=+=+=++ 同理2222222211OQ x y x k ⎛⎫=+=+ ⎪⎝⎭=()2222221a b k a b k++,所以a b -.②当k 不存在时,,OP b OQ a ==,满足. ③当0k =时,,OP a OQ b ==,满足. 所以22221111a b OPOQ+=+成立. (2)因为22222222222211111OP OQ PQd a bOPOQOP OQPQ d ++====+⋅⋅, 显然d 是一个定值.例2. (2019年山东理T22)设椭圆()2222:10x y E a b a b+=>>过(),M N两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点,A B ,且OA OB ⊥?若存在,写出该圆的方程,并求AB 的取值范围,若不存在说明理由. 解析:(1)因为椭圆()2222:10x y E a b a b+=>>过(),M N两点,所以2222421611a ba b +=+=⎧⎪⎪⎨⎪⎪⎩解得22118114a b⎧=⎪⎪⎨⎪=⎪⎩所以2284a b ⎧=⎨=⎩椭圆E 的方程为22184x y +=.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点,A B ,且OA OB ⊥,设该圆的切线方程为y kx m =+,解方程组22184x y y kx m+==+⎧⎪⎨⎪⎩得222()8x kx m ++=,即222(12)4280k x kmx m +++-=,则222222164(12)(28)8(84)0k m k m k m ∆=-+-=-+>,即22840k m -+> 2121222428,1212km m x x x x k k-+=-=++ 22222222212121212222(28)48()()()121212k m k m m k y y kx m kx m k x x km x x m m k k k --=++=+++=-+=+++ 要使OA OB ⊥,需使12120x x y y +=,即2222228801212m m k k k --+=++,所以223880m k --=, 所以223808m k -=≥又22840k m -+>,所以22238m m ⎧>⎨≥⎩,所以283m ≥,即m ≥或m ≤,因为直线y kx m=+为圆心在原点的圆的一条切线,所以圆的半径为r=,222228381318m mrmk===-++, r=所求的圆为2283x y+=,此时圆的切线y kx m=+都满足m或m≤而当切线的斜率不存在时切线为x=与椭圆22184x y+=的两个交点为或(满足OA OB⊥.综上,存在圆心在原点的圆2283x y+=,使得该圆的任意一条切线与椭圆E恒有两个交点,A B,且OA OB⊥.因为2121222428,1212km mx x x xk k-+=-=++,所以22222212121222224288(84)()()4()41212(12)km m k mx x x x x xk k k--+-=+-=--⨯=+++,AB====①当0k≠时AB=因为221448kk++≥所以22111844kk<≤++,所以2232321[1]1213344kk<+≤++,AB<≤当且仅当k=时取”=”.②当0k=时,||AB=③当AB的斜率不存在时,两个交点为或(,所以此时AB=综上,AB||AB≤≤: ||AB∈.类型2:椭圆中的正交焦点弦问题例3.过椭圆()2222:10x yC a ba b+=>>的一个焦点F作两条互相垂直的弦分别交椭圆于,A B和,C D,求证:222112a bAB CD ab++=.证明:设()()()1122,,,,,0A x y B x y F c ,AB 方程为x my c =+,则CD 方程为1x y c m=-+ 由方程组22221x my c x y ab =+⎧⎪⎨+=⎪⎩得()22222222220b m a y mcb y b c b a +++-=,所以2412122222222,mcb b y y y y b m a b m a +=-=-++ 所以()22222212222222212111ab m ab m AB m y y m b m a b m a ++=+-=+=++ 所以()22222121b m a AB ab m +=+,同理,()22222222*********b a b a m m CD ab m ab m ⎛⎫-+ ⎪+⎝⎭==⎛⎫+⎛⎫+- ⎪⎪ ⎪⎝⎭⎝⎭所以()()22222222222221122121b m a b a m a b AB CD ab ab m ab m ++++=+=++. 例4. (2007年全国Ⅰ理T21)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于,B D 两点,过2F 的直线交椭圆于,A C 两点,且AC BD ⊥,垂足为P .(1)设P 点的坐标为()00,x y ,证明:2200132x y +<;(2)求四边形ABCD 的面积的最小值.解析:(1)椭圆的半焦距321c =-=,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故2201x y +=, 所以,222200021132222y x y x +≤+=<.(2)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=.设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+2222122212243(1)1(1)()432k BD k x x k x x x x k +⎡⎤=+-=++-=⎣⎦+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2222143143(1)12332k k AC k k⎛⎫+ ⎪+⎝⎭==+⨯+.四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+==≥=++⎡⎤+++⎢⎥⎣⎦.当21k =时,上式取等号.(ⅰ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625.类型3:椭圆中的垂直弦问题例5.(2014年浙江理T21)如图,设椭圆2222:1x y C a b+=(0)a b >>动直线()f x 与椭圆C 只有一个公共点P ,且点P在第一象限.(1)已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -.解析:(1)设直线l 的方程为()0y kx m k =+<,由22221y kx m x y a b=+⎧⎪⎨+=⎪⎩,消去y 得,()22222222220b a k x a kmx a m a b +++-=, 由于直线l 与椭圆C 只有一个公共点P ,故0∆=, 即22220b m a k -+=,解得点P 的坐标为22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭, 由点P 在第一象限,故点P 的坐标为22222222,a k b b a k b a k ⎛⎫-⎪++⎝⎭. (2)由于直线1l 过原点O ,且与l 垂直,故直线1l 的方程为0x ky +=,所以点P 到直线1l 的距离2222222221a k b b a kb a k d k-+++=+,整理得22222222a b d b b a a k k-=+++,因为22222b a k ab k +≥,所以2222222222222a b a b a b b b a abb a a k k--≤=-+++++,当且仅当2bk a=时等号成立,所以点P 到直线1l 的距离的最大值为b a -.例6.(2013年浙江理T21)如图,点(0,1)P -是椭圆1C :22221x y a b +=()0a b >>的一个顶点,1C 的长轴是圆2C :224x y +=的直径,1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于,A B 两点,2l 交椭圆1C 于另一点D .(1)求椭圆1C 的方程;(2)求ABD ∆面积取最大值时直线1l 的方程.解析:(1)由题意得,1b =,2a =,所以椭圆C 的方程为2214x y +=.(2)设11(,)A x y ,22(,)B x y ,00(,)D x y ,由题意知直线1l 的斜率存在,不妨设其为k ,则直线1l 的方程为1y kx =-.又圆2C :224x y +=,故点O 到直线1l的距离d ,所以||AB ==,又12l l ⊥,故直线2l 的方程为0x ky k ++=,由22044x ky k x y ++=⎧⎨+=⎩,消去y ,整理得22(4)80k x kx ++=, 故0284k x k =-+,所以||PD =设ABD ∆面积为S,则1||||2S AB PD =⋅=,所以3213S =≤=当且仅当k = 所以所求直线1l的方程为1y x =-. 类型4:椭圆中的对称问题例7.(2015年浙江理T19)已知椭圆2212x y +=上两个不同的点,A B 关于直线12y mx =+对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).Ol 2l 1yxDP BA解析:(1)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+, 由22121x y y x bm ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222112()102b x x b m m +-+-=,∵直线1y x b m=-+与椭圆2212x y +=由两个不同的交点,∴224220b m∆=-++>,①,将AB 中点2222(,)22mb m b M m m ++代入直线方程12y mx =+,解得2222m b m +=-,②,由①②得m <m >. (2)令16((0,)2t m =∈,则||2AB t =+,且O 到直线AB 的距离为21t d +=AOB ∆的面积为()S t ,∴1()||2S t AB d =⋅=,当且仅当212t=时,等号成立, 故AOB ∆. 类型5:可转化为垂直的问题例8.(2007年山东理)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标. 解析:(1)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,由已知得:31a c a c +=-=,,22221,3a c b a c ==∴=-=, ∴椭圆的标准方程为22143x y +=.(2)设1122(,),(,)A x y B x y . 联立22 1.43y kx m x y =+⎧⎪⎨+=⎪⎩,得222(34)84(3)0k x mkx m +++-=,则2222226416(34)(3)0,340m k k m k m ∆=-+->+->即212122284(3),3434mk m x x x x k k -+=-=++ 又22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-=++=+++=+. 因为以AB 为直径的圆过椭圆的右顶点(2,0)D ,1AD BD k k ∴=-,即1212122y y x x =---.1212122()40y y x x x x ∴+-++=.2222223(4)4(3)1540343434m k m mk k k k --∴+++=+++.2271640m mk k ∴++=.解得:12227km k m =-=-,,且均满足22340k m +->.当12m k =-时,l 的方程(2)y k x =-,直线过点(2,0),与已知矛盾;当227k m =-时,l 的方程为27y k x ⎛⎫=- ⎪⎝⎭,直线过定点2,07⎛⎫⎪⎝⎭.所以,直线l 过定点,定点坐标为2,07⎛⎫⎪⎝⎭.类型6:锐角(或钝角)问题例9.(2007年四川理) 设1F 、2F 分别是椭圆2214x y +=的左、右焦点.(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.解析:(2)显然0x =不满足题设条件.可设l 的方程为2y kx =+,设11(,)A x y ,22(,)B x y .联立22222214(2)4(14)1612042x y x kx k x kx y kx ⎧+=⎪⇒++=⇒+++=⎨⎪=+⎩ⅰ1221214x x k =+,1221614kx x k +=-+ 由22(16)4(14)120k k ∆=-⋅+⋅> 得234k >.ⅰ 又AOB ∠为锐角cos 00AOB OA OB ⇔∠>⇔⋅>, ⅰ12120OA OB x x y y ⋅=+>又212121212(2)(2)2()4y y kx kx k x x k x x =++=+++ ⅰ1212x x y y +21212(1)2()4k x x k x x =++++2221216(1)2()41414kk k k k =+⋅+⋅-+++22212(1)21641414k k k k k +⋅=-+++224(4)014k k-=>+ ∴2144k -<<.②综ⅰ②可知2344k <<,∴k的取值范围是3(2,(,2)2-.三、巩固练习1.(08广州一模)已知曲线Γ上任意一点P 到两个定点()1F 和)2F 的距离之和为4.(1)求曲线Γ的方程;(2)设过()0,2-的直线l 与曲线Γ交于C 、D 两点,且0OC OD ⋅=(O 为坐标原点),求直线l 的方程. 解析:(1)根据椭圆的定义,可知动点M 的轨迹为椭圆,其中2a =,c =,则1b ==. 所以动点M 的轨迹方程为2214x y +=.(2)当直线l 的斜率不存在时,不满足题意.当直线l 的斜率存在时,设直线l 的方程为2y kx =-,设11(,)C x y ,22(,)D x y , ⅰ0OC OD ⋅=,ⅰ12120x x y y +=.∵112y kx =-,222y kx =-,∴21212122()4y y k x x k x x =⋅-++. ⅰ 21212(1)2()40k x x k x x +-++=.………… ①由方程组221,4 2.x y y kx ⎧+=⎪⎨⎪=-⎩得()221416120k x kx +-+=.则1221614k x x k +=+,1221214x x k⋅=+, 代入①,得()222121612401414kk k k k +⋅-⋅+=++. 即24k =,解得 2k =或2k =-.所以,直线l 的方程是22y x =-或22y x =--.2.(08辽宁)在平面直角坐标系xOy 中,点P到两点((0,,的距离之和等于4.设点P 的轨迹为C . (1)写出C 的方程;(2)设直线y =kx +1与C 交于,A B 两点.k 为何值时OA OB ⊥?此时AB 的值是多少?解析:(1)设(),P x y ,由椭圆定义可知,点P 的轨迹C 是以((0,3,3-为焦点,长半轴为2的椭圆.它的短半轴222(3)1b -=, 故曲线C 的方程为2214y x +=.(2)设()()1122,,,A x y B x y ,其坐标满足22141y x y kx ⎧+=⎪⎨⎪=+⎩消去y 并整理得22(4)230k x kx ++-=,故1212222344k x x x x k k +=-=-++,. 由OA OB ⊥得,即12120x x y y +=.而2121212()1y y k x x k x x =+++, 于是222121222223324114444k k k x x y y k k k k -++=---+=++++. 所以12k =±时,12120x x y y +=,故OA OB ⊥.当12k =±时,12417x x +=,121217x x =-.2222212121()()(1)()AB x x y y k x x =-+-+-而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=, 所以46517AB =. 3.(2008年安徽文T22)设椭圆2222:1(0)x y C a b a b+=>>其相应于焦点(2,0)F 的准线方程为4x =.(1)求椭圆C 的方程;(2)已知过点1(2,0)F -倾斜角为θ的直线交椭圆C 于,A B 两点,求证:42AB =;(3)过点1(2,0)F -作两条互相垂直的直线分别交椭圆C 于点,A B 和,D E ,求AB DE + 的最小值. 解析:(1)由题意得:2222222844c a a c b a b c=⎧⎪⎧=⎪⎪=⎨⎨=⎪⎪⎩⎪=+⎩∴∴椭圆C 的方程为22184x y +=.(2)方法一:由(1)知1(2,0)F -是椭圆C 的左焦点,离心率2e = 设l 为椭圆的左准线。
数学总复习高考教案七篇数学总复习高考教案篇1一教材分析本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二教法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。
另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。
突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点三学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
2016高考导航第1讲 数列的概念与简单表示法1.数列的定义、分类与通项公式 (1)数列的定义:①数列:按照一定顺序排列的一列数. ②数列的项:数列中的每一个数. (2)(3)如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.2.数列的递推公式如果已知数列{a n }的首项(或前几项),且任一项a n 与它的前一项a n -1(n ≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.[做一做]1.已知数列{a n }的通项公式为a n =n 2-8n +15,则3( )A .不是数列{a n }中的项B .只是数列{a n }中的第2项C .只是数列{a n }中的第6项D .是数列{a n }中的第2项或第6项解析:选D.令a n =3,即n 2-8n +15=3,解得n =2或6,故3是数列{a n }中的第2项或第6项.2.在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 5=________.答案:851.辨明两个易误点(1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.(2)易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.3.a n 与S n 的关系a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2).[做一做]3.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________. 解析:当n =1时,a 1=S 1=-1;当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1,a 1不适合此等式.∴a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥24.若数列{a n }的通项公式为a n =nn +1,那么这个数列是__________数列.(填“递增”或“递减”或“摆动”)解析:法一:令f (x )=x x +1,则f (x )=1-1x +1在(0,+∞)上是增函数,则数列{a n }是递增数列.法二:∵a n +1-a n =n +1n +2-n n +1=1(n +1)(n +2)>0,∴a n +1>a n ,∴数列{a n }是递增数列. 答案:递增,[学生用书P 88~P 89])考点一__由数列的前几项求数列的通项________写出下面各数列的一个通项公式:(1)3,5,7,9,…; (2)12,34,78,1516,3132,…;(3)-1,32,-13,34,-15,36,….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式的符号为(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn .也可写为a n =⎩⎨⎧-1n,n 为奇数,3n,n 为偶数.[规律方法] 用观察法求数列的通项公式的技巧(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用(-1)n 或(-1)n +1来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.1.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)-11×2,12×3,-13×4,14×5,…;(3)a ,b ,a ,b ,a ,b ,…(其中a ,b 为实数); (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小数为4,所以通项公式a n =2(n +1)(n ∈N *).(2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1).(3)这是一个摆动数列,奇数项是a ,偶数项是b ,所以此数列的一个通项公式a n =⎩⎪⎨⎪⎧a ,n 为奇数,b ,n 为偶数. (4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.考点二__由a n 与S n 的关系求通项a n (高频考点)__a n 与S n 关系的应用是高考的常考内容,且多出现在选择题或填空题中,有时也出现在解答题的已知条件中,难度较小,属容易题.高考对a n 与S n 关系的考查常有以下两个命题角度: (1)利用a n 与S n 的关系求通项公式a n ; (2)利用a n 与S n 的关系求S n .(1)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1 B.⎝⎛⎭⎫32n -1C.⎝⎛⎭⎫23n -1D.12n -1(2)已知数列{a n }的前n 项和为S n . ①若S n =2n 2-3n ,求a n ; ②若S n =3n +b ,求a n .[解析] (1)由已知S n =2a n +1,得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n =32,而S 1=a 1=1,所以S n =⎝⎛⎭⎫32n -1. [答案] B(2)解:①a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,由于a 1也适合此等式,∴a n =4n -5. ②a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式.∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.若本例(1)中,结论改为求a n ,如何求解?解:当n ≥2时,a n =S n -S n -1=2a n +1-2a n , ∴a n +1a n =32,又由S 1=2a 2,得a 2=12, ∴{a n }是从第2项开始的等比数列,∴a n =⎩⎪⎨⎪⎧1,n =1,12×⎝⎛⎭⎫32n -2,n ≥2,n ∈N *.[规律方法] 已知S n 求a n 的三个步骤: (1)先利用a 1=S 1求出a 1.(2)用n -1(n ≥2)替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.2.(1)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( )A .3×44B .3×44+1C .45D .45+1(2)若数列{a n }的前n 项和S n =n 2-n +1,则它的通项公式a n =________.(3)(2013·高考课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n=________.解析:(1) 法一:a 1=1,a 2=3S 1=3,a 3=3S 2=12=3×41,a 4=3S 3=48=3×42,a 5=3S 4=3×43,a 6=3S 5=3×44.法二:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第2项开始是以4为公比的等比数列, 又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2(n ≥2). ∴当n =6时,a 6=3×46-2=3×44. (2)∵a 1=S 1=12-1+1=1,当n ≥2时,a n =S n -S n -1=(n 2-n +1)-[(n -1)2-(n -1)+1]=2n -2,∴a n =⎩⎪⎨⎪⎧1 (n =1)2n -2 (n ≥2).(3)当n =1时,S 1=23a 1+13,∴a 1=1.当n ≥2时,a n =S n -S n -1=23a n +13-(23a n -1+13)=23(a n -a n -1), ∴a n =-2a n -1,即a na n -1=-2,∴{a n }是以1为首项的等比数列,其公比为-2,∴a n =1×(-2)n -1,即a n =(-2)n -1.答案:(1)A (2)⎩⎪⎨⎪⎧1 (n =1)2n -2 (n ≥2) (3)(-2)n -1考点三__由递推公式求数列的通项公式__________分别求出满足下列条件的数列的通项公式.(1)a 1=0,a n +1=a n +(2n -1)(n ∈N *);(2)a 1=1,a n =nn -1a n -1(n ≥2,n ∈N *).[解] (1)a n =a 1+(a 2-a 1)+…+(a n -a n -1)=0+1+3+…+(2n -5)+(2n -3)=(n -1)2, 所以数列的通项公式为a n =(n -1)2. (2)当n ≥2,n ∈N *时,a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×21×32×…×n -2n -3×n -1n -2×nn -1=n ,当n =1时,也符合上式,所以该数列的通项公式为a n =n .[规律方法] 由数列递推式求通项公式常用方法有:累加法、累积法、构造法.形如a n=pa n -1+m (p 、m 为常数,p ≠1,m ≠0)时,构造等比数列;形如a n =a n -1+f (n )({f (n )}可求和)时,用累加法求解;形如a na n +1=f (n )({f (n )}可求积)时,用累积法求解.3.(1)在数列{a n }中,a 1=2,a n +1=a n +1n (n +1),求a n ;(2)在数列{a n }中,a 1=1,a n +1=2n a n ,求a n .解:(1)a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=⎝⎛⎭⎫1n -1-1n +⎝⎛⎭⎫1n -2-1n -1+…+⎝⎛⎭⎫12-13+⎝⎛⎭⎫1-12+2=3-1n. (2)由于a n +1a n=2n,故a 2a 1=21,a 3a 2=22,…,a n a n -1=2n -1, 将这n -1个等式叠乘,得a n a 1=21+2+…+(n -1)=2n (n -1)2, 故a n =2n (n -1)2.交汇创新——数列与周期函数的交汇(2014·高考课标全国卷Ⅱ)数列{a n }满足a n +1=11-a n,a 8=2,则a 1=________.[解析] ∵a n +1=11-a n, ∴a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2.而a 2=11-a 1,∴a 1=12.[答案] 12[名师点评] (1)本题是数列与周期函数的交汇,解答此类问题的思路是由递推关系推出数列的周期性,在本题中由a n +1=11-a n推出周期为3,由a 8=a 2=2,即可求出a 1.(2)数列是一个特殊的函数,具有函数的一般性质,如单调性、周期性、最值等.1.下列数列中,既是递增数列又是无穷数列的是( )A .1,12,13,14,…B .-1,-2,-3,-4,…C .-1,-12,-14,-18,…D .1,2,3,…,n解析:选C.根据定义,属于无穷数列的是选项A 、B 、C(用省略号),属于递增数列的是选项C 、D ,故同时满足要求的是选项C.2.(2015·海南三亚模拟)在数列1,2,7,10,13,…中,219是这个数列的第( ) A .16项 B .24项 C .26项 D .28项 解析:选C.因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n =3n -2.令a n =3n -2=219=76,得n =26.故选C.3.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21=( )A .5 B.72C.92D.132解析:选B.∵a n +a n +1=12,a 2=2,∴a n=⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.故选B. 4.(2015·吉林普通中学摸底)已知数列{a n },a n =-2n 2+λn ,若该数列是递减数列,则实数λ的取值范围是( )A .(-∞,6)B .(-∞,4]C .(-∞,5)D .(-∞,3]解析:选 B.数列{a n }的通项公式是关于n (n ∈N *)的二次函数,若数列是递减数列,则-λ2×(-2)≤1,即λ≤4.5.(2015·云南昆明一中开学考试)已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=1,a 2=3,记S n =a 1+a 2+…+a n ,则下列结论正确的是( )A .a 100=-1,S 100=5B .a 100=-3,S 100=5C .a 100=-3,S 100=2D .a 100=-1,S 100=2解析:选A.因为数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=1,a 2=3,所以a 3=2,a 4=-1,a 5=-3,a 6=-2,a 7=1,a 8=3,…,由此可知数列中各项满足a n +6=a n ,且a n +a n +1+…+a n +6=0.故a 100=a 4=-1,S 100=a 1+a 2+a 3+a 4=5.6.在数列-1,0,19,18,…,n -2n2,…中,0.08是它的第________项.解析:令n -2n2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).∴a 10=0.08. 答案:107.已知数列{a n }满足a s ·t =a s a t (s ,t ∈N *),且a 2=2,则a 8=________. 解析:令s =t =2,则a 4=a 2×a 2=4,令s =2,t =4,则a 8=a 2×a 4=8. 答案:88.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积,已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知a n =a n -1+1n (n -1)(n ≥2),a 1=1.(1)写出这个数列的前5项;(2)由(1)中前5项推测数列的通项公式并证明.解:(1)a 1=1,a 2=a 1+11×2=32,a 3=a 2+12×3=53,a 4=a 3+13×4=74,a 5=a 4+14×5=95.(2)猜想a n =2n -1n.证明如下:由已知得a 2-a 1=12×1,a 3-a 2=13×2,…a n -a n -1=1n (n -1),所以a n -a 1=11×2+12×3+…+1n (n -1).从而a n =1+1-12+12-13+…+1n -1-1n=2-1n =2n -1n .10.已知数列{a n }的前n 项和S n =2n +1-2. (1)求数列{a n }的通项公式;(2)设b n =a n +a n +1,求数列{b n }的通项公式. 解:(1)当n =1时,a 1=S 1=22-2=2;当n ≥2时,a n =S n -S n -1=2n +1-2-(2n -2)=2n +1-2n =2n .因为a 1也适合此等式,所以a n =2n (n ∈N *).(2)因为b n =a n +a n +1,且a n =2n ,a n +1=2n +1,所以b n =2n +2n +1=3·2n .1.跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格子外跳到第8个格子的方法种数为( )A .8B .13C .21D .34解析:选C.设跳到第n 个格子的方法种数为a n ,则到达第n 个格子的方法有两类:①向前跳1格到达第n 个格子,方法种数为a n -1;②向前跳2格到达第n 个格子,方法种数为a n -2,则a n =a n -1+a n -2,由数列的递推关系得到数列的前8项分别是1,1,2,3,5,8,13,21.∴跳到第8个格子的方法种数是21.故选C. 2.(2015·浙江金丽衢十二校联考)已知函数y =f (x ),数列{a n }的通项公式是a n =f (n )(n ∈N *),那么“函数y =f (x )在[1,+∞)上单调递增”是“数列{a n }是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.若函数y =f (x )在[1,+∞)上递增,则数列{a n }是递增数列一定成立;反之不成立,现举反例说明:若数列{a n }是递增数列,则函数在[1,2]上可以先减后增,只要在x =1处的函数值比在x =2处的函数值小即可.故“函数y =f (x )在[1,+∞)上递增”是“数列{a n }是递增数列”的充分不必要条件.3.(2015·大连双基测试)数列{a n }满足:a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1)·3n +1+3(n ∈N *),则数列{a n }的通项公式a n =________.解析:a 1+3a 2+5a 3+…+(2n -3)·a n -1+(2n -1)·a n =(n -1)·3n +1+3,把n 换成n -1,得a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2)·3n +3,两式相减得a n =3n .答案:3n4.下列关于星星的图案构成一个数列,该数列的一个通项公式是________.解析:从题图中可观察星星的构成规律,n =1时,有1个,n =2时,有3个;n =3时,有6个;n =4时,有10个;…,∴a n =1+2+3+4+…+n =n (n +1)2.答案:a n =n (n +1)25.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解:因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k 时,S n 取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n .当n =1时,a 1=S 1=-12+4=72;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n -⎣⎡⎦⎤-12(n -1)2+4(n -1)=92-n . 当n =1时,92-1=72=a 1,所以a n =92-n .6.(选做题)已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)a 1=2,a n =S n -S n -1=2n -1(n ≥2).∴b n =⎩⎨⎧23(n =1)1n(n ≥2).(2)∵c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1,∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴{c n }是递减数列.。
2016届高考数学一轮复习教学案圆锥曲线的综合问题[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1-x 2|或1+1k2|y 1-y 2|.[小题能否全取]1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.答案:635.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=01.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.典题导入[例1] (2012·北京高考)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值.[自主解答](1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k x -,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=+k 2x 1+x 22-4x1x 2]=2+k 2+6k 21+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2,所以△AMN 的面积为 S =12|MN |· d =|k |4+6k 21+2k 2.由|k |4+6k 21+2k 2=103,解得k =±1.由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0,可解得-1≤k ≤1.典题导入[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得⎩⎪⎨⎪⎧+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2,设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则 S =12|AB |·d =36·m -2-m 2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,23 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值.综上,所求直线l 的方程为3x +2y +27-2=0.由题悟法1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.以题试法2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.典题导入[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值. [自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).②由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.由题悟法1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.以题试法3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p ,得y 1=by 0-2pa y 0-b,同理由点B ,M ,M 2共线得y 2=2pay 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b,y 2=2pay 0,则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0.当x =a ,y =2pab时上式恒成立,即定点为⎝⎛⎭⎪⎫a ,2pa b . 答案:⎝ ⎛⎭⎪⎫a ,2pa b1.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ,·2PF ,的最小值为( )A .-2B .-8116C .1D .0解析:选A 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),由双曲线方程得y 2=3(x 2-1).1PA ,·2PF ,=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+y 2-x -2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,1PA ,·2PF ,取得最小值-2.2.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且仅有两条.3.(2012·南昌联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 作与x 轴垂直的直线,分别与双曲线、双曲线的渐近线交于点M 、N (均在第一象限内),若FM ,=4MN ,,则双曲线的离心率为( )A.54B.53C.35D.45解析:选B 由题意知F (c,0),则易得M ,N 的纵坐标分别为b 2a,bc a,由FM ,=4MN ,得b 2a =4·⎝ ⎛⎭⎪⎫bc a -b 2a ,即b c =45.又c 2=a 2+b 2,则e =c a =53.4.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:选D 设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点.5.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足x 202+y 20≤1,则|PF 1|+|PF 2|的取值范围为________.解析:当P 在原点处时,|PF 1|+|PF 2|取得最小值2;当P 在椭圆上时,|PF 1|+|PF 2|取得最大值22,故|PF 1|+|PF 2|的取值范围为[2,22 ].答案:[2,22 ]6.(2013·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.解析:由⎩⎪⎨⎪⎧x -y =0,x22+y 2=1,得3x 2=2,∴x =±63,∴A ⎝ ⎛⎭⎪⎪⎫63,63,B ⎝ ⎛⎭⎪⎪⎫-63,-63,∴|AB |=433.设点C (2cos θ,sin θ),则点C 到AB 的距离d =|2cos θ-sin θ|2=32·⎪⎪sin(θ-φ)⎪⎪≤32,∴S △ABC =12|AB |·d ≤12×433×32=2.答案:27.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值. 解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y2b2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c1+b 2,x 1x 2=1-2b 21+b 2.因为直线AB 的斜率为1, 所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=-b 2+b 22--2b 21+b 2=8b 4+b 22,解得b =22.8.(2012·黄冈质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为2+1.(1)求椭圆的方程;(2)已知点C (m,0)是线段OF 上一个动点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 点,使得|AC |=|BC |?并说明理由.解:(1)∵⎩⎪⎨⎪⎧e =c a =22a +c =2+1,∴⎩⎪⎨⎪⎧a =2c =1,∴b =1,∴椭圆的方程为x 22+y 2=1.(2)由(1)得F (1,0),∴0≤m ≤1. 假设存在满足题意的直线l ,设l 的方程为y =k (x -1),代入x 22+y 2=1中,得(2k 2+1)x 2-4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴y 1+y 2=k (x 1+x 2-2)=-2k2k 2+1.设AB 的中点为M ,则M ⎝ ⎛⎭⎪⎫2k 22k 2+1,-k 2k 2+1. ∵|AC |=|BC |,∴CM ⊥AB ,即k CM ·k AB =-1,∴k2k 2+1m -2k 22k 2+1·k =-1,即(1-2m )k 2=m .∴当0≤m <12时,k =±m1-2m,即存在满足题意的直线l ;当12≤m ≤1时,k 不存在,即不存在满足题意的直线l . 9.(2012·江西模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线y =x +6与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切,F 1,F 2为其左,右焦点,P 为椭圆C 上任一点,△F 1PF 2的重心为G ,内心为I ,且IG ∥F 1F 2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点C ⎝ ⎛⎭⎪⎫16,0,求实数k 的取值范围.解:(1)设P (x 0,y 0),x 0≠±a ,则G ⎝ ⎛⎭⎪⎫x 03,y 03.又设I (x I ,y I ),∵IG ∥F 1F 2, ∴y I =y 03,∵|F 1F 2|=2c ,∴S △F 1PF 2=12·|F 1F 2|·|y 0|=12(|PF 1|+|PF 2|+|F 1F 2|)·| y 03| ,∴2c ·3=2a +2c ,∴e =c a =12,又由题意知b =|6|1+1,∴b =3,∴a =2,∴椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意知Δ=(8km )2-4(3+4k 2)(4m 2-12)>0,即m 2<4k 2+3,又x 1+x 2=-8km3+4k 2,则y 1+y 2=6m3+4k 2,∴线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 又线段AB 的垂直平分线l ′的方程为y =-1k ⎝ ⎛⎭⎪⎫x -16,点P 在直线l ′上,∴3m3+4k 2=-1k ⎝ ⎛⎭⎪⎫-4km 3+4k 2-16, ∴4k 2+6km +3=0,∴m =-16k(4k 2+3),∴k 2+236k 2<4k 2+3,∴k 2>332,解得k>68或k <-68,∴k 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,-68∪⎝ ⎛⎭⎪⎪⎫68,+∞.1.(2012·长春模拟)已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM |,·|BM |,cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.(1)求|AM |,+|BM |,的值,并写出曲线C 的方程; (2)求△APQ 的面积的最大值.解:(1)设M (x ,y ),在△MAB 中,|AB |,=2,∠AMB =2θ,根据余弦定理得|AM |,2+|BM |,2-2|AM |,·|BM |,cos 2θ=|AB |,2=4,即(|AM |,+|BM |,)2-2|AM |,·|BM |,·(1+cos 2θ)=4,所以(|AM|,+|BM|,)2-4|AM|,| BM|,·cos2θ=4.因为|AM|,·|BM|,cos2θ=3,所以(|AM|,+|BM|,)2-4×3=4,所以|AM|,+|BM|,=4.又|AM|,+|BM|,=4>2=|AB|,因此点M的轨迹是以A,B为焦点的椭圆(点M在x轴上也符合题意),设椭圆的方程为x2a2+y2b2=1(a>b>0),则a=2,c=1,所以b2=a2-c2=3.所以曲线C的方程为x24+y23=1.(2)设直线PQ的方程为x=my+1.由⎩⎪⎨⎪⎧x=my+1x24+y23=1,消去x,整理得(3m2+4)y2+6my-9=0.①显然方程①的判别式Δ=36m2+36(3m2+4)>0,设P(x1,y1),Q(x2,y2),则△APQ的面积S△APQ=12×2×|y1-y2|=|y1-y2|.由根与系数的关系得y1+y2=-6m3m2+4,y1y2=-93m2+4,所以(y1-y2)2=(y1+y2)2-4y1y2=48×3m2+33m 2+42.令t=3m2+3,则t≥3,(y1-y2)2=48t+1t+2,由于函数φ(t )=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号,所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3, 所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1. 2.(2012·郑州模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e>12的椭圆E :x 2a 2+y 2b 2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.解:(1)由已知可设圆C 的方程为(x -m )2+y 2=5(m <3), 将点A 的坐标代入圆C 的方程中,得(3-m )2+1=5, 即(3-m )2=4,解得m =1,或m =5. ∴m <3,∴m =1.∴圆C 的标准方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切,依题意设直线PF 1的斜率为k ,则直线PF 1的方程为y =k (x -4)+4,即kx -y -4k +4=0,若直线PF 1与圆C 相切,则|k -0-4k +4|k 2+1=5.∴4k 2-24k +11=0,解得k =112或k =12.当k =112时,直线PF 1与x 轴的交点的横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点的横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0). ∴由椭圆的定义得: 2a =|AF 1|+|AF 2|=+2+12+-2+12=52+2=6 2.∴a =32,即a 2=18,∴e =432=223>12,满足题意.故直线PF 1能与圆C 相切.直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y 22=1.设B (x 1,y 1),D (x 2,y 2),把直线PF 1的方程代入椭圆E 的方程并化简得,13y 2-16y -2=0,由根与系数的关系得y 1+y 2=1613,y 1y 2=-213,故S △DBF 2=4|y 1-y 2|=4y 1+y 22-4y 1y 2=241013.1.已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过焦点F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:选C 依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1消去y 得(x -1)2=4x ,即x 2-6x +1=0,因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2,所以线段AB 的中点坐标是(3,2).2.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A .至多1个 B .2个 C .1个D .0个解析:选B 由题意得4m 2+n 2>2,即m 2+n 2<4,则点(m ,n )在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y 24=1的内部.3.(2012·深圳模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C 的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM ,·TN ,的最小值,并求此时圆T 的方程; (3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.解:(1)依题意,得a =2,e =ca=32, ∴c =3,b =a 2-c 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)易知点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0. 由于点M 在椭圆C 上,∴y 21=1-x 214.(*)由已知T (-2,0),则TM ,=(x 1+2,y 1),TN ,=(x 1+2,-y 1),∴TM ,·TN ,=(x 1+2,y 1)·(x 1+2,-y 1)=(x 1+2)2-y 21=(x 1+2)2-⎝ ⎛⎭⎪⎫1-x 214=54x 21+4x 1+3 =54⎝ ⎛⎭⎪⎫x 1+852-15.由于-2<x 1<2,故当x 1=-85时,TM ,·TN ,取得最小值-15.把x 1=-85代入(*)式,得y 1=35,故M ⎝ ⎛⎭⎪⎫-85,35,又点M 在圆T 上,代入圆的方程得r 2=1325. 故圆T的方程为(x +2)2+y 2=1325. (3)设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0),令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R ·x S =x 21y 20-x 20y 21y 20-y 21.(**)又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21),代入(**)式, 得x R ·x S =-y 21y 20--y 20y 21y 20-y 21=4⎝ ⎛⎭⎪⎫y 20-y 21y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.平面解析几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·佛山模拟)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:选D 由题意得a +2=a +2a,解得a =-2或a =1.2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B .-13C .-32D.23解析:选B 设P (x P ,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.3.(2012·长春模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2C .x 2+y 2=1D .x 2+y 2=4解析:选A AB 的中点坐标为(0,0), |AB |=[1--2+-1-2=22,∴圆的方程为x 2+y 2=2.4.(2012·福建高考)已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2C .3D .5解析:选A ∵抛物线y 2=12x 的焦点坐标为(3,0),故双曲线x 24-y 2b 2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x ,∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪⎪⎪⎪⎪52×31+54= 5.5.(2012·郑州模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成7∶3的两段,则此双曲线的离心率为( )A.98B.53C.324D.54解析:选B 依题意得,c +b 2=77+3×2c ,即b =45c (其中c 是双曲线的半焦距),a =c 2-b 2=35c ,则c a =53,因此该双曲线的离心率等于53. 6.设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能解析:选C 若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|PA |+|AF 1|)-(|PB |+|BF 2|)=|AF 1|-|BF 2|.所以N 为切点,同理P 在左支上时,M 为切点. 7.圆x 2+y 2-4x =0在点P (1, 3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0解析:选D 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k (x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33.所以切线方程为y -3=33(x -1),即x -3y +2=0.8.(2012·新课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( ) A.2B .2 2C .4D .8解析:选C 抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.9.(2012·潍坊适应性训练)已知双曲线C :x 24-y 25=1的左,右焦点分别为F 1,F 2,P为C 的右支上一点,且|PF 2|=|F 1F 2|,则|PF 2|=|F 1F 2|,则1PF ,·2PF ,等于( )A .24B .48C .50D .56解析:选C 由已知得|PF 2|=|F 1F 2|=6,根据双曲线的定义可得|PF 1|=10,在△F 1PF 2中,根据余弦定理可得cos ∠F 1PF 2=56,所以1PF ,·2PF ,=10×6×56=50.10.(2012·南昌模拟)已知△ABC 外接圆半径R =1433,且∠ABC =120°,BC =10,边BC 在x 轴上且y 轴垂直平分BC 边,则过点A 且以B ,C 为焦点的双曲线方程为( )A.x 275-y 2100=1B.x 2100-y 275=1 C.x 29-y 216=1D.x 216-y 29=1 解析:选D ∵sin ∠BAC =BC 2R =5314,∴cos ∠BAC =1114,|AC |=2R sin ∠ABC =2×1433×32=14,sin ∠ACB =sin(60°-∠BAC )=sin 60°cos∠BAC -cos 60°sin∠BAC =32×1114-12×5314=3314, ∴|AB |=2R sin ∠ACB =2×1433×3314=6,∴2a =||AC |-|AB ||=14-6=8,∴a =4,又c =5,∴b 2=c 2-a 2=25-16=9, ∴所求双曲线方程为x 216-y 29=1.11.(2012·乌鲁木齐模拟)已知抛物线y 2=2px (p >0)的焦点为F ,P ,Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( )A .2± 3B .2+ 3C.3±1D.3-1解析:选A 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p2,所以y 21=y 22,所以y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2± 3.12.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32或4 2B .26或27C .25或27D.5或7解析:选C 设椭圆方程为mx 2+ny 2=1(m ≠n 且m ,n >0),与直线方程x +3y +4=0联立,消去x 得(3m +n )y 2+83my +16m -1=0,由Δ=0得3m +n =16mn ,即3n +1m=16,①又c =2,即1m -1n=±4,②由①②联立得⎩⎪⎨⎪⎧m =17n =13或⎩⎪⎨⎪⎧m =1n =15,故椭圆的长轴长为27或2 5.二、填空题(本题有4小题,每小题5分,共20分)13.(2012·青岛模拟)已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,当l 1⊥l 2时,θ=________.解析:l 1⊥l 2的充要条件是2sin θ+sin θ=0,即sin θ=0,所以θ=k π(k ∈Z ).所以当θ=k π(k ∈Z )时,l 1⊥l 2.答案:k π(k ∈Z )14.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,O 是坐标原点,OP ∥AB ,PF 1⊥x 轴,|F 1A |=10+5,则此椭圆的方程是______________________.解析:由于直线AB 的斜率为-b a,故直线OP 的斜率为-b a,直线OP 的方程为y =-b a x .与椭圆方程联立得x 2a 2+x 2a 2=1,解得x =±22a .根据PF 1⊥x 轴,取x =-22a ,从而-22a =-c ,即a =2c .又|F 1A |=a +c =10+5,故2c +c =10+5,解得c =5,从而a =10.所以所求的椭圆方程为x 210+y 25=1.答案:x 210+y 25=115.(2012·陕西高考)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析:设抛物线的方程为x 2=-2py ,则点(2,-2)在抛物线上,代入可得p =1,所以x 2=-2y .当y =-3时,x 2=6,即x =±6,所以水面宽为26.答案:2616.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝ ⎛⎭⎪⎫1m ,0,B ⎝ ⎛⎭⎪⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3.答案:3三、解答题(本题共6小题,共70分)17.(10分)求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程.解:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),设所求直线y -2=k (x -1)(由题可知k 存在),即kx -y +2-k =0,∵P (0,4)到直线距离为2,∴2=|-2-k |1+k 2,解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0.18.(12分)(2012·南昌模拟)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)由题意知,直线PA 和直线PB 的斜率存在,且互为相反数,故可设PA :y -1=k (x -1),PB :y -1=-k (x -1),由⎩⎪⎨⎪⎧y -1=k x -,x 2+y 2=2得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y A x B -x A=-k x B --k x A -x B -x A=2k -k x B +x Ax B -x A=1=k OP ,所以,直线AB 和OP 一定平行.19.(12分)(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝ ⎛⎭⎪⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 2a 2+y20b2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b 2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b 2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =±5.20.(12分)(2012·河南模拟)已知椭圆x 2a2+y 2b2=1(a >b >0)的离心率为22,短轴的一个端点为M (0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B .(1)若|AB |=4269,求k 的值; (2)求证:不论k 取何值,以AB 为直径的圆恒过点M . 解:(1)由题意知ca =22,b =1.由a 2=b 2+c 2可得c =b =1,a =2,∴椭圆的方程为x 22+y 2=1.由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1得(2k 2+1)x 2-43kx -169=0.Δ=169k 2-4(2k 2+1)×⎝ ⎛⎭⎪⎫-169=16k 2+649>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k k 2+,x 1x 2=-16k 2+.∴|AB |=1+k 2·|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=4+k 2k 2+k 2+=4269, 化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0,解得k =±1.(2)∵MA ,=(x 1,y 1-1),MB ,=(x 2,y 2-1),∴MA ,·MB ,=x 1x 2+(y 1-1)(y 2-1),=(1+k 2)x 1x 2-43k (x 1+x 2)+169=-+k 2k 2+-16k 2k 2++169 =0.∴不论k 取何值,以AB 为直径的圆恒过点M .21. (2012·广州模拟)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a 2a 2-2与x 轴交于点A ,若1OF ,+21AF ,=0(其中O 为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE ,·PF ,的最大值.解:(1)由题设知,A ⎝ ⎛⎭⎪⎪⎫a 2a 2-2,0,F 1(a 2-2,0),由1OF ,+21AF ,=0,得a 2-2=2⎝ ⎛⎭⎪⎪⎫a 2a 2-2-a 2-2, 解得a 2=6.所以椭圆M 的方程为x 26+y 22=1. (2)设圆N :x 2+(y -2)2=1的圆心为N ,则PE ,·PF ,=(NE ,-NP ,)·(NF ,-NP ,) =(-NF ,-NP ,)·(NF ,-NP ,)=NP ,2-NF ,2=NP ,2-1.从而将求PE ,·PF ,的最大值转化为求NP ―→,2的最大值.因为P 是椭圆M 上的任意一点,设P (x 0,y 0),所以x 206+y 202=1,即x 20=6-3y 20. 因为点N (0,2),所以NP ,2=x 20+(y 0-2)2=-2(y 0+1)2+12. 因为y 0∈[-2, 2],所以当y 0=-1时,NP ,2取得最大值12. 所以PE ,·PF ,的最大值为11.22. (2012·湖北模拟)如图,曲线C 1是以原点O 为中心,F 1,F 2为焦点的椭圆的一部分.曲线C 2是以O 为顶点,F 2为焦点的抛物线的一部分,A 是曲线C 1和C 2的交点且∠AF 2F 1为钝角,若|AF 1|=72,|AF 2|=52. (1)求曲线C 1和C 2的方程;(2)设点C 是C 2上一点,若|CF 1|=2|CF 2|,求△CF 1F 2的面积. 解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则2a =|AF 1|+|AF 2|=72+52=6,得a =3.设A (x ,y ),F 1(-c,0),F 2(c,0),则(x +c )2+y 2=⎝ ⎛⎭⎪⎫722,(x -c )2+y 2=⎝ ⎛⎭⎪⎫522,两式相减得xc =32. 由抛物线的定义可知|AF 2|=x +c =52, 则c =1,x =32或x =1,c =32.又∠AF 2F 1为钝角,则x =1,c =32不合题意,舍去.当c =1时,b =22,所以曲线C 1的方程为x 29+y 28=1⎝ ⎛⎭⎪⎫-3≤x ≤32,曲线C 2的方程为y 2=4x ⎝⎛⎭⎪⎫0≤x ≤32. (2)过点F 1作直线l 垂直于x 轴,过点C 作CC 1⊥l 于点C 1,依题意知|CC 1|=|CF 2|. 在Rt △CC 1F 1中,|CF 1|=2|CF 2|=2|CC 1|,所以∠C 1CF 1=45°,所以∠CF 1F 2=∠C 1CF 1=45°.在△CF 1F 2中,设|CF 2|=r ,则|CF 1|=2r ,|F 1F 2|=2. 由余弦定理得22+(2r )2-2×2×2r cos 45°=r 2, 解得r =2,所以△CF 1F 2的面积S △CF 1F 2=12|F 1F 2|·|CF 1|sin 45°=12×2×22sin 45°=2.。
1.2.1任意角的三角函数(1)
一.学习要点:三角函数的定义、符号分布、诱导公式
二.学习过程:
(一)复习:初中锐角的三角函数是如何定义的?
(二)新课学习:
1.三角函数定义
在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)
的坐标为(,)x y ,
它与原点的距离为(0)r r ==>,那么
说明:
①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;
②根据相似三角形的知识,对于确定的角α,六个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小;
③当()2k k Z π
απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于
0,所以tan y x α=与sec r x α=无意义;同理,当()k k Z απ=∈时,x coy y α=与csc r y
α=无意义; ④除以上两种情况外,对于确定的值α,比值
y r 、x r 、y x 、x y 、r x 、r y 分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数.
2.三角函数的定义域、值域
3.三角函数的符号分布:
例1求3
5π的六个三角函数值.
例2已知角α的终边经过点(2,3)P -,求α的六个函数制值。
练习:已知角α的终边过点(,2)(0)a a a ≠,求α的六个三角函数值.
4.诱导公式
由三角函数的定义,就可知道:终边相同的角三角函数值相同。
即有:
例3(1)cos 240 ;(2)sin()4
π-;(3)tan(660)- ;(4)11tan 3
π.
四、小结:1.任意角的三角函数的定义;
2.三角函数的定义域、值域;
3.三角函数的符号及诱导公式.
五、作业:见作业(63)。