北师大版八年级数学下册期中复习试卷(1-3单元
- 格式:doc
- 大小:339.50 KB
- 文档页数:6
北师大版八年级下册数学期中考试试卷一、单选题1.下列不等式,不成立的是()A .﹣2>﹣12B .5>3C .0>﹣2D .5>﹣12.下列图形是中心对称图形的是()A .B .C .D .3.下列从左边到右边的变形,是因式分解的是()A .2(3)(3)9x x x -+=-B .am +bm +cm =m (a +b +c )C .(1)(3)(3)(1)y y y y +-=--+D .2422(2)yz y z z y z yz z -+=-+4.如图所示,该图案是经过()A .平移得到的B .旋转或轴对称得到的C .轴对称得到的D .旋转得到的5.已知函数y =8x -11,要使y >0,那么x 应取()A .x >118B .x <118C .x >0D .x <06.多项式3222315520m n m n m n +-的公因式是()A .5mnB .225m nC .25m nD .25mn 7.下列命题不正确的是A .等腰三角形的底角不能是钝角B .等腰三角形不能是直角三角形C .若一个三角形有三条对称轴,那么它一定是等边三角形D .两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形8.下列多项式中能用平方差公式分解因式的是()A .2 a +()2b -B .2 5m 20mn -C .22 x y --D .2 x 9-+9.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在().A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边垂直平分线的交点处C .在AC 、BC 两边中线的交点处D .在∠A 、∠B 两内角平分线的交点处10.如图,已知在△ABC 中,AB =AC ,BE 和CD 分别是∠ABC 和∠ACB 的平分线,则下列结论中,①∠ABE =∠ACD ;②BE =CD ;③OC =OB ;④CD ⊥AB ,BE ⊥AC ,正确的是()A .①B .①②C .①②③D .②③④二、填空题11.分解因式:x 2﹣4=__.12.已知:y 1=3x +2,y 2=-x +8,当x _________时,y 1>y 213.如图,∠C =90°,D 是CA 的延长线上一点,∠D =15°,且AD =AB ,则BC =_____AD .14.不等式组32x x >-⎧⎨<⎩的解集是_________.15.若22916x mxy y ++是一个完全平方式,那么m 的值是__________.16.若将点P (-3,4)向下平移2个单位,所得点的坐标是__________.17.如图,在己知的ABC ∆中,按以一下步骤作图:①分别以,B C 为圆心,大于12BC 的长为半径作弧,相交于两点,M N ;②作直线MN 交AB 于点D ,连接CD .若CD AC =,50A ∠=︒,则ACB∠的度数为___________.三、解答题18.分解因式(1)a2-b2(2)x2+2xy+y219.解不等式组:1526xx+<⎧⎨≥⎩,并在数轴上表示出不等式组的解集.20.如图,画出ABC向右平移6格后的图形21.利用因式分解进行计算:229124x xy y++,其中43x=,12y=-.22.把一批书分给小朋友,每人4本,则余9本;每人6本,则最后一个小朋友得到的书且不足3本,则共有小朋友多少人?多少本书?23.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且BD=AE,AD与CE交于点F(1)求证:AD=CE;(2)求∠DFC的度数.24.如图,点P是正方形ABCD内一点,连接PA,PB,PC,将△ABP绕点B顺时针旋转到△CBP′的位置.(1)旋转中心是点__________,旋转角度是__________.(2)连接PP′,△BPP′的形状是__________三角形.(3)若PA=2,PB=4,∠APB=135°,求PC的长.25.观察下列各式:21(1)(1)-=-+x x x32-=-++x x x x1(1)(1)432-=-+++1(1)(1)x x x x x(1)x5-1=.(2)根据前面的规律可得x n-1=(x-1).x-.(3)请按以上规律分解因式:20081参考答案1.A【分析】此题主要依据有理数的大小比较:正数大于所有负数,零大于所有负数,两个负数大小比较时,绝对值大的反而小.【详解】解:A、因为两个负数,绝对值大的反而小,所以﹣2<﹣12;B、5>3成立;C、0大于一切负数,则0>﹣2;D、正数大于一切负数,则5>﹣1.故选A.【点睛】掌握有理数的大小比较方法,特别注意:两个负数,绝对值大的反而小.2.B【分析】根据中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点睛】本题考查了中心对称图形的识别,解题的关键是掌握中心对称图形的概念.3.B【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A错误;B 、把一个多项式转化成几个整式积,故B 正确;C 、是乘法交换律,故C 错误;D 、没把一个多项式转化成几个整式积,故D 错误;故选B .【点睛】本题考查了因式分解的意义,利用把一个多项式转化成几个整式积是解题关键.4.B【详解】根据图案的形状可知:通过旋转和轴对称折叠旋转即可得到,因此可知B 答案正确.故选B.5.A【详解】试题解析:函数y=8x-11,要使y >0,则8x-11>0,解得x >118,故选A.6.C【分析】找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【详解】解:多项式3222315520m n m n m n +-中,各项系数的最大公约数是5,各项都含有的相同字母是m 、n ,字母m 的指数最低是2,字母n 的指数最低是1,所以它的公因式是25m n .故选C .【点睛】本题考查了公因式的确定,熟练掌握找公因式有三大要点是求解的关键.7.B【详解】试题分析:根据等腰三角形的性质及等边三角形的判定方法依次分析各项即可判断.A、C、D、均正确,不符合题意;B、等腰直角三角形就是直角三角形,故错误,本选项符合题意.考点:等腰三角形的性质,等边三角形的判定点评:等腰三角形的性质的应用贯穿于整个初中学习,是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.D【分析】利用能用平方差公式因式分解的的式子特点求解即可:两项是平方项,符号相反【详解】A:两项符号相同,故不能;B:两项不是平方项,故不能;C:两项符号相同,故不能;D:两项是平方项,符号相反,故可以所以答案为D选项【点睛】本题主要考查了能用平方差公式因式分解的特点,熟练掌握该特点是解题关键9.B【分析】根据线段垂直平分线的性质即可得出答案.【详解】解:根据线段垂直平分线上的点到线段两个端点的距离相等,可知超市应建在AC、BC两边垂直平分线的交点处,故选:B.【点睛】本题考查线段垂直平分线性质:线段垂直平分线上的点到线段两个端点的距离相等,熟练掌握其性质是解题的关键.10.C【分析】由AB=AC得∠ABC=∠ACB,由两个平分条件,则可得∠ABE=∠ACD,即①成立;且∠OBC=∠OCB ,从而可得OC=OB ,即③正确;易证△ABE ≌△ACD ,BE=CD ,故可得②正确;由AB=AC 得∠ABC=∠ACB ,由两个平分条件,则可得∠OBC=∠OCB ,从而可得OC=OB ,即③正确;若④成立,则可得△ABC 是等边三角形,显然与已知矛盾.【详解】∵AB=AC∴∠ABC=∠ACBBE 和CD 分别是∠ABC 和∠ACB 的平分线∴∠ABE=∠OBC=12ABC ∠,∠ACD=∠OCB=12ACB∴∠ABE=∠ACD=∠OBC=∠OCB即①成立∵∠OBC=∠OCB∴OC=OB即③正确在△ABE 和△ACD 中A AAB AC ABE ACD∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△ACD(ASA)∴BE=CD即②正确若④成立,则∠ABC+∠OCB=90゜∵∠ABE =∠OBC=∠OCB∴∠ABE=∠OBC=∠OCB=30゜∴∠ABC=2∠ABE=60゜∵AB=AC∴△ABC 是等边三角形显然与已知△ABC 是等腰三角形矛盾故④错误所以正确的结论为①②③故选:C .【点睛】本题考查了等腰三角形的性质,三角形全等的判定与性质,等边三角形的判定等知识,熟练运用三角形全等的判定与性质是本题的关键.11.(x+2)(x ﹣2)【详解】该题考查因式分解的定义由平方差公式ɑ2-b 2=(ɑ+b)(ɑ-b)可得x 2﹣4=(x+2)(x ﹣2)12.32x >【分析】根据题意列出不等式,故可求解.【详解】∵y 1=3x +2,y 2=-x +8,∴当y 1>y 2时,即3x +2>-x +8解得32x >故答案为:32x >.【点睛】此题主要考查一次函数与不等式,解题的关键是根据题意列出不等式进行求解.13.12【分析】根据等腰对等角以及三角形的外角性质可求得30BAC ∠=︒,根据含30度角的直角三角形的性质即可求得12BC AD =.【详解】AD AB =,ABD ∴ 是等腰三角形,D ABD ∴∠=∠,15D ∠=︒ ,15ABD ∴∠=︒,BAC ABD D ∠=∠+∠ ,151530BAC ∴∠=︒+︒=︒,90C ∠=︒ ,ABC ∴ 是直角三角形,1122BC AB AD ∴==.故答案为:12.【点睛】本题考查了等腰对等角,三角形的外角性质,含30度角的直角三角形的性质,掌握以上性质是解题的关键.14.-3<x <2【分析】直接根据一元一次不等式组的求解即可.【详解】解:∵32x x >-⎧⎨<⎩,解得:32x -<<;故答案为:32x -<<.【点睛】本题主要考查一元一次不等式组的解集,熟练掌握求解一元一次不等式组是解题的关键.15.±24【分析】根据完全平方公式进行计算即可.【详解】解:∵22916x mxy y ++是一个完全平方式,∴22916x mxy y ++=(3x±4y )2,∴m =±24,故答案为:±24.【点睛】本题考查了完全平方公式.解题的关键是掌握完全平方公式的结构特征:两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号.16.(-3,2)【分析】根据向下平移纵坐标减,进行计算即可.【详解】解:将点P (−3,4)向下平移2个单位,所得点的坐标是(−3,2).故答案为:(−3,2).【点睛】本题考查了点的坐标的平移,熟记左减右加,下减上加是解题的关键,是基础题,难度不大.17.105°【分析】根据垂直平分线的性质,可知,BD=CD ,进而,求得∠BCD 的度数,由CD AC =,50A ∠=︒,可知,∠ACD=80°,即可得到结果.【详解】根据尺规作图,可知,MN 是线段BC 的中垂线,∴BD=CD ,∴∠B=∠BCD ,又∵CD AC =,∴∠A=∠ADC=50°,∵∠B+∠BCD=∠ADC=50°,∴∠BCD=°1502⨯=25°,∵∠ACD=180°-∠A-∠ADC=180°-50°-50°=80°,∴ACB ∠=∠BCD+∠ACD=25°+80°=105°.【点睛】本题主要考查垂直平分线的性质定理以及等腰三角形的性质定理与三角形外角的性质,求出各个角的度数,是解题的关键.18.(1)(a+b)(a-b);(2)(x+y)2【分析】(1)根据平方差公式即可因式分解;(2)根据完全平方公式即可因式分解.【详解】解:(1)a2-b2=(a+b)(a-b)(2)x2+2xy+y2=(x+y)2.【点睛】此题主要考查因式分解,解题的关键是熟知乘法公式的特点.19.3≤x<4,见解析【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】解:15 26xx+<⎧⎨≥⎩①②由①解得4x<,由②解得3x≥,所以不等式组的解集为34x≤<解集在数轴上表示如下图:【点睛】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,能求出不等式组的解集是解此题的关键.20.图形见解析.【分析】分别画出ABC 中A ,B ,C 向右平移6格后的对应点'A ,'B ,'C ,然后连接各点即可.【详解】解:如图所示:'''A B C 为所求.【点睛】本题主要考查了平移作图,正确得出对应点的位置是解题关键.21.()232x y +,9.【分析】先根据完全平方公式分解因式,再代入求出即可.【详解】解:229124x xy y ++()()2232322x x y y =++ ()232x y =+,当43x =,12y =-时,原式2413232⎡⎤⎛⎫=⨯+⨯- ⎪⎢⎥⎝⎭⎣⎦()241=-=(4-1)29=【点睛】本题考查了分解因式和代数式的化简求值,能根据公式正确分解因式是解此题的关键.22.共有7个小朋友人,37本书.【分析】设共有小朋友x人,则这批书共有(4x+9)本,根据“每人6本,则最后一个小朋友得到的书且不足3本,”可列出关于x的不等式组,即可求解.【详解】解:设共有小朋友x人,则这批书共有(4x+9)本,依题意,得:496(1) 496(1)3 x xx x+>-⎧⎨+<-+⎩,解得:6<x<15 2,又∵x为正整数,∴x=7,∴4x+9=4×7+9=37(本),答:共有7个小朋友人,37本书.【点睛】本题主要考查了一元一次不等式组的实际应用,明确题意,准确找到数量关系是解题的关键.23.(1)见解析;(2)60°【分析】(1)根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,(2)根据全等三角形的性质得到∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【详解】(1)证明:∵△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.又∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE.(2)解:由(1)得△ABD≌△CAE∴∠ACE=∠BAD.∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠BAC=60°.【点睛】本题利用了等边三角形的性质和三角形外角定理,解题的关键是熟知全等三角形的判定定理及三角形的外角等于与它不相邻的两个内角的和.24.(1)B,90°;(2)等腰直角;(3)6【分析】(1)根据旋转的定义解答;(2)根据旋转的性质可得BP=BP′,又旋转角为90°,然后根据等腰直角三角形的定义判定;(3)①根据勾股定理列式求出PP′,先根据旋转的性质求出∠BP′C=135°,再求出∠PP′C=90°,然后根据勾股定理列式进行计算即可得解.【详解】解:(1)∵P是正方形ABCD内一点,△ABP绕点B顺时针旋转到△CBP′的位置,∴旋转中心是点B,点P旋转的度数是90度,故答案为:B,90°;(2)根据旋转的性质BP=BP′,旋转角为90°,∴△BPP′是等腰直角三角形;故答案为:等腰直角;(3)在等腰Rt△BPP'中,∵PB=BP'=4,∴PP′=∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,∵P'C=PA=2在Rt△PP′C中,PC6=【点睛】本题考查旋转的性质,勾股定理,正方形的性质,等腰直角三角形的判定和性质,解题的关键是熟练掌握旋转的性质和正方形的性质.25.(1)(x -1)(x 4+x 3+x 2+x +1);(2)(x n -1+x n -2+……+x 2+x +1);(3)(x -1)(x 2007+x 2006+……+x 2+x +1)【分析】(1)根据已知的等式即可因式分解x 5-1;(2)根据已知的等式即可因式分解x n -1;(3)把n=2008代入(2)即可求解.【详解】(1)∵21(1)(1)x x x -=-+321(1)(1)x x x x -=-++4321(1)(1)x x x x x -=-+++∴x 5-1=(x -1)(x 4+x 3+x 2+x +1);故答案为:(x -1)(x 4+x 3+x 2+x +1);(2)∵21(1)(1)x x x -=-+321(1)(1)x x x x -=-++4321(1)(1)x x x x x -=-+++x 5-1=(x -1)(x 4+x 3+x 2+x +1);∴x n -1=(x-1)(x n -1+x n -2+……+x 2+x +1)故答案为:(x n -1+x n -2+……+x 2+x +1);(3)x n -1=(x-1)(x n -1+x n -2+……+x 2+x +1)∴20081x -=(x -1)(x 2007+x 2006+……+x 2+x +1).【点睛】此题主要考查因式分解,解题的关键是根据已知的等式发现规律进行求解.。
北师大八年级数学下册期中测试试卷(附含答案)(本试卷满分120分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共10小题,每小题3分,共30分) 1.下列运动形式属于旋转的是( )A .飞驰的动车B .匀速转动的摩天轮C .运动员投掷标枪D .乘坐升降电梯2.下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )A B C D3.用反证法证明命题“若|a|<3,则a 2<9”时,应先假设( )A .a >3B .a≥3C .a 2≥9D .a 2>94.如图1,在等边三角形ABC 中,AB=4,D 是边BC 上一点,且∠BAD=30°,则CD 的长为( )A .1B .23C .2D .3① ②图1 图25.已知△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,F 为线段AC 上一点,且∠DFA =80°,则( )A.DE <DFB.DE >DFC.DE =DFD.不能确定DE ,DF 大小关系6.不等式组⎩⎨⎧+≤+-4332,1<2x x x 的解集在数轴上表示正确的是()A BC D7. 已知图2-②是由图2-①经过平移得到的,图2-②还可以看作是由图2-①经过怎样的变换得到的?现给出两种变换方式:①2次旋转;②2次轴对称.下面说法正确的是( )A .①②都不可行B .①②都可行C .只有①可行D .只有②可行8.某种商品的进价为1000元,商场将商品进价涨价35%后标价出售,后来由于该商品积压较多,商场准备进行打折销售,但要保证所获利润不低于8%,则至多可打( )A .9折B .8折C .7折D .6折 9.一次函数y =kx 和y =-x +3的图象如图3所示,则关于x 的不等式组kx <-x +3<3的解集是( ) A .1<x <3 B .0<x <2C .0<x <3D .0<x <1图3 图4 10.如图4,在△ABC 中,AB =AC ,∠A =72°,CD 是∠ACB 的平分线,点E 在AC 上,且DE ∥BC ,连接BE ,则∠DEB 的度数为( )A .20°B .25°C .27°D .30°二、填空题(本大题共6小题,每小题4分,共24分)11.若等腰三角形的一个内角为40°,则该等腰三角形的顶角是 .12.如图5,点A (2,1),将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A 的对应点A′的坐标是 .图5 图6 13.如图6,在△ABC 中,∠ACB =90°,AC =5 cm ,DE 垂直平分AB ,交BC 于点E .若BE =13 cm ,则EC 的长是 cm .14.若关于x 的不等式组⎩⎨⎧---3<,1<25a x x x 的无解,则a 的取值范围是 . 15.如图7,已知∠MAN =60°,点B ,E 在边AM 上,点C 在边AN 上,AB =4,AC =8,连接EC ,以点E 为圆心,CE 的长为半径画弧,交AC 于点D .若BE =6,则AD 的长为 .图7 图816.如图8,将△ABC 绕点A 逆时针旋转得到△ADE ,其中点B ,C 分别与点D ,E 对应,如果B ,D ,C 三点恰好在同一直线上,下列结论:①△ACE 是等腰三角形;②∠DAC =∠DEC ;③AD =CE ;④∠ABC =∠ACE ;⑤∠EDC =∠BAD .其中正确的是 .(填序号)三、解答题(本大题共8小题,共66分) 17.(每小题4分,共8分)解下列不等式:(1)2x+1>3(2-x ); (2)21143x x +--≤. 18.(6分)解不等式组⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 并把解集在数轴上表示出来.19.(7分)如图9,在△ABC 中,AB=AC ,∠BAC=120°,点D ,E 在BC 上,AD ⊥AC ,AE ⊥AB . 求证:△AED 为等边三角形.图920.(7分)如图10,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A (5,2),B (5,5),C (1,1)均在格点上.(1)请画出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出点B 1的坐标;(2)将△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2,请画出△A 2B 2C 2,并写出点A 2的坐标. E BD C NMA图1021.(8分)小明和同学想利用暑假去植物园参加青少年社会实践项目,到植物园了解那里的土壤、水系、植被,以及与之依存的昆虫世界.小明在网上了解到该植物园的票价是每人10元,20人及以上按团体票,可8折优惠.(1)如果有18人去植物园,请通过计算说明,小明怎样购票更省钱?(2)小明现有500元的活动经费,且每人往返车费共3元,则至多可以去多少人?22.(8分)如图11,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14 cm,AC=6 cm,求DC的长.图1123.(10分)如图12,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过点B作BE⊥CD,分别交AC,CD于点E,F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和BD的数量关系,并证明你的猜想.图1224.(12分)【问题原型】如图13-①,在等腰直角三角形ABC 中,∠ACB =90°,BC =8.将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作△BCD 的BC 边上的高DE ,易证△ABC ≌△BDE ,从而得到△BCD 的面积为 ;【初步探究】如图13-②,在Rt △ABC 中,∠ACB =90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .用含a 的代数式表示△BCD 的面积,并说明理由;【简单应用】如图13-③,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,求△BCD 的面积(用含a 的代数式表示).① ② ③图13参考答案三、17.(1)x >1.(2)x ≥-2. 18.解:⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 解不等式①,得x ≤1.解不等式②,得x <4.所以不等式组的解集为 x ≤1.解集在数轴上表示略.① ② 答案速览 一、1.B 2.B 3.C 4.C 5.A 6.B 7.B 8.B 9.D 10.C 二、11.40°或100° 12.(-1,3) 13.12 14.a ≤-1 15.2 16.①②④⑤19.证明:因为AB=AC ,∠BAC=120°,所以∠B=∠C=21(180°-∠BAC )=30°. 因为AD ⊥AC ,AE ⊥AB ,所以∠EAB=∠DAC=90°.所以∠AEB=90°-∠B=60°,∠ADC=90°-∠C=60°.所以∠DAE=180°-∠AEB-∠ADC=60°.所以∠ADE=∠AED=∠DAE=60°.所以△AED 为等边三角形. 20.解:(1)如图1,△A 1B 1C 1为所求作,点B 1的坐标为(5,-5).(2)如图1,△A 2B 2C 2为所求作,点A 2的坐标为(-2,5).图121.解:(1)因为10×18=180(元),10×0.8×20=160(元),所以小明购团体票更省钱;(2)设可以去m 人,依题意,得(10×0.8+3)m ≤500,解得m ≤45. 因为m 为正整数,所以m 的最大值为45.答:至多可以去45人.22.解:(1)因为AD ⊥BC ,BD =DE ,所以AD 是BE 的垂直平分线,所以AB =AE . 因为∠BAE =40°,所以∠B =∠AEB =(180°-∠BAE )=70°.所以∠C +∠EAC =∠AEB =70°.因为EF 垂直平分AC ,所以EA =EC .所以∠C =∠EAC =35°.所以∠C 的度数为35°.(2)因为△ABC 的周长为14 cm ,AC =6 cm所以AB +BC =14-6=8(cm ).所以AB +BD +DC =8.所以AE +DE +DC =8.所以EC +DE +DC =8.所以2DC =8.所以DC =4.所以DC 的长为4.23.(1)证明:因为BE ⊥CD ,所以∠BFC =90°.所以∠EBC +∠BCF =90°.因为∠ACB =∠BCF +∠ACD =90°,所以∠EBC =∠ACD .因为AD =CD ,所以∠A =∠ACD .所以∠A =∠EBC .(2)解:BE =BD .证明:如图2,过点D 作DG ⊥AC 于点G .因为DA =DC ,DG ⊥AC ,所以AC =2CG .因为AC =2BC ,所以CG =BC .因为∠DGC =90°,∠ECB =90°,所以∠DGC =∠ECB .在△DGC 和△ECB 中,∠DGC =∠ECB ,CG =BC ,∠DCG =∠EBC ,所以△DCG ≌△EBC . 所以CD =BE .因为BD =CD ,所以BE =BD .24.解:【问题原型】由作图可知所以∠BED =∠ACB =90°.因为AB 绕点B 顺时针旋转90°得到BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =8.所以S △BCD =21BC •DE =32. 【初步探究】△BCD 的面积为21a 2.理由: 如图3,过点D 作BC 的垂线,与CB 的延长线交于点E .所以∠BED =∠ACB =90°.因为线段AB 绕点B 顺时针旋转90°得到线段BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =a .所以S △BCD =21BC •DE =21a 2.图3 图4【简单应用】如图4,过点A 作AF ⊥BC 于点F ,过点D 作DE ⊥BC ,交CB 的延长线于点E . 所以∠AFB =∠E =90°,BF =21BC =21a . 所以∠F AB +∠ABF =90°.因为∠ABD =90°,所以∠ABF +∠DBE =90°.所以∠F AB =∠EBD .图2因为线段BD 是由线段AB 旋转得到的,所以AB =BD .在△AFB 和△BED 中,∠AFB =∠E ,∠F AB =∠EBD ,AB=BD ,所以△AFB ≌△BED . 所以BF =DE =21a . 所以S △BCD =21BC •DE =21•a •21a =41a 2.。
北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。
北师大版八年级下册数学期中考试试卷一、单选题1.下列不等式一定成立的是()A .54a a >B .23x x +<+C .2a a ->-D .42a a>2.观察下面的图案,在A ,B ,C ,D 四个图案中,能通过下图平移得到的是()A .B .C .D .3.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A .17B .22C .17或22D .134.如图,在△ABC 中,BC =5,∠A =80°,∠B =70°,把△ABC 沿RS 的方向平移到△DEF 的位置,若CF =4,则下列结论中错误的是()A .BE =4B .∠F =30°C .AB ∥DED .DF =55.如图,将Rt ABC 绕直角顶点C 顺时针旋转90°,得到A B C ''△,连接AA ',若120∠=︒,则B Ð的度数是()A .70°B .65°C .60°D .55°6.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为()A .4B .5C .6D .87.如图,已知两个全等直角三角形的直角顶点及一条直角边分别重合,将绕点C 按顺时针方向旋转到的位置,其中A’C 交AD 于点E,A’B’分别交AD,AC 于点F 、G,则旋转后的图中全等三角形共有()A .2对B .3对C .4对D .5对8.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是()A .B .C .D .9.不等式()213x x +≤的解集为()A .2x ≤B .2x ≥C .2x -≤D .2x ≥-10.在△ABC 中,∠A 的相邻外角是70°,要使△ABC 为等腰三角形,则∠B 为()A .70°B .35°C .110°或35°D .110°二、填空题11.一次函数y=﹣3x+b 和y=kx+1的图象如图所示,其交点为P (3,4),则不等式kx+1≥﹣3x+b 的解集是_______.12.用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设___________.13.如图,已知//AB CD ,O 为BAC ∠和ACD ∠的平分线的交点,OE AC ⊥于点E ,且2OE =,则AB 与CD 之间的距离是________.14.如图,数轴上表示的是两个不等式的解集,由它们组成的不等式组的解集为_________.15.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C′,在同一条直线上,则旋转角∠BAB′的度数是_____.16.如图,已知∠AOB=30°,P 是∠AOB 平分线上一点,CP ∥OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC=4,则PD 等于_____.17.如图,将AOB 绕点O 按逆时针方向旋转45°后得到COD △,若15AOB ∠=︒,则BOC ∠=______度.三、解答题18.解下列不等式或不等式组,并将解集在数轴上表示出来.(1)4563x x +≤﹣(2)3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩19.某公司到果品基地购买某种优质水果慰问医务工作者,果品基地对购买量在3000kg 以上(含3000kg )的顾客采用两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费用为5000元.(1)分别写出该公司两种购买方案付款金额y (元)与所购买的水果量x (kg )之间的函数关系式,并写出自变量x 的取值范围.(2)当购买量在哪一范围时,选择哪种购买方案付款最少?并说明理由.20.如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC 向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C′顺时针旋转90°,得到△A″B″C″,请你画出△A′B′C′和△A″B″C″(不要求写画法).21.如图,在△ABC 中,∠B=30°,∠ACB=40°,AB=4cm ,△ABC 逆时针旋转一定角度后与△ADE 重合,且点C 恰好成为AD 的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE 的度数和AE 的长.22.如图,在ACB △中,90ACB ∠=︒,CD AB ⊥于D .(1)求证:ACD B ∠=∠;(2)若AF 平分CAB ∠分别交CD 、BC 于E 、F ,求证:CEF △是等腰三角形.23.如图,在等腰ABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连接AP 交BC 于点E ,连接BP 交AC 于点F ,试说明:(1)∠CAE =∠CBF(2)AE =BF24.如图,已知等腰三角形ABC 的顶角∠A =108°.(1)在BC 上作一点D ,使AD =CD (要求:尺规作图,保留作图痕迹,不必写作法和证明).(2)求证:△ABD 是等腰三角形.25.如图,在平面直角坐标系中,已知点A(0,4),△AOB为等边三角形,P是x轴负半轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ.(1)求点B的坐标;(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小;如改变,请说明理由;(3)连接OQ,当OQ∥AB时,求点P的坐标.参考答案1.B【详解】A、因为5>4,不等式两边同乘以a,而a≤0时,不等号方向改变,即5a≤4a,故错误;B、因为2<3,不等式两边同时加上x,不等号方向不变,即x+2<x+3正确;C、因为﹣1>﹣2,不等式两边同乘以a,当a≤0时,不等号方向改变,即﹣a≤﹣2a,故错误;D 、因为4>2,不等式两边同除以a ,当a≤0时,不等号方向改变,即42a a≤,故错误.故选B .【点睛】本题考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变,(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.B【解析】【分析】根据平移前后形状与大小没有改变,并且对应点的连线平行且相等的特点即可得出答案.【详解】解:A 、对应点的连线相交,不能通过平移得到,不符合题意;B 、可通过平移得到,符合题意;C 、对应点的连线相交,不能通过平移得到,不符合题意;D 、对应点的连线相交,不能通过平移得到,不符合题意;故选:B .【点睛】本题考查平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.3.B【解析】【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=.故选:B .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,解题的关键还应验证各种情况是否能构成三角形进行解答,这点非常重要.4.D【解析】【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【详解】解:∵把△ABC 沿RS 的方向平移到△DEF 的位置,BC=5,∠A=80°,∠B=70°,∴CF=BE=4,∠F=∠ACB=180°﹣∠A ﹣∠B=180°﹣80°﹣70°=30°,AB ∥DE ,∴A 、B 、C 正确,D 错误.故选D .【点睛】本题考查了平移的性质,熟练掌握平移性质是解题的关键.5.B【解析】【分析】根据旋转的性质得AA C '△为等腰直角三角形,即可算得B A C ''∠,继而可算得B Ð.【详解】解:由旋转性质:'AC A C =,B B '∠=∠AA C '∴ 为等腰直角三角形,45125B A C ''∴∠=︒-∠=︒,在Rt A B C ''△中,90902565CB A B A C ''''∴∠=︒-∠=︒-︒=︒,65B CB A '∴'∠=∠=︒,故选B .【点睛】本题考查了旋转的性质;关键在于知道旋转过程中对应边角的大小是相等的.6.C【解析】【详解】解:如图,作出图形,分三种情况讨论:若OA=OM,有4点M1,M2,M3,M4;若OA=AM,有2点M5,M1;若OM=AM,有1点M6,M1.∴满足条件的点M的个数为6.故选:C.7.C【解析】【分析】根据三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.【详解】解:旋转后的图中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC,△AGF≌△A′EF,△ACE≌△A′CG,共4对.故选:C.【点睛】本题考查图形的旋转和三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角,难度不大.8.A【解析】【分析】先得出不等式组的解集,再找到对应的数轴表示即可.【详解】解:由题意可得:不等式组的解集为:-2≤x <1,在数轴上表示为:故选A.【点睛】此题主要考查了不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.B【解析】【分析】利用不等式的基本性质,移项、合并同类项、系数化为1可得.【详解】解:去括号,得:223x x +≤,移项,得:232x x -≤-,合并同类项,得:2x -≤-,系数化为1,得:2x ≥,故选:B .本题考查了解不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.10.B【解析】【分析】根据内角与相邻的外角的和等于180°求出∠A,再根据等腰三角形两底角相等解答.【详解】∵∠A的相邻外角是70°,∴∠A=180°-70°=110°,∵△ABC为等腰三角形,∴∠B=12(180°-110°)=35°.故选B.11.x≥3【解析】【分析】由kx+1≥﹣3x+b,可得一次函数y=﹣3x+b的图象在一次函数y=kx+1的图象的下方时对应的x取值范围即是kx+1≥﹣3x+b的解集.【详解】函数y=kx+1与y=﹣3x+b的交点坐标为(3,4),由图知当x≥3时,一次函数y=kx+1的图象在y=﹣3x+b上方,所以kx+1≥﹣3x+b的解集是x≥3.故答案为:x≥3.【点睛】本题考查了一次函数与一元一次不等式的关系,其关键是要知道对于同一坐标系的两个一次函数图象在上方的函数值大、图象在下方的函数值小、交点处函数值相等.12.一个三角形中有两个角是直角【分析】根据反证法的第一步是从结论的反面出发进而假设得出即可.【详解】用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设一个三角形中有两个角是直角.故答案为一个三角形中有两个角是直角.【点睛】此题考查反证法,解题关键在于掌握其证明过程.13.4【解析】【分析】作GH过O点垂直于AB,根据角平分线的性质即可得解.【详解】作GH过O点垂直于AB,Q,AB CD//∴⊥,GH CDAO、CO为角平分线,∴=,=2=,OE OHOE OG=2GH=+=,224故答案为:4.【点睛】本题考查了角平分线的性质;掌握好角平分线线上的点到两边的距离相等是关键.14.﹣1<x≤1【分析】依题意,利用数轴的性质,直接写出不等式组的解集即可;【详解】由题知,数轴表示中,1-不包含,1包含;依据数轴的性质,可得不等式组的解集为:11x -<≤;故填:11x -<≤;【点睛】本题考查数轴的性质、数轴与不等式组解的关系,关键在处理包含端点和不包含端点;15.150°##150度【解析】【分析】依题意,直角三角板ABC 绕A 点旋转,得到AB C '',可得ABC AB C ''≅,30BAC B AC ''∠=∠=︒,180BAB B AC '''∠=-∠,即可;【详解】由题知,直角三角板ABC 绕A 点旋转,得到AB C '';由旋转性质可得:ABC AB C ''∆≅∆∴30BAC B AC ''∠=∠=︒又点B A C ',,在同一直线上;∴+180BAB B AC '''∠∠=︒;∴180150BAB B AC '''∠=-∠=︒;故填:150︒;【点睛】本题考查旋转及三角形全等的性质,关键在熟练构造平角进行求解;16.2【解析】【分析】作PE ⊥OA 于E ,根据三角形的外角的性质得到∠ACP=30°,根据直角三角形的性质得到PE=12PC=2,根据角平分线的性质解答即可.【详解】作PE⊥OA于E,∵CP∥OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15°,∴∠ACP=∠OPC+∠POA=30°,∴PE=12PC=2,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=2,故答案为:2.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.60【解析】【分析】根据旋转的性质得到∠BOD=45°,且∠COD=∠AOB,再用∠BOD加∠COD即可.【详解】∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,∴∠BOD=45°,∠COD=∠AOB,又∵∠AOB=15°,∴∠BOC=∠BOD+∠COD=45°+15°=60°,故答案为:60.【点睛】本题考查了旋转的定义和性质,解题的关键是找准旋转角以及对应的边.18.(1)x≥4,见解析;(2)1≤x <4,见解析.【解析】【分析】(1)经过移项、合并同类项、化系数为1计算即可;(2)分别求解两个不等式,再将其得到的解求交集即可.【详解】解:(1)4563x x+≤﹣4635x x -≤--28x -≤-4x ≥将解集表示在数轴上如下:(2)3(2)4x x --≤643x x-≤-得:1≥x 123x +>x ﹣11233x x +>-得:x <4则不等式组的解集为14x ≤<将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式和不等式组,用数轴表示他们的解;关键在于掌握好解不等式的步骤.19.(1)甲方案:y=9x ;x≥3000;乙方案:y=8x+5000;x≥3000;(2)见解析.【解析】【分析】(1)根据甲,乙两种销售方案,分别得出两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,即单价×质量,列出即可;(2)根据分析9x与8x+5000的大小关系,得出不等式的解集可以得出购买方案付款的多少问题.【详解】解:(1)甲方案:每千克9元,由基地送货上门,根据题意得:y=9x;x≥3000,乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元,根据题意得:y=8x+5000;x≥3000;(2)根据题意可得:当9x=8x+5000时,x=5000,当购买5000千克时两种购买方案付款相同,当大于5000千克时,9x>8x+5000,∴甲方案付款多,乙付款少,当大于等于3000千克小于5000千克时,9x<8x+5000,∴甲方案付款少,乙付款多.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,及所求量的等量关系.要会用分类的思想来讨论求得方案的问题.本题要注意根据y甲=y乙,y甲<y乙,y甲>y乙,三种情况分别讨论,也可用图象法求解.20.见解析.【解析】【分析】(1)根据平移的定义将三角形的每个顶点都向下平移4个单位,即可求解;(2)根据旋转的定义找出旋转之后的对应点,即可求解.【详解】解:如图,△A′B′C′和△A″B″C″为所作:【点睛】本题考查图形的平移和旋转,掌握平移和旋转的定义是解题的关键.21.(1)旋转中心为点A,旋转的度数为110°;(2)∠BAE=140°,AE=2cm.【解析】【分析】(1)先利用三角形内角和定理计算出∠BAC=110°,然后根据旋转的定义求解;(2)根据旋转的性质得∠EAD=∠CAB=110°,AE=AC,AD=AB=4cm,则可利用周角定义可计算出∠BAE=140°,然后计算出AC,从而得到AE的长.【详解】解:(1)∠BAC=180°﹣∠B﹣∠ACB=180°﹣30°﹣40°=110°,即∠BAD=110°,∵△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,旋转的度数为110°;(2)∵△ABC逆时针旋转一定角度后与△ADE重合,∴∠EAD=∠CAB=110°,AE=AC,AD=AB=4cm,∴∠BAE=360°﹣110°﹣110°=140°,∵点C恰好成为AD的中点,∴AC=12AD=2cm,∴AE=2cm.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.22.(1)见解析;(2)见解析.【解析】【分析】(1)根据同角的余角相等证明即可;(2)根据等角的余角相等,对顶角的性质,即可证明.【详解】解:(1)∵90ACB ∠=︒,CD AB ⊥于D ,∴90ACD BCD ∠+∠=︒,90B BCD ∠+∠=︒,∴ACD B ∠=∠;(2)在Rt AFC V 中,90CFA CAF ∠=︒-∠,同理在Rt AED △中,90AED DAE ∠=︒-∠.又∵AF 平分CAB ∠,∴CAF DAE ∠=∠,∴AED CFE ∠=∠,又∵CEF AED ∠=∠,∴CEF CFE ∠=∠,∴CE CF =,∴CEF △是等腰三角形.【点睛】本题考查了角平分线的性质,等腰三角形的判定,等角的余角相等的概念;关键在于能结合图形,灵活的运用相关知识.23.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先根据等腰三角形的性质可得BAC ABC ∠=∠,再根据等腰三角形的三线合一可得CH 是底边AB 的中线,然后根据垂直平分线的判定与性质可得AP BP =,又根据等腰三角形的性质可得BAP ABP ∠=∠,最后根据角的和差即可得证;(2)结合(1)的结论,先根据三角形全等的判定定理可得ACE BCF ≅ ,再根据三角形全等的性质即可得证.【详解】(1)ABC 是等腰三角形,且AB 是底边,AC BC ∴=,BAC ABC ∴∠=∠,CH 是底边上的高线,CH ∴是底边AB 的中线(等腰三角形的三线合一),CH ∴垂直平分AB ,AP BP ∴=,BAP ABP ∠=∠∴,BAC BAP ABC ABP ∠-∠=∠-∠∴,即CAE CBF ∠=∠;(2)在ACE 和BCF △中,ACE BCF AC BC CAE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ACE BCF ASA ∴≅ ,AE BF ∴=.【点睛】本题考查了等腰三角形的三线合一、垂直平分线的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(1),利用等腰三角形的三线合一得出CH 垂直平分AB 是解题关键.24.(1)见解析;(2)见解析【解析】【分析】(1)根据线段垂直平分线的尺规作图直接进行求解即可;(2)由题意易得∠B=∠C=36°,然后根据三角形内角和与外角的性质及等腰三角形的判定可进行求解.【详解】解:(1)如图,点D即为所求;(2)连接AD,∵AB=AC,∠A=108°,∴∠B=∠C=36°,由(1)得:AD=CD,∴∠DAC=∠C=36°,∴∠ADB=∠DAC+∠C=72°,∠BAD=∠BAC﹣∠DAC=108°﹣36°=72°,∴∠BAD=∠BDA,∴AB=BD,∴△ABD是等腰三角形.【点睛】本题主要考查线段垂直平分线及等腰三角形的判定与性质,熟练掌握各个知识点是解题的关键.25.(1)B(2);(2)∠ABQ=90°,始终不变,理由详见解析;(3)P( )【解析】【分析】(1)过点B作BC⊥x轴于点C,证明∠BOC=30°,OB=4,借助含30°的直角三角形的性质以及勾股定理可求出BC,OC的长,从而可解决问题;(2)证明△APO ≌△AQB ,得到∠ABQ=∠AOP=90°,即可解决问题;(3)根据AB ∥OQ ,得出∠BQO=90°,∠BOQ=∠ABO=60°,从而可求出BQ 的长,再根据(2)中△APO ≌△AQB 得出PO=BQ ,即可得出结果.【详解】解:(1)如图1,过点B 作BC ⊥x 轴于点C,∵△AOB 为等边三角形,且OA=4,∴∠AOB=60°,OB=OA=4,∴∠BOC=30°,而∠OCB=90°,∴BC=12OB=2,∴=∴点B 的坐标为B (2);(2)∠ABQ=90°,始终不变.理由如下:∵△APQ 、△AOB 均为等边三角形,∴AP=AQ ,AO=AB ,∠PAQ=∠OAB ,∴∠PAO=∠QAB ,在△APO 与△AQB 中,AP AQPAO QAB AO AB=⎧⎪∠=∠⎨⎪=⎩,∴△APO ≌△AQB (SAS ),∴∠ABQ=∠AOP=90°;(3)如图2,∵点P 在x 轴负半轴上,点Q 在点B 的下方,AB ∥OQ ,∠ABQ=90°,∴∠BQO=90°,∠BOQ=∠ABO=60°,∴∠OBQ=30°,又∵OB=4,∴OQ=2,∴224223-=,由(2)可知,△APO ≌△AQB ,∴3∴此时点P 的坐标为(30).【点睛】本题主要考查了等边三角形的性质,全等三角形的判定及性质,含30°的直角三角形的性质,勾股定理以及点的坐标等知识,综合运用基本性质进行推理是解决问题的关键.。
八年级数学下册期中考试试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第三章《图形的平移和旋转》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.如图,在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m),则空白部分表示的草地面积是()A. 70m2B. 60m2C. 48m2D. 18m22.不等式x+2≥3的解集在数轴上表示正确的是()A. B.C. D.3.以下列线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A. a=9,b=40,c=41B. a=b=5,c=5√2C. a:b:c=3:4:5D. a=11,b=12,c=154.如图,在△ABC中,AB=AC,AD是△ABC的角平分线.若AB=13,AD=12,则BC的长为()A. 5B. 10C. 20D. 245.如图,DA⊥AC,DE⊥BC.若AD=5cm,DE=5cm,∠ACD=30°,则∠DCE=()A. 30°B. 40°C. 50°D. 60°6.不等式组{x−1>0,5−x≥1的整数解共有()A. 1个B. 2个C. 3个D. 4个7.下列说法不一定成立的是()A. 若a>b,则a+c>b+cB. 若a+c>b+c,则a>bC. 若a>b,则ac2>bc2D. 若ac2>bc2,则a>b8.下列图形既是轴对称图形又是中心对称图形的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 圆9.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A. 55°B. 60°C. 65°D. 70°10.在如图所示的4组图形中,左边图形与右边图形成中心对称的有()A. 1组B. 2组C. 3组D. 4组11.已知关于x的不等式组{2x−a<1,x−2b>3的解集为−1<x<1,则(a+1)(b−1)的值为()A. 6B. −6C. 3D. −312.如图所示的仪器中,OD=OE,CD=CE.小州把这个仪器往直线l上一放,使点D,E落在直线l上,作直线OC,则OC⊥l,他这样判断的理由是()A. 到一个角两边距离相等的点在这个角的平分线上B. 角平分线上的点到这个角两边的距离相等C. 到线段两端点距离相等的点在这条线段的垂直平分线上D. 线段垂直平分线上的点到线段两端点的距离相等13.如图,在平面直角坐标系中,△OAB为等边三角形,AB⊥x轴,AB=4√3,点C的坐标为(2,0).P为OB边上的一个动点,则PA+PC的最小值为()A. √13B. 2√13C. 4√13D. 1214.在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,你认为正确的结论是()①这次比赛的全程是500米②乙队先到达终点③比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快④乙与甲相遇时乙的速度是375米/分钟⑤在1.8分钟时,乙队追上了甲队A. ①③④B. ①②⑤C. ①②④D. ①②③④⑤15. 如图,在正方形ABCD 中,AB =3,点M 在CD 的边上,且DM =1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为( )A. 3B. 2√3C. √13D. √15 卷Ⅱ 二、填空题(本大题共5小题,共25.0分)16. 根据平移的知识可得图中的封闭图形的周长(图中所有的角都是直角)为______.17. 已知x −y =3,若y <1,则x 的取值范围是 .18. 如图,这是某超市自动扶梯的示意图,大厅两层之间的距离ℎ=6.5米,自动扶梯的倾角为30°.若自动扶梯运行速度v =0.5米/秒,则顾客乘自动扶梯上一层楼的时间为 秒.19. 当k 时,代数式23(k −1)的值不小于代数式1−5k−16的值.20. 如图,线段AB 和CD 关于点O 中心对称.若∠B =40°,则∠D 的度数为 .三、解答题(本大题共7小题,共80.0分)21. (8分)(1)解不等式0.2x 0.3−6−7x 3≤1(2) 解不等式组{12x >13x x+43>3x−72−122. (8分)如图,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一条直线上,连接BE .(1)求证:AD=BE;(2)若∠CAE=15°,AD=5,求AB的长.23.(10分)如图,在△ABC中,AF⊥BC于点F.将△ABC绕点A按顺时针旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上.(1)若∠B=50°,求∠DAF的度数;(2)若∠E=∠CAD,求证:AD=CD.24.(12分)如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图①中,作△ABC关于点O对称的△A′B′C′;(2)在图②中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB′C′.25.(12分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?26.(14分)如图,在△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.27.(16分)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)求证:∠OMP=∠OPN;(2)当OP=2时,点M关于点H的对称点为Q,连接QP.①用量角器和直尺以图1中OP的长为2,画出一个尽可能准确的图形。
北师大版数学八年级下册《期中考试试卷》含答案北师大版数学八年级下学期期中测试卷学校:________ 班级:________ 姓名:________ 成绩:________一、选择题(每题3分,共30分)1.下列图形既是轴对称图形又是中心对称图形的是()。
A。
B。
C。
D。
2.不等式组的解集在数轴上表示正确的是()。
A。
B。
C。
D。
3.将点A(2,1)向下平移2个单位长度得到点A′,则点A′的坐标是()。
A。
(0,1)B。
(2,-1)C。
(4,1)D。
(2,3)4.如图,已知DE由线段AB平移得到,且AB=DC=4cm,EC=3cm,则△DCE的周长是()。
A。
9 cmB。
10 cmC。
11 cmD。
12 cm5.如图,一次函数y=kx+b的图像经过点(2,0)与(0,3),则关于x的不等式kx+b>的解集是()。
A。
x<2B。
x>2C。
x<3D。
x>36.如图,在△ABC中,∠C=90°,AC=8,DC=AD,BD 平分∠ABC,则点D到AB的距离等于()。
A。
4B。
3C。
2D。
17.已知实数a,b满足a+1>b+1,则下列各式错误的是()。
A。
a>bB。
a+2>b+2C。
-a<-bD。
2a>3b8.已知M,N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()。
A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等腰三角形9.如果关于x的不等式组的整数解仅有1、2,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()。
A。
2个B。
4个C。
6个D。
8个10.如图,将长方形ABCD绕点A旋转至长方形AB′C′D′的位置,此时AC′的中点恰好与D点重合,AB′交CD于点E。
若AB=3,则△AEC的面积为()。
A。
3B。
期中考试数学复习试卷一、选择题1.无论a 取何值时,下列分式一定有意义的是 ( )A .221a a +B .21aa +C .112+-a aD .112+-a a 2.下列因式分解正确的是( )A .()222b a b a -=-B .()22224y x y x +=+ C .()()a a a 21212822-+=-D .()()y x y x y x 44422-+=-3.实数a 、b 、c 在数轴上对应的点位置如图所示,下列式子正确的是( )①b+c>0 ②a+b>a+c ③bc<ac ④ab>ac A .1个 B .2个 C .3个D .4个4.下列运算正确的是( )A .a b a b 11+-=+-B .ba ba b a b a 321053.02.05.0-+=-+ C .12316+=+a a D .xy xy y x y x +-=+- 5、如果把分式yx x25-中的 x,y 都扩大7倍,那么分式的值( )。
A 、扩大7倍B 、扩大14倍C 、扩大21倍D 、不变 6.关x 的分式方程15=-x m,下列说法正确的是( ) A .m <一5时,方程的解为负数 B .方程的解是x=m +5 C .m >一5时,方科的解是正数 D .无法确定7.将不等式⎪⎩⎪⎨⎧-≤-<+x x x x 23821148的解集在数轴上表示出米,正确的是( )8.“5·12”滚川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .41205120=-+x x B .45120120=--x x C .41205120=--xx D .45120120=+-x x 9.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2yx +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A .x <yB .x >yC .x ≤yD .x ≥y10.在盒子里放有三张分别写有整式a +1、a +2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ). A .61 B .31 C .32 D .43 11.关x 的不等式组()⎪⎩⎪⎨⎧+>++-<a x x x x 4231332有四个整数解,则a 的取值范同是( )A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 二、填空题12、 一项工程,A 单独做m 小时完成。
3.在根式① x 2 + 1 ② ③ x 2- xy ④ 27 x y 中,最简二次根式是【 】 等边三角形,点 B ,C ,E 在同一条直线上, BE第5题图OAC E BDxO 为 4,若用 x ,y 表示直角B 角形的两条直角边(x >y ),请观察图案,指出下列关系式不正确的是... A八年级下册期中考试数学试卷座 号题 号 一 1-8 二9-15 16 17 18三19 20 21 2223总 分得 分一、选择题 (每小题 3 分,共 24 分)1.下列各组数中,能够组成直角三角形的是【 】 A .3,4,5 B .4,5,6 C .5,6,7 D .6,7,8 2.若式子 2 x - 1 - 1- 2 x +1 有意义,则 x 的取值范围是【】A .x ≥ 1 1 1B .x ≤C .x =D .以上答案都不对2 2 2x 5A .① ②B .③ ④C .① ③D .① ④4.若三角形的三边长分别为 2 , 6 ,2,则此三角形的面积为【】A .223B . 2C .D . 325.如图所示,△ABC 和△DCE 都是边长为 4 的AD连接 BD ,则 BD 的长为【】A . 3B .2 3C .3 3D .4 3C 6.如图,在菱形 ABCD 中,对角线 AC 与 BD D相交于点 O ,OE ⊥AB ,垂足为 E , 若∠ADC =130°,则∠AOE 的大小为 【 】 A .75° B .65° C .55° D .50 °7.如图,矩形 ABCD 的对角线 AC ,BD 相交于点 O ,CE ∥BD ,DE ∥AC ,若 AC =4,则四边形 CODE 的周长是【 】 第6题图 A . 4 B . 6 C . 8 D .10EyC8.如图,是 4 个全等的直角三角形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积三 第7题图【 】 第8题图 A . x 2 + y 2 = 49B . x - y = 2C . 2 x y + 4 = 49D . x + y = 13二、填空题( 每小题 3 分,共 21 分)9.若 x ,y 为实数,且∣x +2∣+ y - 3 =0,则(x +y )2017的值为 . 10.计算: (2 -3) 2 + ( 3 - 1)2 = .11. 实数 a ,b 在数轴上的对应点如图所示,则∣a -b ∣- a 2 =.1B C E C第75分)第13题图2+2+(5-1)0;2a32a3.a0b第11题图12.若x=2-3,则代数式(7+43)x2+(2+3)x+3=.13.如图,在平面直角坐标系中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是.14.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点D,B作DE⊥a于点E,BF⊥a于点F,若DE=4,BF=3,则EF=.15.如图,R△t ABC中,∠B=90°,AB=3,△B C=4,将ABC折叠,使点B恰好落在斜边AC上,与点B'重合,AE为折痕,则E B'=.ay E AD C A DB'FA OB x B三、解答题:(本大题共8个小题,满分14题图第15题图16.(每小题4分共8分)计算:(1)18-28(2)a28a+3a50a3-517.(8分)如果最简二次根式3a-8与17-2a是同类二次根式,那么要使式子4a-2x+x-a有意义,x的取值范围是什么?18.(9分)如图,每个小正方形的边长都是1,A(1)求四边形ABCD的周长和面积(2)∠BCD是直角吗?BDC第18题图2(2)求证:四边形 AECF 是平行四边形.AFAD19.(9 分)如图所示,在□ABCD 中,点 E ,F 分别在边 BC 和 AD 上,且 CE =AF ,(1)求证:△ABE ≌ △CDF ;DBE第19题图C20.(10 分) 如图所示,在菱形 ABCD 中,点 E ,F 分别是边 BC ,AD 的中点,(1)求证:△ABE ≌ △CDF;(2)若∠B=60°,AB =4,求线段 AE 的长.FA DBE第20题图C21.(10 分)如图所示,在矩形 ABCD 中,对角线 AC ,BD 相交于点 O ,E 是 CD 的中点,连接 OE ,过点 C作 CF ∥BD 交线段 OE 的延长线于点 F ,连接 DF .求证:(1)OD =CF ;(2)四边形 ODFC 是菱形.A D OE FBC第21题图22.(10 分)如图所示,矩形 ABCD 的对角线相交于点 O ,OF ⊥AD 于点 F ,OF =2cm ,AE ⊥BD 于点 E ,且 BE ﹕BD =1﹕4,求 AC 的长.FBEOC第22题图323.(11分)在平面内,正方形ABCD与正方形CEFH如图放置,连接DE,BH,两线交于M,求证:(1)BH=DE;(2)BH⊥DE.A DM HB C FE第23题图4ïïïï ï 参考答案一、 选择题题号 1 答案A2 C3 C4 B5 D6 B7 C8 D二、填空题题号 9 答案1 10 1 11 b 12 2+ 13 (5,4) 14715332三、 解答题 16.(1) 3 2 + 1 (4 分)(2) 7a 2 2a (4 分)17.a =5; ……………………3 分5≤x ≤10 ……………………8 分18.(1)周长 26 + 3 5 + 17 ……………………3 分面积 14.5 ……………………6 分(2)是……………………7 分,证明:略.……………………9 分 19.(1)略 5分 (2)略 9分 20.(1)略 5分 (2)证出 AE 是高 8 分,AE = 2 3 10 分21.证明:(1)∵CF ∥BD∴∠DOE =∠CFE ,∵E 是 CD 的中点,∴CE =DEì ? DOE ? CFE 在△ODE 和△FCE 中, í CE = DE ,∴△ODE ≌△FCE (ASA )ïî ? DEO ? CEF∴OD =CF .……………………6 分(2)由(1)知 OD =CF ,∵CF ∥BD ,∴四边形 ODFC 是平行四边形在矩形 ABCD 中,OC =OD ,∴四边形 ODFC 是菱形.……………………10 分22.解法一:∵四边形 ABCD 为矩形,∴∠BAD =90°, OB =OD ,AC =BD ,又∵OF ⊥AD ,∴OF ∥AB ,又∵OB =OD ,∴ AB =2OF =4cm ,∵BE ︰BD =1︰4,∴BE ︰ED =1︰3 ……………………3 分 设 BE =x ,ED =3 x ,则 BD =4 x ,∵AE ⊥BD 于点 E∴ AE 2 = AB 2 - BE 2 = AD 2 - ED 2 ,∴16-x 2=AD 2-9x 2……… ………6 分 又∵AD 2=BD 2-AB 2=16 x 2-16 ,∴16-x 2=16 x 2-16-9x 2,8 x 2=32 ∴x 2=4,∴x =2 ……………………9 分 ∴BD =2×4 =8(cm ),∴AC =8 cm . ……………………10 分解法二:在矩形 ABCD 中,BO =OD =12BD ,∵BE ︰BD =1︰4,∴BE ︰BO =1︰2,即 E 是 BO 的中点……………………3 分 又 AE ⊥BO ,∴AB =A O ,由矩形的对角线互相平分且相等,∴AO =BO ……………………5 分 ∴△ABO 是正三角形,∴∠BAO =60°,∴∠OAD =90°-60°=30° ……………………8 分 在 Rt△AOF 中,AO =2OF =4,∴AC =2AO =8……………………10 分23.(1)提示:证明:△BCH ≌△DCE (SAS ) ……………………6 分(2)由(1)知 △BCH ≌△DCE ∴∠CBH =∠EDC设 BH ,CD 交于点 N ,则∠BNC =∠ DNH ∴∠CBH +∠BNC =∠EDC +∠DNH =90° ∴∠DMN =180°-90°=90°∴BH ⊥DE .……………………11 分5。
北师大版八年级数学下学期期中考试试题一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b2.(3分)已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3 D.﹣33.(3分)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)4.(3分)小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1800B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1.8D.90x+210(15﹣x)≤1.85.(3分)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.56.(3分)如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.8.(3分)如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为.9.(3分)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x≤ax+3的解集是.10.(3分)若关于x的不等式的整数解共有4个,则m的取值范围是.11.(3分)在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为.12.(3分)已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是.8题图 9题图 11题图三、(本大题共5小题,每小题6分,共30分)13.(6分)解下列不等式(组):(1)(2),并把它的解集表示在数轴上.14.(6分)如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.15.(6分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,﹣4),B(5,﹣4),C(4,﹣1).(1)将△ABC经过平移得到△A1B1C1,若点C的应点C1的坐标为(2,5),则点A,B的对应点A1,B1的坐标分别为;(2)在如图的坐标系中画出△A1B1C1,并画出与△A1B1C1关于原点O成中心对称的△A2B2C2.16.(6分)某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3要多xm3,交纳水费y 元.(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?17.(6分)已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.18.(8分)某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)6045租金(元/辆)550450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?19.(8分)在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.20.(8分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD 绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.21.(9分)如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧),且DB=DC,过点D作DE∥AC,交射线AB于E,连接AE交BC于F.(1)求证:AD垂直BC;(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;(3)如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE的数量关系.22.(9分)为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有A,B两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.六、(本大题共12分)23.(12分)几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为.(2)应用:点A为线段BC外一动点,如图3,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为.(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且P A=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.【解答】解:A、不等式的两边都减2,不等号的方向不变,故A错误;B、不等式的两边都除以2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都乘以﹣1,不等号的方向改变,故D错误;故选:C.2.【解答】解:不等式组,解得,,即,2b+3<x<,∵﹣1<x<1,∴2b+3=﹣1,,得,a=1,b=﹣2;∴(a+1)(b﹣1)=2×(﹣3)=﹣6.故选:B.3.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.4.【解答】解:由题意可得210x+90(15﹣x)≥1800,故选:A.5.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.6.【解答】解:由题意可得,△OAB旋转三次和原来的相对位置一样,点A(﹣3,0)、B(0,4),∴OA=3,OB=4,∠BOA=90°,∴AB=∴旋转到第三次时的直角顶点的坐标为:(12,0),16÷3=5 (1)∴旋转第15次的直角顶点的坐标为:(60,0),又∵旋转第16次直角顶点的坐标与第15次一样,∴旋转第16次的直角顶点的坐标是(60,0).故选:A.二、填空题(本大题共6小题,每小题3分,共18分)7.【解答】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(a﹣2)米,宽为(b﹣1)米.所以草坪的面积应该是长×宽=(a﹣2)(b﹣1)=ab﹣a﹣2b+2(米2).故答案为(ab﹣a﹣2b+2).8.【解答】解:∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵﹣1+3=2,∴A′(3,2),故答案为:(3,2)9.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.10.【解答】解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,∴6<m≤7,故答案为:6<m≤7.11.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为﹣1.12.【解答】解:图1,∵直线MP为线段AB的垂直平分线,∴MA=MB,又直线NQ为线段AC的垂直平分线,∴NA=NC,∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC,又BC=6,则△AMN的周长为6,如图2,△AMN的周长l=AM+MN+AN=BM+MN+NC=BC+2MN,又BC=6,则△AMN的周长为10,故答案为:6或10三、(本大题共5小题,每小题6分,共30分)13.【解答】解:(1)去分母,得:3(x﹣2)≥2(7﹣x),去括号,得:3x﹣6≥14﹣2x,移项,得:3x+2x≥14+6,合并同类项,得:5x≥20,系数化为1,得:x≥4;(2)解不等式﹣x+3<2x,得:x>1,解不等式﹣≥0,得:x≤4,则不等式组的解集为1<x≤4,将不等式组的解集表示在数轴上如下:14.【解答】(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.15.【解答】解:(1)如图所示:△A1B1C1即为所求:A1,B1的坐标分别为(﹣1,2),(3,2),故答案为:(﹣1,2),(3,2),(2)如图所示:△A2B2C2即为所求.16.【解答】解:(1)由题意,得y=2x+8(x>0)(2)由题意,得2x+8≤20,解得:x≤6,∴x最多=6∴每月的用水量最多为14m3.17.【解答】证明:∵Rt△ACD中,CE⊥AD,∴∠BCF+∠F=90°,∠BCF+∠ADC=90°,∴∠F=∠ADC,在△ACD和△CBF中,,∴△ACD≌△CBF(AAS),∴CD=BF,∵D为BC中点,∴CD=BD,∴BF=CD=BD=BC=AC,则AC=2BF.四、(本大题共3小题,每小题8分,共24分)18.【解答】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.19.【解答】解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.20.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.五、(本大题共2小题,每小题9分,共18分)21.【解答】(1)证明:∵AB=AC,DB=DC,∴直线AD是BC的垂直平分线,∴AD垂直BC;(2)证明:在△ABD和△ACD中,,∴△ABD≌△ACD,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠BAD=∠EDA,∴DE=AE;(3)DE=AC+BE.由(2)得,∠BAD=∠CAD,∵DE∥AC,∴∠BAD=∠EDA,∴DE=AE,∵AB=AC,∴DE=AB+BE=AC+BE.22.【解答】解:(1)根据题意得:,解得:.答:a的值为12,b的值为10.(2)设购买A型设备m台,则购买B型设备(10﹣m)台,根据题意得:12m+10(10﹣m)≤105,解得:m≤,∴m可取的值为0,1,2.故有3种购买方案,方案1:购买B型设备10台;方案2:购买A型设备1台,B型设备9台;方案3:购买A 型设备2台,B型设备8台.(3)当m=0时,每月的污水处理量为:200×10=2000(吨),∵2000<2040,∴m=0不合题意,舍去;当m=1时,每月的污水处理量为:240+200×9=2040(吨),∵2040=2040,∴m=1符合题意,此时购买设备所需资金为:12+10×9=102(万元);当m=2时,每月的污水处理量为:240×2+200×8=2080(吨),∵2080>2040,∴m=2符合题意,此时购买设备所需资金为:12×2+10×8=104(万元).∵102<104,∴为了节约资金,该公司最省钱的一种购买方案为:购买A型设备1台,B型设备9台.六、(本大题共12分)23.【解答】解:(1)∵当点A在线段BC上时,线段AB的长取得最小值,最小值为BC﹣AC,∵BC=a,AC=b,∴BC﹣AC=a﹣b,当点A在线段BC延长线上时,线段AB的长取得最大值,最大值为BC+AC,∵BC=a,AC=b,∴BC+AC=a+b,故答案为:a﹣b,a+b;(2)①∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE;②∵线段CD的最大值=线段BE长的最大值,由(1)知,当线段BE的长取得最大值时,点E在BC的延长线上,∴最大值为BC+CE=BC+AC=4;故答案为:4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=P A=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2 ,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,连接BE,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知,当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.。
期中考试数学复习试卷班级 姓名 学号 得分 一、选择题1.无论a 取何值时,下列分式一定有意义的是 ( )A .221aa + B .21aa + C .112+-a a D .112+-aa2.下列因式分解正确的是( )A .()222b a b a -=-B .()22224y x y x +=+C .()()a a a 21212822-+=-D .()()y x y x y x 44422-+=-3.实数a 、b 、c 在数轴上对应的点位置如图所示,下列式子正确的是( )①b+c>0 ②a+b>a+c ③bc<ac ④ab>ac A .1个 B .2个 C .3个 D .4个4.下列运算正确的是( )A .ab ab 11+-=+-B .ba b a ba b a 321053.02.05.0-+=-+ C .12316+=+a a D .xy x y yx y x +-=+-5、如果把分式yx x25-中的 x,y 都扩大7倍,那么分式的值( )。
A 、扩大7倍B 、扩大14倍C 、扩大21倍D 、不变6.关x 的分式方程15=-x m,下列说法正确的是( ) A .m <一5时,方程的解为负数 B .方程的解是x=m +5 C .m >一5时,方科的解是正数 D .无法确定7.将不等式⎪⎩⎪⎨⎧-≤-<+xx x x 23821148的解集在数轴上表示出米,正确的是( )8.“5·12”滚川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .41205120=-+xx B .45120120=--x x C .41205120=--xxD .45120120=+-x x9.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是( )A .x <yB .x >yC .x ≤yD .x ≥y10.在盒子里放有三张分别写有整式a +1、a +2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ). A .61 B .31 C .32 D .4311.关x 的不等式组()⎪⎩⎪⎨⎧+>++-<a x x x x 4231332有四个整数解,则a 的取值范同是( )A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a二、填空题12、 一项工程,A 单独做m 小时完成。
A ,B 合作20小时完成,则B 单独做需 小时完成。
13.在比例尺为1:2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为_____________m 。
14.有四个小朋友在公同玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图所示,这四个小朋友体重的大小关系是___________。
(用“<”连接)15、 若1612++kx x 是一个完全平方式,则k =16.若关于x 的分式方程3232-=--x mx x 无解,则m 的值为___________17.直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为___________。
18.符号“cdab ”称为二阶行列式,规定它的运算法则为:bc ad cdab -=,请你根据上述规定求出下列等式中的x 的值.111112--x x =1 则x =___________.三、解答题19.分解因式和利用分解因式计算.(1)()22241a a -+ 2)2010200820092⨯-20.化简和化简求值(20分)(1)⎪⎭⎫ ⎝⎛+-÷⎪⎭⎫ ⎝⎛---21121422m m m m(2)a a a a a a a 133969222++-÷++-(3)先化简,再求值,xx x x x x x x x 416441222222+-÷⎪⎭⎫ ⎝⎛+----+其中22+=x (6分)(4)先化简,再求值:222344322+-++÷+++a a a a a a a ,其中22-=a (6分)21.解分式方程和一次不等式组(1)013522=--+x x x x (2)解不等式组: ()⎪⎩⎪⎨⎧----<-----≤--235211713x xx x22.为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷__________顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?23.某工厂计划为震区生产A,B两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.5m3,一套B型桌椅(一桌三椅)需木料0.7m3,工厂现有库存木料302m3.(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.期中复习题参考答案一、选择题12.2020-m m 13.100 14.Q<R<P<S 15.21±16.3± 17.x<一2 18.x=4三、解答题19.(1)解:原式=( a 2+1—2a )(a 2+1+2a )=(a 一1)2(a+1)2………………4分 (2)解:原式=2009 2一(2009—1)(2009+1) =2009 2一(2009 2—1)=2009 2—20092+1=1 20.(1)解:原式:()()()2122222+-+÷-++-m m m m m m=()()1112222+=++⋅-+-m m m m m m(2)解:原式=()()()()0111333332=+-=+-+⋅+-+-aaaa a a a a a(3)解:原式=()()()()()4442242222+-+÷⎥⎦⎤⎢⎣⎡-----x x x x x x x x x x x =()()()()444242-++⋅--x x x x x x x =()221-x当22+=x 时 原式=()2122212=-+(4)解:原式=()()2232232+-++⋅++a a a a a a =22222+-=+-+a a a a a当22-=a 时原式=242222222-=+---=()()2212221222242-=-=⨯⨯-21.(1)解:方程两边同乘以()()13-+x x x ,得()()0315=+--x x解这个方程,得2=x检验:把x=2代入最简公分母,得2×5×1=10≠0 ∴原方程这个解是x=2(2)解:解不等式①,得x ≥一2; 解不等式②,得x<21-,在同一条数轴上表示不等式①②的解集如图所以不等式组的解集为一2≤x<21-22.解:(1)2000(2)设该公司原计划安排x 名工人生产帐篷, 则由题意得: ()()()5022102000220000%2512000+--⨯-=+x x∴()503165+=x x∴解这个方程,得x =750.经检验,x =750是所列方程的根,且符合题意. 答:该公司原计划安排750名工人生产帐篷.23.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500一x )套,由题意得()()⎩⎨⎧≥-⨯+≤-⨯+1250500323025007.05.0x x x x 解得240≤x ≤250因为x 是整数,所以有11种生产方案(2)y =(100+2)x +(120+4)×(500一x )=-22x +62000∵-22<0,y 随x 的增大而减少. ∴当x=250时,y 有最小值.∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少. 此时min y =-22×50十62000=56500(元) (3)有剩余木料最多还可以解决8名同学的桌椅问题.。