上海市闸北区2015-2016年八年级上期中数学试卷含答案解析
- 格式:doc
- 大小:677.00 KB
- 文档页数:18
2015~2016学年第一学期中考试初二数学试卷试卷说明:本次考试满分100分,考试时间 100分钟。
一、精心选一选(每小题3分,共30分)1.计算33-的结果是( ).A .9-B .27-C .271D .271- 2.若分式221x x -+的值为0,则x 的值为( ). A .2 B .-2 C .12D .-123.下列各式中,正确的是( ).A .2121+=++a b a b B .21422-=--a a a C . 22)2(422--=-+a a a a D .a b a b --=--11 4.下列条件中,不能..判定两个直角三角形全等的是( ). A .两锐角对应相等 B .斜边和一条直角边对应相等 C .两直角边对应相等 D .一个锐角和斜边对应相等5. 计算32a b(-)的结果是( ). A. 332a b - B. 336a b - C. 338a b- D. 338a b6.如图,AC 与BD 交于O 点,若OA=OD ,用“SAS ”证明△AOB ≌△DOC ,还需条件为 .( ) A. AB=DC B.OB=OCC. ∠A=∠DD. ∠AOB=∠DOC7.下列各式变形中,是因式分解的是( )2015.11A .a 2-2ab +b 2-1=(a -b )2-1 B.)11(22222xx x x +=+C .(x +2)(x -2)=x 2-4D .x 4-1=(x 2+1)(x +1)(x -1)8.下列命题中正确的有 ( )个①三个内角对应相等的两个三角形全等; ②三条边对应相等的两个三角形全等; ③有两角和一边分别相等的两个三角形全等; ④等底等高的两个三角形全等. A .1B .2C .3D .49.下列各式中,能用完全平方公式分解因式的有( )①9a 2-1; ②x 2+4x +4; ③m 2-4mn +n 2; ④-a 2-b 2+2ab ;⑤;913222n mn m +- ⑥(x -y )2-6z (x +y )+9z 2.A .2个B .3个C .4个D .5个10.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后 得到的是( )① ②A .B .C . D二.、耐心填一填(每小题2分,共16分)11.当m_______时,(3- m)0=1.12.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为 米. 13.当x _________时,分式12x -有意义. 14.若2214a b -= ,12a b -= ,则a b +的值为 .15.若分式)3)(2(2+--a a a 的值为0,则a = .16题图 17题图16.如图,在△ABC 中,∠A=900,BD 平分∠ABC ,AC=8cm ,CD=5cm ,那么D 点到直线BC 的距离是 cm .17.如图,把△ABC 绕C 点顺时针旋转30°,得到△A ’B ’C , A ’B ’交AC 于点D ,若∠A ’DC=80°,则∠A= °.18.对于实数a 、b ,定义一种运算“⊗”为:2(1)a a b ab a-⊗=-.有下列命题:① 1(3)3⊗-=; ② a b b a ⊗=⊗; ③ 方程1()102x -⊗=的解为12x =;其中正确命题的序号是 .(把所有..正确命题的序号都填上).三、解答题(54分)CB'A A'BDABCD19.把下列各式因式分解(本小题满分10分)(1)3222a a b ab -+ (2) 3a 2﹣12 解: 解:20.已知:如图, A 、B 、C 、D 四点在同一直线上, AB =CD ,AE ∥BF 且AE =BF .求证: EC =FD .(5分) 证明: 21.计算2m n mm n n m ++-- (5分)EAC B DF22.先化简,再求值:2112()3369mm m m m +÷-+-+,其中9m =.(5分)23.解方程:3111x x x -=-+.(5分) 解:初中 年级 班 姓名 学号装订线内请不 要答题24.列方程解决问题(5分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?25. 已知2310x x -+=求221x x +的值(5分)26.已知: 如图, 在△ABC 中, ∠CAB = 2α, 且030α<<, AP 平分∠CAB. 若︒=21α, ∠ABC = 32°, 且AP 交BC 于点P, 试探究线段AB, AC 与PB 之间的数量关系, 并对你的结论加以证明; (6分)ABCP27.在△ABC 中,AD 是△ABC 的角平分线.(1)如图1,过C 作CE ∥AD 交BA 延长线于点E ,求证:AE=AC.(2)如图2,M 为BC 的中点,过M 作MN ∥AD 交AC 于点N ,若AB =4, AC =7,求NC 的长.(8分)图1图2ABD MCNEBCAD初二数学试题参考答案及评分标准一、选择题(共10个小题,每小题3分,共30分) 题号 123 4 5 6 7 8 9 10 答案 CA CACBDABC二、填空题(共10个小题,每小题2分,共20分). 11.m ≠3 12. 8-102.5× 13. 2x ≠ 14.21 15. -216. 3 17. 70° 18. (1)三、解答题(共50分)19.(1))(2b a a - (2)3(a+2)(a-2) 20.略21.解:.原式=2m n mm n m n+--- . =2m n mm n +--……..3分. =n mm n --……5分.=1- ……6分22.化简得:33-+m m ,值为0.5 23.. 解:去分母,得.)1)(1()1(3)1(-+=--+x x x x x. 去括号,得13322-=+-+x x x x移项,得 31322--=--+x x x x .....-2x=-4x=2 .......经检验:x=2是原方程的解. .....∴原方程的解为:x=224. 解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品. ...1分据题意:12001200101.5x x =+ ..... 3分解得: 40x = 4分经检验:40x =是原方程的解. ..... 5分 所以1.560x =答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品、25. 726.关系:AB=AC+PB 证明:略 27.(1)略 (2)5.5辅助线:延长BA,MN 交与E 点,做AB 的平行线交NM的延长线于FEF。
12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。
2015—2016学年度第一学期期中考试试卷初二数学(试题卷)(考试时间100分钟,满分100分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有……………………………………………………………( ▲ )A .1个B .2个C .3个D .4个2.如图,在边长为1个单位长度的小正方形组成的网格中, A 、B 都是格点,则线段AB 的长度为………………………………………………………………………………………………( ▲ ) A. 5 B. 6 C.7 D. 83.一个等腰三角形的两边长分别是4和9,则它的周长是……………………………………( ▲ ) A .13 B .17 C .22 D .17或224. 下列结论错误的是…………………………………………………………………………………………………( ▲ )A .全等三角形对应边上的中线相等B .两个直角三角形中,两个锐角相等,则这两个三角形全等C .全等三角形对应边上的高相等D .两个直角三角形中,若有两组边对应相等,则这两个直角三角形全等5.如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的 知识,说明画出∠A'O'B'=∠AOB的依据是…………………………………………………………( ▲ ) A .SAS B .ASA C .AAS D .SSS6.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是 直角三角形的是………………………………………………………………………………………………………( ▲ )(第2题图)A .∠A :∠B :∠C=3:4:5 B . a :b :c =5:12:13C . a 2=b 2-c 2D .∠A =∠C -∠B 7.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置 是在△ABC的 ………………………………………………………………………………………………………( ▲ )A. 三边中线的交点 B .三边中垂线的交点 C .三条角平分线的交点 D .三边上高的交点8.如图,BD 是∠ABC 平分线,DE AB 于E ,AB =36cm,BC =24cm,S △ABC =144cm 2,则DE 的长是………( ▲ )A .4.8cmB .4.5cmC .4 cmD .2.4cm9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形, 能满足条件的线段有……………………………………………………………………………………………………………………( ▲ )A .2条B .3条C .4条D .5条10.如下图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、(第8题图)B(第5题图)(第9题图)(第14题图)(第10题图)B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…, ∠A n +1B n B n +1=θn,则θ2016-θ2015的值为………………………………………………………………………………………………( ▲ )A .20151802α+ B . 20151802α- C .20161802α+ D .20161802α-二.填空题(本大题共8小题,每空3分,共24分.) 11.正方形是一个轴对称图形,它有 ▲ 条对称轴. 12.△ABC 是等腰三角形,若∠A =80°,则∠B = ▲.13.某直角三角形的两直角边长分别为6cm ,8 cm ,则此三角形斜边上的高的长是 ▲ cm .14.如图,∠1=∠2,要使△ABE ≌ △ACE ,则还需添加一个条件是 ▲ .15. 如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 ▲ cm . 16.如图,△OAD ≌△OBC ,且∠O =70°,∠AEB =100°,则∠C = ▲ °.17.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据计算图中实线所围成的图形的面积S = ▲ .18.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线, AD ⊥BE ,AD =8,BF =5,则AC 的长等于 ▲ .(第15题图)FBACDE (第18题图)CABED(第16题图) O(第17题图)(图1)(图2)三.解答题(本大题共6小题,共46分. 解答需写出必要的文字说明或演算步骤) 19.作图题:(6分)(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线.) (2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.①在图中画出与△ABC 关于直线L 成轴对称的△A′B′C′; ②请直线L 上找到一点P ,使得PC + PB 的距离之和最小..20.(6分)如图,四边形ABCD 中,AB ∥CD ,AB =CD ,A ∠ABE =∠CDF .(1)试说明:△ABE ≌△CDF ;(2)试说明:AF =CE .21.(6分)中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA ⊥OB ,OA =36海里,OB =12海里,黄岩岛位于O 点,我国海监船在点B 处发现有一不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向黄岩岛所在地点O ,我国海监船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船. (1)请用直尺和圆规作出C 处的位置; (2)求我国海监船行驶的航程BC 的长.22.(7分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB =∠ECD =90º,点D 为AB 边上的一点,(1)试说明:∠EAC =∠B ;(2)若AD =10,BD =24,求DE 的长.O(图3)23.(6分)如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF的中点吗?试说明理由24.(6分)探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为(请画出示意图,并标明必要的角度).25.(9分)如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.2015—2016学年第一学期期中考试试卷初二数学参考答案 2015.11一、选择题(每题3分,共30分)二、填空题(每题3分,共24分)11.__ 4 ____; 12. 80°或50°或20°; 13.__ 4.8_ ;14.∠B =∠C 等; 15.__ 10 ; 16. 15° _; 17._ 50 _;18._ 13 ___.三、解答题: (第12题有一个答案给1分,多答,答错不得分) 19.(1) 图略---------2分 (2)① 图略--------2分 ②图略--------2分 20.(1)解:∵AB ∥CD∴∠BAE =∠DAF ---------1分又∵AB =CD ,∠ABE =∠CDF ---------2分∴△ABC ≌△DEF ---------3分 (2) ∵ △ABC ≌△DEF∴ AE=CF ---------4分 ∴ AE —EF=CF —EF ---------5分 ∴ AF=CE ---------6分21.(1)∴点C 就是所求点 ---------2分(2)解:连接BC ,由作图可得:CD 为AB 的中垂线∴CB =CA ---------3分 由题意可得:OC=36—CA=36—CB ---------4分 ∵OA ⊥OB∴在Rt △BOC 中,222BO CO BC +=∴22212(36)BC BC +-= ---------5分 ∴BC =20 ---------6分22.(1)∵∠ACB=∠E CD=90°∴∠ACB—∠ACD =∠E CD—∠ACD∴∠ECA=∠DCB ------------1分∵△ACB和△ECD都是等腰三角形∴EC=DC,AC=BC ------------2分∴△ACE≌△BCD ------------ 3分∴∠EAC=∠B ---------- 4分(2)∵△ACE≌△BCD∴AE=BD=24 -----------5分∵∠EAC=∠B=45 °∴∠EAD=∠EAC+∠CAD=90°------------6分∴在Rt△ADE中,222DE EA AD=+∴2221024DE=+∴DE=26 ------------7分23.解:E是CF的中点------------1分连结DF ------------2分∵AD⊥BC,F是AB边上的中点,∴DF就是Rt△ADB斜边AB上的中线------------3分∴DF =FB= 12AB------------4分∵DC=BF∴DC = DF ------------5分∵DE⊥CF∴DE平分CF,即E是CF的中点------------6分24.(1)------------2分(2)45°或36°------------4分------------6分25(1)证明:在△ABD和△CDB中AD=BCAB=CDBD=DB∴△ABD≌△CDB--------------1分∴∠ADB=∠CBD----------------2分∴AD∥BC----------------3分(2)解:设G点的移动距离为y,由(1)得∠EDG=∠FBG若△DEG与△BFG全等则有△DEG≌△BFG或△DGE≌△BFG可得:DE=BF,DG=BG;或DE=BG,DG=BF,----------------4分①当E由D到A,即0<t≤3时,有4t=12-t,解得t=2.4y=15-y y=7.5 ---------5分或4t = y,解得t= 112-t =15-y= 4 ----------------6分②当F由A返回到D,即3<t≤6时,有24-4t=12-t,解得t=4y=15-y y=7.5 ----7分或24-4t=y,解得t=4.212-t=15-y y=7.2 ----------------8分综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.----------------9分1、本试卷学生预计均分72分2、考点分布情况(按知识点)(1)全等三角形36分(2)轴对称图形38分(3)勾股定理26分。
2015-2016学年第一学期期中考试初二数学试卷(满分:100分,考试时间:120分钟)一、选择题:(本大题共10小题,每题3分,共30分)1.下列图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个2.16的平方根是()A.4 B.±4 C.4D.±43.下列式子中,属于最简二次根式的是()A.9.0B.13C.20D.74.下列运算中错误的是()A.2×3= 6 B.12=22C.22+33=5 5 D.(-4)2=45.下列说法正确的是()A.平方根等于本身的数是0;B.36表示6的算术平方根;C.无限小数都是无理数;D.数轴上的每一个点都表示一个有理数.6.一个正方形的面积是20,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间 D.5与6之间7. 在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是()A.c2-a2=b2B.a2+b2=c2C.b2+c2=a2D.a2+c2=b28.已知等腰三角形的两边长分别是3与6,那么它的周长等于()A.12 B.12或15 C.15 D.15或189. 如图,点D在AB上,点E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC10.如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B(第17题图)(第18题图)(第9题图)(第10题图)落在边AD 上,折痕与边BC 交于点E ;然后将其展平,再以点E 所在直线为折痕, 使点A 落在边BC 上,折痕EF 交边AD 于点F .则∠AFE 的大小是 ( ) A .67.5° B . 60° C .45° D .22.5°二、填空题(本大题共8小题,每空2分,共16分) 11. 21-的相反数是 .12. 若2)3(-x =3﹣x ,则x 的取值范围是 .13. 2015年我市参加中考的学生人数大约为6.60×104人,对于这个用科学记数法表示的近似数,它精确到了 位.14. 已知实数错误!未找到引用源。
A B CF (第7题图)(第9题图)2015-2016人教版八年级数学上学期期中试卷一、选择题(每小题3分,共30分,选错、多选、不选都给0分)1.到三角形三边距离相等的点是三角形三条( )A 、 中线的交点B 、 角平分线的交点C 、 高的交点D 、 垂直平分线的交点2.已知a<b ,则下列各式不成立的是 ( )A 、3a <3bB 、-3a <-3bC 、a -3<b -3D 、3+a <3+b 3.对于下列条件不能判定两直角三角形全等的是( )A 、 两条直角边对应相等B 、 斜边和一锐角对应相等C 、 斜边和一直角边对应相等D 、 两个锐角对应相等 4.等腰三角形的腰长是4cm ,则它的底边不可能...是( ) A 、1cm B 、3cm C 、6cm D 、9cm 5.若等腰三角形的顶角为α,则它一腰上的高与底边的夹角等于( ) A 、 2α B 、 902α︒+ C 、 902α︒- D 、90α︒-6. 如图6,所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ) A 、6B 、7C 、8D 、97.如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么∠DBF =( )。
A 、62ºB 、38ºC 、28ºD 、26º8.如图,已知,有一条等宽纸带,按图折叠时(图中标注的角度为40°),那么图中∠ABC 的度数等于 ( )A 、 50°B 、 70°C 、 90°D 、 40° 9.如图,在△ABC 中,∠CAB=70°, 在同一平面内, 将△ABC 绕点A 旋转到△C B A ''的位置, 使得AB C C //', 则='∠B BA ( )A 、30°B 、35°C 、40°D 、50°第10题图第8题(第13题图)(第18题图) (第16题图)(第14题图)(第17题图)10. 如图,正三角形ABC 的三边表示三面镜子,BP=13AB=1,一束光线从点P 发射至BC 上P 1点,且∠BPP 1=60O.光线依次经BC 反射,AC 反射,AB 反射…一直继续下去。
4题2015—2016学年度上学期期中检测八年级数学试卷一、选择题(每小题3分,10题共30分) 1、下列图形是轴对称图形的有( )A.4个B.3个C.1个D.1个2、在△ABC 中,∠A ∶∠B ∶∠C =1∶1∶2,则此三角形的形状为( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、等腰直角三角形3、等腰三角形的一边长是6,另一边长是12,则周长为( ) A.30 B.24 C.24或30 D.184、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2, 则PQ 的最小值为( )A 、1B 、 2C 、 3D 、 4 5、等腰三角形的一个角是80°,则它的底角是( ) A. 50° B. 80° C. 50°或80° D. 20°或80° 6、一个多边形的每个内角为108°,则这个多边形是( ) A 、四边形 B 、五边形 C 、六边形 D 、七边形7、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个8、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数 ( )A. 大于90°B. 等于90°C. 小于90°D. 不能确定9、如图, 已知△ABC 中, AB=AC, ∠BAC =90°, 直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点E 、F, 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ; ④BE+CF =EF. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合). 上述结论中始终正确的有( )A. 1个B. 2个C. 3个D. 4个10、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.恒成立的有( )个. A .1 B .2C .3D .4二、填空题(每题3分,6题共18分)11、已知点P (-3,4),关于x 轴对称的点的坐标为 。
2015~2016学年度第一学期期中质量检测试卷八年级数学温馨提示:时间120分钟,满分150分。
请仔细审题,细心答题,相信你一定会有出色的表现! 一、选择题(本大题10小题,每小题4分,共40分,请将下列各题中唯一正确的答案代号A、B、C、D填到本题后括号内)1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.2.如果一个三角形的两边长分别为2和5,则第三边长可能是()A.2 B.3 C.5 D.83.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°5.如图,∠A+ ∠B +∠C +∠D +∠E +∠F的度数为()A.180°B.360°C.270°D.540°6.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:027.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是( )A. SASB. ASAC. AASD. SSS8.如图,在△ABC 中,AD 是BC 边上的中线,点E 、F 是AD 的三等分点,若△ABC 的面积为12cm 2,则图中阴影部分的面积为( )A .2cm 2B .4cm 2C .6cm 2D .8cm 29.如图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD 与下列哪一个三角形全等?( )A .△ACFB .△ADEC .△ABCD .△BCF10.如图,在四边形ABCD 中,AB=CD ,BA 和CD 的延长线交于点E ,若点P 使得S △PAB =S △PCD ,则满足此条件的点P ( )A .有且只有1个B .有且只有2个C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外)二、填空题(本题共4小题,每小题5分,共20分)11. 将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.12. 如图,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,第7题第12题第11题第8题第9题第10题第13题则∠C的度数为;13. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3cm,AE=4cm,则CH的长是;14.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,若∠AED=60°,∠EDC=100°,则, ∠ADE= .三、解答题(本大题共90分,注意写出解答过程或计算步骤)15. (8分)小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)16.(8分)如图,在△ABD和△ACE中,有下列四个等式:①AB=AC、②AD=AE、③∠1=∠2、④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程).题设:,结论:(写序号)17.(8分)如图,已知点E,F在AC上,AD∥BC,DF=BE,添加的一个条件....(不要在图中增加任何字母和线),使△ADF≌△CBE.你添加的条件是:. 证明:18.(8分)如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于E ,AD ⊥CE 于点D ,AD =3.1cm ,DE =1.8cm ,求BE 的长。
2015-2016学年上海市闸北区八年级(上)期中数学试卷一、单项选择题:(本大题共6小题,每小题3分,共18分)1.下列二次根式中,是最简二次根式的是( )A.B.C.D.2.在下列二次根式中,与是同类二次根式的是( )A. B.C. D.3.化简(y<0)的结果是( )A.y B.y C.﹣y D.﹣y4.下列方程一定是一元二次方程的是( )A.xy+x=y B.x2=﹣1 C.ax2+bx=0 D.(x﹣5)x=x2﹣2x﹣15.下列方程中,无实数解的是( )A.x2﹣3x+9=0 B.3x2﹣5x﹣2=0 C.y2﹣2y+9=0 D.(1﹣y2)=y6.反比例函数y=的图象与函数y=2x的图象没有交点,若点(﹣2,y1)、(﹣1,y2)、(1,y3)在这个反比例函数y=的图象上,则下列结论中正确的是( )A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1二、填空题:(本大题共12小题,每题3分,共36分)7.写出的一个有理化因式__________.8.化简:=__________.9.化简:=__________.10.不等式x﹣3<x的解集是__________.11.方程x2=﹣2x的根是__________.12.方程x2﹣5x=4的根是__________.13.在实数范围内因式分解:2x2﹣2x﹣1=__________.14.2012年11月11日,某网站销售额191亿人民币.2014年,销售额增长到571亿人民币.设这两年销售额的平均增长率为x,则根据题意可列出方程__________.15.函数y=的定义域是__________.16.已知反比例函数y=的图象如图所示,则实数m的取值范围是__________.17.已知f(x)=,如果f(a)=,那么a=__________.18.正比例函数的图象和反比例函数的图象相交于A,B两点,点A在第二象限,点A的横坐标为﹣1,作AD⊥x轴,垂足为D,O为坐标原点,S△AOD=1.若x轴上有点C,且S△ABC=4,则C点坐标为__________.三、简答题:(本大题共5小题,每题4分,共20分)19.计算:+3﹣+3.20.计算:2÷•.21.解方程:(2x﹣3)2﹣25=0.22.解方程:3x2﹣(x﹣2)2=12.23.已知x=,求x2﹣4x﹣4的值.四、解答题:(本大题共4题,24、25题每小题6分,26、27每小题6分,共26分)24.已知关于x的一元二次方程(k﹣1)x2+2kx+k+3=0有两个不相等的实数根,求k的取值范围.25.如图,已知正比例函数的图象与反比例函数的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点D作y轴的垂线,垂足分别Q,DQ交反比例函数的图象于点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图于点E.(1)求正比例函数解析式、反比例函数解析式.(2)当点D的纵坐标为9时,求:点E的坐标.26.如图所示,已知墙的长度是20米,利用墙的一边,用篱笆围成一个面积为96平方米的长方形ABCD,中间用篱笆分隔出两个小长方形,总共用去36米长的篱笆,求AB的长度?27.如图,已知直线y=x与双曲线y=(k>0)交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线y=(k>0)上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线y=(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.2015-2016学年上海市闸北区八年级(上)期中数学试卷一、单项选择题:(本大题共6小题,每小题3分,共18分)1.下列二次根式中,是最简二次根式的是( )A.B.C.D.【考点】最简二次根式.【分析】化简得到结果,即可做出判断.【解答】解:A、是最简二次根式,正确;B、,故错误;C、=3,故错误;D、,故错误;故选:A.【点评】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.2.在下列二次根式中,与是同类二次根式的是( )A. B.C. D.【考点】同类二次根式.【分析】先将各选项化简,再找到被开方数为a的选项即可.【解答】解:A、a与被开方数不同,故不是同类二次根式;B、=|a|与被开方数不同,故不是同类二次根式;C、=|a|与被开方数相同,故是同类二次根式;D、=a2与被开方数不同,故不是同类二次根式.故选C.【点评】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.3.化简(y<0)的结果是( )A.y B.y C.﹣y D.﹣y【考点】二次根式的性质与化简.【分析】根据二次根式的概念求出x的符号,根据二次根式的性质化简即可.【解答】解:由二次根式的概念可知,﹣xy2≥0,又y<0,∴﹣x≥0,∴化简(y<0)的结果是﹣y,故选:D.【点评】本题考查的是二次根式的性质与化简,掌握二次根式的性质是解题的关键,注意二次根式的被开方数是非负数.4.下列方程一定是一元二次方程的是( )A.xy+x=y B.x2=﹣1 C.ax2+bx=0 D.(x﹣5)x=x2﹣2x﹣1【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、该方程中含有两个未知数,它属于二元二次方程,故本选项错误;B、该方程符合一元二次方程的定义,故本选项正确;C、当a=0时,该方程不是一元二次方程,故本选项错误;D、由已知方程得到:3x﹣1=0,该方程属于一元一次方程,故本选项错误;故选:B.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.5.下列方程中,无实数解的是( )A.x2﹣3x+9=0 B.3x2﹣5x﹣2=0 C.y2﹣2y+9=0 D.(1﹣y2)=y【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:A、a=,b=﹣3,c=9,∵△=9﹣9=0,∴方程有两个相等的实数根,本选项不合题意;B、a=3,b=﹣5,c=﹣2,∵△=25+24=49>0,∴方程有两个相等的实数根,本选项不合题意;C、a=1,b=﹣2,c=9,∵△=4﹣36=﹣32<0,∴方程没有实数根,本选项符合题意;D、a=,b=1,c=﹣,∵△=1+24=25>0,∴方程有两个不相等的实数根,本选项不合题意.故选:C.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.反比例函数y=的图象与函数y=2x的图象没有交点,若点(﹣2,y1)、(﹣1,y2)、(1,y3)在这个反比例函数y=的图象上,则下列结论中正确的是( )A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【考点】反比例函数与一次函数的交点问题.【分析】先根据题意求得函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵直线y=2x经过一、三象限,反比例函数y=的图象与函数y=2x的图象没有交点,∴反比例函数y=的图象在二、四象限,∵点(﹣2,y1)、(﹣1,y2)、(1,y3)在这个反比例函数y=的图象上,∴点(﹣2,y1)、(﹣1,y2)在第二象限,点(1,y3)在第四象限,∵﹣2<﹣1,∴y1>y2>0,∴1>0,∴y3<0,∴y1>y2>y3,故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题:(本大题共12小题,每题3分,共36分)7.写出的一个有理化因式.【考点】分母有理化.【专题】开放型.【分析】利用有理化因式的定义求解.【解答】解:写出的一个有理化因式.故答案为:.【点评】本题主要考查了分母有理化,解题的关键是熟记有理化因式的定义.8.化简:=.【考点】分母有理化.【分析】分子分母同时乘以即可得出答案.【解答】解:==.故答案为:.【点评】本题考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式是解答此题的关键.9.化简:=π﹣3.【考点】二次根式的性质与化简;二次根式的定义.【专题】常规题型.【分析】二次根式的性质:=a(a≥0),根据性质可以对上式化简.【解答】解:==π﹣3.故答案是:π﹣3.【点评】本题考查的是二次根式的性质和化简,根据二次根式的性质,对代数式进行化简.10.不等式x﹣3<x的解集是x>﹣3﹣3.【考点】二次根式的应用.【分析】利用不等式的基本性质,将不等式未知项和常数项各移到一边,解得x的解集.【解答】解:由x﹣3<x,得x﹣x<3,(﹣)x<3,x>,即x>﹣3﹣3.故答案是:x>﹣3﹣3.【点评】本题考查了二次根式的应用.解题的关键是熟悉不等式的基本性质:不等式的两边同时除以负数,不等号的方向发生改变.11.方程x2=﹣2x的根是x1=0,x2=﹣2.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2+2x=0,即x(x+2)=0,可得x=0或x+2=0,解得:x1=0,x2=﹣2.故答案为:x1=0,x2=﹣2【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.方程x2﹣5x=4的根是x1=,x2=.【考点】解一元二次方程-公式法.【分析】先把给出的方程进行整理,找出a,b,c的值,再代入求根公式进行计算即可.【解答】解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.【点评】此题考查了公式法解一元二次方程,熟练掌握求根据公式x=是本题的关键.13.在实数范围内因式分解:2x2﹣2x﹣1=.【考点】实数范围内分解因式.【专题】计算题.【分析】解2x2﹣2x﹣1=0可得,x=,根据求根公式的分解方法和特点可知:2x2﹣2x﹣1=.【解答】解:∵2x2﹣2x﹣1=0时,x=,∴2x2﹣2x﹣1=;故答案为.【点评】本题考查了在实数范围内分解因式,求根公式法当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.注意当无法用十字相乘法的方法时用求根公式法可分解因式.14.2012年11月11日,某网站销售额191亿人民币.2014年,销售额增长到571亿人民币.设这两年销售额的平均增长率为x,则根据题意可列出方程191(1+x)2=571.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均增长率为x,根据“原来191亿人民币到增长到571亿人民币”,即可得出方程.【解答】解:设这两年销售额的平均增长率为x,根据题意得:191(1+x)2=571,故答案为:191(1+x)2=571.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.15.函数y=的定义域是x>.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于零,分母不等于零列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故答案为:x>.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.已知反比例函数y=的图象如图所示,则实数m的取值范围是m>1.【考点】反比例函数的性质.【分析】先根据反比例函数的图象在一、三象限列出关于m的不等式,求出m的取值范围即可.【解答】解:∵由图可知反比例函数的图象在一、三象限,∴m﹣1>0,即m>1.故答案为:m>1.【点评】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.17.已知f(x)=,如果f(a)=,那么a=1+2.【考点】函数值.【分析】根据函数值的概念得到关于a的分式方程,解方程即可得到答案.【解答】解:由题意得,=,解得,a=1+2,检验:当a=1+2时,a+1≠0,∴a=1+2是原方程的解,故答案为:1+2.【点评】本题考查的是函数值的知识,当已知函数解析式时,求函数值就是求代数式的值;当已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.18.正比例函数的图象和反比例函数的图象相交于A,B两点,点A在第二象限,点A的横坐标为﹣1,作AD⊥x轴,垂足为D,O为坐标原点,S△AOD=1.若x轴上有点C,且S△ABC=4,则C点坐标为(2,0)或(﹣2,0).【考点】反比例函数与一次函数的交点问题.【分析】利用正比例函数与反比例函数图象关于原点对称求得A、B的坐标,然后根据S△ABC=4即可求得C的坐标.【解答】解:设反比例函数为y=(k≠0),正比例函数为y=ax(a≠0);∵这两个函数的图象关于原点对称,∴A和B这两点应该是关于原点对称的,A点的横坐标为﹣1,由图形可知,AD就是A点的纵坐标y,而AD边上的高就是A、B两点横坐标间的距离,即是2,这样可以得到S=×2y=2,解得y=2.∴A点坐标是(﹣1,2);B点的坐标是(1,﹣2),设C(x,0),∵S△ABC=4,∴x×2+x×2=4,解得x=2,∴C(2,0)或(﹣2,0).【点评】本题考查了反比例函数和一次函数的交点,反比例函数与一次函数图象的交点坐标满足两函数解析式.三、简答题:(本大题共5小题,每题4分,共20分)19.计算:+3﹣+3.【考点】二次根式的加减法.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=5+﹣+=﹣.【点评】本题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.20.计算:2÷•.【考点】二次根式的乘除法.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×6=12=8.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.21.解方程:(2x﹣3)2﹣25=0.【考点】解一元二次方程-直接开平方法.【分析】首先移项化简,进而开平方解方程得出答案.【解答】解:(2x﹣3)2﹣25=0(2x﹣3)2﹣75=0,(2x﹣3)2=75,2x﹣3=±5,2x=3±5,解得:x1=,x2=.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.22.解方程:3x2﹣(x﹣2)2=12.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先把方程化为一般式,然后利用因式分解法解方程.【解答】解:方程化为x2+2x﹣8=0,(x+4)(x﹣2)=0,x+4=0或x﹣2=0,所以x1=﹣4,x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.已知x=,求x2﹣4x﹣4的值.【考点】二次根式的化简求值.【分析】首先化简x==2﹣,进一步分组利用完全平方公式因式分解,代入求得答案即可.【解答】解:∵x==2﹣,∴x2﹣4x﹣4=(x﹣2)2﹣8=3﹣8=﹣5.【点评】此题考查二次根式的化简求值,先把二次根式化简,再进一步分解因式代入求得结果.四、解答题:(本大题共4题,24、25题每小题6分,26、27每小题6分,共26分)24.已知关于x的一元二次方程(k﹣1)x2+2kx+k+3=0有两个不相等的实数根,求k的取值范围.【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(2k)2﹣4×(k﹣1)×(k+3)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2kx+k+3=0有两个不相等的实数根,∴k﹣1≠0,即k≠1,△=(2k)2﹣4(k﹣1)(k+3)=﹣8k+12,∵方程有两个不相等的实数解,∴△>0,∴﹣8k+12>0,∴k<,∴k的取值范围是k<且k≠1.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.25.如图,已知正比例函数的图象与反比例函数的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点D作y轴的垂线,垂足分别Q,DQ交反比例函数的图象于点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图于点E.(1)求正比例函数解析式、反比例函数解析式.(2)当点D的纵坐标为9时,求:点E的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法求得即可;(2)把y=9代入反比例函数的解析式即可求得A的坐标,把A点的横坐标代入正比例函数的解析式即可求得E的坐标.【解答】解:(1)设正比例函数解析式为y=mx,反比例函数解析式y=(m≠0,k≠0),把P(2,3)代入y=mx得3=2m,解得m=,∴正比例函数解析式为y=x,把P(2,3)代入y=得,3=,解得k=6,∴反比例函数解析式为y=;(2)把y=9代入y=,得9=,解得x=,∴A(,9),把x=代入y=x,得y=×=1,∴E(,1).【点评】本题考查了待定系数法求一次函数的解析式和反比例函数的解析式以及反比例函数和一次函数的交点,根据D的纵坐标求得A的坐标,进而即可求得E的坐标.26.如图所示,已知墙的长度是20米,利用墙的一边,用篱笆围成一个面积为96平方米的长方形ABCD,中间用篱笆分隔出两个小长方形,总共用去36米长的篱笆,求AB的长度?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设AB为x米,然后表示出BC的长为(36﹣3x)米,利用矩形的面积计算方法列出方程求解即可.【解答】解:设AB=x米,依题意得x(36﹣3x)=96解得:x1=4,x2=8.当x1=4,36﹣3x=24>20(不合题意,舍去)当x2=8时,36﹣3x=12<20,符合题意,答:AB的长度是8米.【点评】本题考查了一元二次方程的应用,解题的关键是设出一边的长,并用未知数表示出另一边的长.27.如图,已知直线y=x与双曲线y=(k>0)交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线y=(k>0)上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线y=(k>0)于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先利用直线y=x的解析式确定A(4,2),然后根据反比例函数图象上点的坐标特征易得k=8;(2)由反比例函数解析式为y=可得到C(1,8),作AD⊥x轴于D,CE⊥x轴于E,如图1,由于S△AOC+S△AOD=S△COD+S梯形ADOC,而根据反比例函数比例系数k的几何意义得到S△AOD=S△COD,于是S△AOC=S梯形ADOC,然后根据梯形的面积公式计算;(3)如图2,先利用反比例函数与正比例函数的性质得到OA=OB,OP=OQ,则可判断四边形AQBP为平行四边形,所以S△APO=S平行四边形AQBP=6,作AM⊥x轴于M,PN⊥x轴于N,如图1,与(2)一样可得S△AOC=S梯形AMNP,设P(t,)(t>0),分类讨论:当t>4时,根据梯形面积得到•(+2)•(t﹣4)=6;当t<4时,根据梯形面积得到•(+2)•(4﹣t)=6,然后分别解方程求出满足条件的t的值,从而得到P点坐标.【解答】解:(1)当x=4时,y=x=2,则A(4,2),把A(4,2)代入y=得k=4×8;(2)反比例函数解析式为y=,当y=8时,=1,解得x=1,则C(1,8),作AD⊥x轴于D,CE⊥x轴于E,如图1,∵S△AOC+S△AOD=S△COD+S梯形ADOC,而S△AOD=S△COD,∴S△AOC=S梯形ADOC=×(2+8)×(4﹣1)=15;(3)如图2,∵直线PQ和直线AB过原点,∴点A与点B,点P与点Q都关于原点中心对称,∴OA=OB,OP=OQ,∴四边形AQBP为平行四边形,∴S△APO=S平行四边形AQBP=×24=6,作AM⊥x轴于M,PN⊥x轴于N,如图1,与(2)一样可得S△AOC=S梯形AMNP,设P(t,)(t>0),当t>4时,•(+2)•(t﹣4)=6,整理得t2﹣6t﹣16=0,解得t=8,t=﹣2(舍去),此时P点坐标为(8,1),当t<4时,•(+2)•(4﹣t)=6,整理得t2+6t﹣16=0,解得t=﹣8(舍去),t=2,此时P点坐标为(2,4),综上所述,P点坐标为(2,4)或(8,1).【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了平行四边形的判定与性质.。