Numerical Simulation of Catalytic Converter of UREA-SCR System Based on MATLAB
- 格式:pdf
- 大小:549.58 KB
- 文档页数:7
摘要 (1)Abstract (2)1. 绪论............................................................. 1 1.1 生物数学背景 (1)1.2 生物数学的发展现状 (2)1.3 微分方程数值解法的产生 (2)2.预备知识 (4)2.1数值解法 (4)2.1.1数值解法的引出(初值问题)[2] (4)2.1.2数值解法的基本实现和途径 (4)2.1.3数值解法的分类[3] (6)(1)单步法 (6)(2)多步法..................................................6 2.1.4数值解法的常用方法 (6)(1)Euler 法[4]............................................... 6 (2)Runge-Kutta 法[5].. (7)(3)数值积分梯形积分 (11)2.2生态数学 (12)2.2.1 Volterra 模型的原理 (12)2.2.2 Volterra 模型的应用 (13)2.2.3 Volterra 模型的相关定理及证明 (14)3.数值解法在生物模型中的应用.......................................15 3.1模型建立....................................................16 3.2对问题进行分析 (17)3.3求解 (17)3.3.1数值解 (17)3.1.2平衡点及相轨线 (21)3.1.3 )(t x ,)(t y 在一个周期内的平均值 (24)4.结论......................................................... 26 参 考 文 献.. (27)附录...............................................................27生物数学-Lotka-Volterra模型的数值解法摘要数值解法是研究有关微分方程的近似解的数值方法和相关理论。
蒙特卡罗方法boltzmann数值模拟全文共四篇示例,供读者参考第一篇示例:蒙特卡罗方法是一种基于随机数的数值计算方法,被广泛应用于各个领域的数值模拟中。
蒙特卡罗方法在Boltzmann方程数值模拟中有着重要的应用,通过蒙特卡罗方法可以模拟气体分子在气体介质的运动规律,从而研究气体的输运性质,比如热传导、扩散等。
本文将详细介绍蒙特卡罗方法在Boltzmann数值模拟中的原理和应用。
一、蒙特卡罗方法的基本原理蒙特卡罗方法是一种基于随机抽样的数值计算方法,主要用于处理那些难以用解析方法求解的问题。
其基本思想是通过随机抽样的方法,模拟系统的随机行为,并根据大量的模拟数据来估计系统的性质。
蒙特卡罗方法的核心思想是大数定律,即当重复进行随机模拟的次数足够多时,随机变量的平均值将趋于其期望值。
在Boltzmann方程数值模拟中,蒙特卡罗方法可以用于模拟气体分子在气体介质中的运动。
根据分子间的相互作用,可以通过随机抽样的方法模拟分子的碰撞和运动,从而推导出气体的输运性质。
通过蒙特卡罗方法,可以有效地模拟大规模气体分子系统的运动,为研究气体输运性质提供了有力的工具。
二、Boltzmann方程的数值模拟Boltzmann方程是描述气体分子在气体介质中运动规律的基本方程,其数值模拟可以通过离散化空间坐标和速度分布来实现。
在蒙特卡罗方法中,可以通过模拟气体分子的随机运动,来求解Boltzmann方程获得气体的输运性质。
在实际应用中,蒙特卡罗方法在Boltzmann数值模拟中可以用于研究气体的传热性质。
通过模拟气体分子的运动规律,可以得到气体的热传导系数、导热性等重要参数,从而揭示气体在不同条件下的传热规律。
这对于设计热传导设备、优化热传导效率等具有重要的意义。
四、总结第二篇示例:蒙特卡罗方法是一种数学上的随机模拟方法,可以用于解决各种复杂的问题,其中蒙特卡罗方法的一种应用就是Boltzmann数值模拟。
Boltzmann数值模拟是一种基于统计力学和蒙特卡罗方法的数值模拟技术,用于模拟大规模复杂系统的行为。
卷积神经网络机器学习相关外文翻译中英文2020英文Prediction of composite microstructure stress-strain curves usingconvolutional neural networksCharles Yang,Youngsoo Kim,Seunghwa Ryu,Grace GuAbstractStress-strain curves are an important representation of a material's mechanical properties, from which important properties such as elastic modulus, strength, and toughness, are defined. However, generating stress-strain curves from numerical methods such as finite element method (FEM) is computationally intensive, especially when considering the entire failure path for a material. As a result, it is difficult to perform high throughput computational design of materials with large design spaces, especially when considering mechanical responses beyond the elastic limit. In this work, a combination of principal component analysis (PCA) and convolutional neural networks (CNN) are used to predict the entire stress-strain behavior of binary composites evaluated over the entire failure path, motivated by the significantly faster inference speed of empirical models. We show that PCA transforms the stress-strain curves into an effective latent space by visualizing the eigenbasis of PCA. Despite having a dataset of only 10-27% of possible microstructure configurations, the mean absolute error of the prediction is <10% of therange of values in the dataset, when measuring model performance based on derived material descriptors, such as modulus, strength, and toughness. Our study demonstrates the potential to use machine learning to accelerate material design, characterization, and optimization.Keywords:Machine learning,Convolutional neural networks,Mechanical properties,Microstructure,Computational mechanics IntroductionUnderstanding the relationship between structure and property for materials is a seminal problem in material science, with significant applications for designing next-generation materials. A primary motivating example is designing composite microstructures for load-bearing applications, as composites offer advantageously high specific strength and specific toughness. Recent advancements in additive manufacturing have facilitated the fabrication of complex composite structures, and as a result, a variety of complex designs have been fabricated and tested via 3D-printing methods. While more advanced manufacturing techniques are opening up unprecedented opportunities for advanced materials and novel functionalities, identifying microstructures with desirable properties is a difficult optimization problem.One method of identifying optimal composite designs is by constructing analytical theories. For conventional particulate/fiber-reinforced composites, a variety of homogenizationtheories have been developed to predict the mechanical properties of composites as a function of volume fraction, aspect ratio, and orientation distribution of reinforcements. Because many natural composites, synthesized via self-assembly processes, have relatively periodic and regular structures, their mechanical properties can be predicted if the load transfer mechanism of a representative unit cell and the role of the self-similar hierarchical structure are understood. However, the applicability of analytical theories is limited in quantitatively predicting composite properties beyond the elastic limit in the presence of defects, because such theories rely on the concept of representative volume element (RVE), a statistical representation of material properties, whereas the strength and failure is determined by the weakest defect in the entire sample domain. Numerical modeling based on finite element methods (FEM) can complement analytical methods for predicting inelastic properties such as strength and toughness modulus (referred to as toughness, hereafter) which can only be obtained from full stress-strain curves.However, numerical schemes capable of modeling the initiation and propagation of the curvilinear cracks, such as the crack phase field model, are computationally expensive and time-consuming because a very fine mesh is required to accommodate highly concentrated stress field near crack tip and the rapid variation of damage parameter near diffusive cracksurface. Meanwhile, analytical models require significant human effort and domain expertise and fail to generalize to similar domain problems.In order to identify high-performing composites in the midst of large design spaces within realistic time-frames, we need models that can rapidly describe the mechanical properties of complex systems and be generalized easily to analogous systems. Machine learning offers the benefit of extremely fast inference times and requires only training data to learn relationships between inputs and outputs e.g., composite microstructures and their mechanical properties. Machine learning has already been applied to speed up the optimization of several different physical systems, including graphene kirigami cuts, fine-tuning spin qubit parameters, and probe microscopy tuning. Such models do not require significant human intervention or knowledge, learn relationships efficiently relative to the input design space, and can be generalized to different systems.In this paper, we utilize a combination of principal component analysis (PCA) and convolutional neural networks (CNN) to predict the entire stress-strain c urve of composite failures beyond the elastic limit. Stress-strain curves are chosen as the model's target because t hey are difficult to predict given their high dimensionality. In addition, stress-strain curves are used to derive important material descriptors such as modulus, strength, and toughness. In this sense, predicting stress-straincurves is a more general description of composites properties than any combination of scaler material descriptors. A dataset of 100,000 different composite microstructures and their corresponding stress-strain curves are used to train and evaluate model performance. Due to the high dimensionality of the stress-strain dataset, several dimensionality reduction methods are used, including PCA, featuring a blend of domain understanding and traditional machine learning, to simplify the problem without loss of generality for the model.We will first describe our modeling methodology and the parameters of our finite-element method (FEM) used to generate data. Visualizations of the learned PCA latent space are then presented, a long with model performance results.CNN implementation and trainingA convolutional neural network was trained to predict this lower dimensional representation of the stress vector. The input to the CNN was a binary matrix representing the composite design, with 0's corresponding to soft blocks and 1's corresponding to stiff blocks. PCA was implemented with the open-source Python package scikit-learn, using the default hyperparameters. CNN was implemented using Keras with a TensorFlow backend. The batch size for all experiments was set to 16 and the number of epochs to 30; the Adam optimizer was used to update the CNN weights during backpropagation.A train/test split ratio of 95:5 is used –we justify using a smaller ratio than the standard 80:20 because of a relatively large dataset. With a ratio of 95:5 and a dataset with 100,000 instances, the test set size still has enough data points, roughly several thousands, for its results to generalize. Each column of the target PCA-representation was normalized to have a mean of 0 and a standard deviation of 1 to prevent instable training.Finite element method data generationFEM was used to generate training data for the CNN model. Although initially obtained training data is compute-intensive, it takes much less time to train the CNN model and even less time to make high-throughput inferences over thousands of new, randomly generated composites. The crack phase field solver was based on the hybrid formulation for the quasi-static fracture of elastic solids and implementedin the commercial FEM software ABAQUS with a user-element subroutine (UEL).Visualizing PCAIn order to better understand the role PCA plays in effectively capturing the information contained in stress-strain curves, the principal component representation of stress-strain curves is plotted in 3 dimensions. Specifically, we take the first three principal components, which have a cumulative explained variance ~85%, and plot stress-strain curves in that basis and provide several different angles from which toview the 3D plot. Each point represents a stress-strain curve in the PCA latent space and is colored based on the associated modulus value. it seems that the PCA is able to spread out the curves in the latent space based on modulus values, which suggests that this is a useful latent space for CNN to make predictions in.CNN model design and performanceOur CNN was a fully convolutional neural network i.e. the only dense layer was the output layer. All convolution layers used 16 filters with a stride of 1, with a LeakyReLU activation followed by BatchNormalization. The first 3 Conv blocks did not have 2D MaxPooling, followed by 9 conv blocks which did have a 2D MaxPooling layer, placed after the BatchNormalization layer. A GlobalAveragePooling was used to reduce the dimensionality of the output tensor from the sequential convolution blocks and the final output layer was a Dense layer with 15 nodes, where each node corresponded to a principal component. In total, our model had 26,319 trainable weights.Our architecture was motivated by the recent development and convergence onto fully-convolutional architectures for traditional computer vision applications, where convolutions are empirically observed to be more efficient and stable for learning as opposed to dense layers. In addition, in our previous work, we had shown that CNN's werea capable architecture for learning to predict mechanical properties of 2Dcomposites [30]. The convolution operation is an intuitively good fit forpredicting crack propagation because it is a local operation, allowing it toimplicitly featurize and learn the local spatial effects of crack propagation.After applying PCA transformation to reduce the dimensionality ofthe target variable, CNN is used to predict the PCA representation of thestress-strain curve of a given binary composite design. After training theCNN on a training set, its ability to generalize to composite designs it hasnot seen is evaluated by comparing its predictions on an unseen test set.However, a natural question that emerges i s how to evaluate a model's performance at predicting stress-strain curves in a real-world engineeringcontext. While simple scaler metrics such as mean squared error (MSE)and mean absolute error (MAE) generalize easily to vector targets, it isnot clear how to interpret these aggregate summaries of performance. It isdifficult to use such metrics to ask questions such as “Is this modeand “On average, how poorly will aenough to use in the real world” given prediction be incorrect relative to some given specification”. Although being able to predict stress-strain curves is an importantapplication of FEM and a highly desirable property for any machinelearning model to learn, it does not easily lend itself to interpretation. Specifically, there is no simple quantitative way to define whether two-world units.stress-s train curves are “close” or “similar” with real Given that stress-strain curves are oftentimes intermediary representations of a composite property that are used to derive more meaningful descriptors such as modulus, strength, and toughness, we decided to evaluate the model in an analogous fashion. The CNN prediction in the PCA latent space representation is transformed back to a stress-strain curve using PCA, and used to derive the predicted modulus, strength, and toughness of the composite. The predicted material descriptors are then compared with the actual material descriptors. In this way, MSE and MAE now have clearly interpretable units and meanings. The average performance of the model with respect to the error between the actual and predicted material descriptor values derived from stress-strain curves are presented in Table. The MAE for material descriptors provides an easily interpretable metric of model performance and can easily be used in any design specification to provide confidence estimates of a model prediction. When comparing the mean absolute error (MAE) to the range of values taken on by the distribution of material descriptors, we can see that the MAE is relatively small compared to the range. The MAE compared to the range is <10% for all material descriptors. Relatively tight confidence intervals on the error indicate that this model architecture is stable, the model performance is not heavily dependent on initialization, and that our results are robust to differenttrain-test splits of the data.Future workFuture work includes combining empirical models with optimization algorithms, such as gradient-based methods, to identify composite designs that yield complementary mechanical properties. The ability of a trained empirical model to make high-throughput predictions over designs it has never seen before allows for large parameter space optimization that would be computationally infeasible for FEM. In addition, we plan to explore different visualizations of empirical models-box” of such models. Applying machine in an effort to “open up the blacklearning to finite-element methods is a rapidly growing field with the potential to discover novel next-generation materials tailored for a variety of applications. We also note that the proposed method can be readily applied to predict other physical properties represented in a similar vectorized format, such as electron/phonon density of states, and sound/light absorption spectrum.ConclusionIn conclusion, we applied PCA and CNN to rapidly and accurately predict the stress-strain curves of composites beyond the elastic limit. In doing so, several novel methodological approaches were developed, including using the derived material descriptors from the stress-strain curves as interpretable metrics for model performance and dimensionalityreduction techniques to stress-strain curves. This method has the potential to enable composite design with respect to mechanical response beyond the elastic limit, which was previously computationally infeasible, and can generalize easily to related problems outside of microstructural design for enhancing mechanical properties.中文基于卷积神经网络的复合材料微结构应力-应变曲线预测查尔斯,吉姆,瑞恩,格瑞斯摘要应力-应变曲线是材料机械性能的重要代表,从中可以定义重要的性能,例如弹性模量,强度和韧性。
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONSInt.J.Circ.Theor.Appl.2006;34:559–582Published online in Wiley InterScience().DOI:10.1002/cta.375A wavelet-based piecewise approach for steady-state analysisof power electronics circuitsK.C.Tam,S.C.Wong∗,†and C.K.TseDepartment of Electronic and Information Engineering,Hong Kong Polytechnic University,Hong KongSUMMARYSimulation of steady-state waveforms is important to the design of power electronics circuits,as it reveals the maximum voltage and current stresses being imposed upon specific devices and components.This paper proposes an improved approach tofinding steady-state waveforms of power electronics circuits based on wavelet approximation.The proposed method exploits the time-domain piecewise property of power electronics circuits in order to improve the accuracy and computational efficiency.Instead of applying one wavelet approximation to the whole period,several wavelet approximations are applied in a piecewise manner tofit the entire waveform.This wavelet-based piecewise approximation approach can provide very accurate and efficient solution,with much less number of wavelet terms,for approximating steady-state waveforms of power electronics circuits.Copyright2006John Wiley&Sons,Ltd.Received26July2005;Revised26February2006KEY WORDS:power electronics;switching circuits;wavelet approximation;steady-state waveform1.INTRODUCTIONIn the design of power electronics systems,knowledge of the detailed steady-state waveforms is often indispensable as it provides important information about the likely maximum voltage and current stresses that are imposed upon certain semiconductor devices and passive compo-nents[1–3],even though such high stresses may occur for only a brief portion of the switching period.Conventional methods,such as brute-force transient simulation,for obtaining the steady-state waveforms are usually time consuming and may suffer from numerical instabilities, especially for power electronics circuits consisting of slow and fast variations in different parts of the same waveform.Recently,wavelets have been shown to be highly suitable for describingCorrespondence to:S.C.Wong,Department of Electronic and Information Engineering,Hong Kong Polytechnic University,Hunghom,Hong Kong.†E-mail:enscwong@.hkContract/sponsor:Hong Kong Research Grants Council;contract/grant number:PolyU5237/04ECopyright2006John Wiley&Sons,Ltd.560K.C.TAM,S.C.WONG AND C.K.TSEwaveforms with fast changing edges embedded in slowly varying backgrounds[4,5].Liu et al.[6] demonstrated a systematic algorithm for approximating steady-state waveforms arising from power electronics circuits using Chebyshev-polynomial wavelets.Moreover,power electronics circuits are piecewise varying in the time domain.Thus,approx-imating a waveform with one wavelet approximation(ing one set of wavelet functions and hence one set of wavelet coefficients)is rather inefficient as it may require an unnecessarily large wavelet set.In this paper,we propose a piecewise approach to solving the problem,using as many wavelet approximations as the number of switch states.The method yields an accurate steady-state waveform descriptions with much less number of wavelet terms.The paper is organized as follows.Section2reviews the systematic(standard)algorithm for approximating steady-state waveforms using polynomial wavelets,which was proposed by Liu et al.[6].Section3describes the procedure and formulation for approximating steady-state waveforms of piecewise switched systems.In Section4,application examples are presented to evaluate and compare the effectiveness of the proposed piecewise wavelet approximation with that of the standard wavelet approximation.Finally,we give the conclusion in Section5.2.REVIEW OF WA VELET APPROXIMATIONIt has been shown that wavelet approximation is effective for approximating steady-state waveforms of power electronics circuits as it takes advantage of the inherent nature of wavelets in describing fast edges which have been embedded in slowly moving backgrounds[6].Typically,power electronics circuits can be represented by a time-varying state-space equation˙x=A(t)x+U(t)(1) where x is the m-dim state vector,A(t)is an m×m time-varying matrix,and U is the inputfunction.Specifically,we writeA(t)=⎡⎢⎢⎢⎣a11(t)a12(t)···a1m(t)............a m1(t)a m2(t)···a mm(t)⎤⎥⎥⎥⎦(2)andU(t)=⎡⎢⎢⎢⎣u1(t)...u m(t)⎤⎥⎥⎥⎦(3)In the steady state,the solution satisfiesx(t)=x(t+T)for0 t T(4) where T is the period.For an appropriate translation and scaling,the boundary condition can be mapped to the closed interval[−1,1]x(+1)=x(−1)(5) Copyright2006John Wiley&Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582A WA VELET-BASED PIECEWISE APPROACH FOR STEADY-STATE ANALYSIS561 Assume that the basic time-invariant approximation equation isx i(t)=K T i W(t)for−1 t 1and i=1,2,...,m(6) where W(t)is any wavelet basis of size2n+1+1(n being the wavelet level),K T i=[k i,0,...,k i,2n+1] is a coefficient vector of dimension2n+1+1,which is to be found.‡The wavelet transformedequation of(1)isKD W=A(t)K W+U(t)(7)whereK=⎡⎢⎢⎢⎢⎢⎢⎢⎣k1,0k1,1···k1,2n+1k2,0k2,1···k2,2n+1............k m,0k m,1···k m,2n+1⎤⎥⎥⎥⎥⎥⎥⎥⎦(8)Thus,(7)can be written generally asF(t)K=−U(t)(9) where F(t)is a m×(2n+1+1)m matrix and K is a(2n+1+1)m-dim vector,given byF(t)=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣a11(t)W T(t)−W T(t)D T···a1i(t)W T(t)···a1m W T(t)...............a i1(t)W T(t)···a ii(t)W T(t)−W T(t)D T···a im W T(t)...............a m1(t)W T(t)···a mi(t)W T(t)···a mm W T(t)−W T(t)D T⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(10)K=[K T1···K T m]T(11)Note that since the unknown K is of dimension(2n+1+1)m,we need(2n+1+1)m equations. Now,the boundary condition(5)provides m equations,i.e.[W(+1)−W(−1)]T K i=0for i=1,...,m(12) This equation can be easily solved by applying an appropriate interpolation technique or via direct numerical convolution[11].Liu et al.[6]suggested that the remaining2n+1m equations‡The construction of wavelet basis has been discussed in detail in Reference[6]and more formally in Reference[7].For more details on polynomial wavelets,see References[8–10].Copyright2006John Wiley&Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582562K.C.TAM,S.C.WONG AND C.K.TSEare obtained by interpolating at2n+1distinct points, i,in the closed interval[−1,1],and the interpolation points can be chosen arbitrarily.Then,the approximation equation can be written as˜FK=˜U(13)where˜F= ˜F1˜F2and˜U=˜U1˜U2(14)with˜F1,˜F2,˜U1and˜U2given by˜F1=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣[W(+1)−W(−1)]T(00···0)···(00···0)(00···0)[W(+1)−W(−1)]T···(00···0)............(00···0)2n+1+1columns(00···0)···[W(+1)−W(−1)]T(2n+1+1)m columns⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭m rows(15)˜F2=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣F( 1)F( 2)...F( 2n+1)(2n+1+1)m columns⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭2n+1m rows(16)˜U1=⎡⎢⎢⎢⎣...⎤⎥⎥⎥⎦⎫⎪⎪⎪⎬⎪⎪⎪⎭m elements(17)˜U2=⎡⎢⎢⎢⎢⎢⎣−U( 1)−U( 2)...−U( 2n+1)⎤⎥⎥⎥⎥⎥⎦⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭2n+1m elements(18)Finally,by solving(13),we obtain all the coefficients necessary for generating an approximate solution for the steady-state system.Copyright2006John Wiley&Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582A WA VELET-BASED PIECEWISE APPROACH FOR STEADY-STATE ANALYSIS5633.WA VELET-BASED PIECEWISE APPROXIMATION METHODAlthough the above standard algorithm,given in Reference[6],provides a well approximated steady-state solution,it does not exploit the piecewise switched nature of power electronics circuits to ease computation and to improve accuracy.Power electronics circuits are defined by a set of linear differential equations governing the dynamics for different intervals of time corresponding to different switch states.In the following,we propose a wavelet approximation algorithm specifically for treating power electronics circuits.For each interval(switch state),we canfind a wavelet representation.Then,a set of wavelet representations for all switch states can be‘glued’together to give a complete steady-state waveform.Formally,consider a p-switch-state converter.We can write the describing differential equation, for switch state j,as˙x j=A j x+U j for j=1,2,...,p(19) where A j is a time invariant matrix at state j.Equation(19)is the piecewise state equation of the system.In the steady state,the solution satisfies the following boundary conditions:x j−1(T j−1)=x j(0)for j=2,3,...,p(20) andx1(0)=x p(T p)(21)where T j is the time duration of state j and pj=1T j=T.Thus,mapping all switch states to the close interval[−1,1]in the wavelet space,the basic approximate equation becomesx j,i(t)=K T j,i W(t)for−1 t 1(22) with j=1,2,...,p and i=1,2,...,m,where K T j,i=[k1,i,0···k1,i,2n+1,k2,i,0···k2,i,2n+1,k j,i,0···k j,i,2n+1]is a coefficient vector of dimension(2n+1+1)×p,which is to be found.Asmentioned previously,the state equation is transformed to the wavelet space and then solved by using interpolation.The approximation equation is˜F(t)K=−˜U(t)(23) where˜F=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣˜F˜F1˜F2...˜Fp⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦and˜U=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣˜U˜U1˜U2...˜Up⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(24)Copyright2006John Wiley&Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582564K.C.TAM,S.C.WONG AND C.K.TSEwith ˜F0,˜F 1,˜F 2,˜F p ,˜U 0,˜U 1,˜U 2and ˜U p given by ˜F 0=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣F a 00···F b F b F a 0···00F b F a ···0...............00···F b F a (2n +1+1)×m ×p columns⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭m ×p rows (F a and F b are given in (33)and (34))(25)˜F 1=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣F ( 1)0 0F ( 2)0 0............F ( 2n +1) (2n +1+1)m columns 0(2n +1+1)m columns···0 (2n +1+1)m columns(2n +1+1)×m ×p columns⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭2n +1m rows(26)˜F 2=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣0F ( 1)···00F ( 2)···0............0(2n +1+1)m columnsF ( 2n +1)(2n +1+1)m columns···(2n +1+1)m columns⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦(27)˜F p =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣0···0F ( 1)0···0F ( 2)...... 0(2n +1+1)m columns···(2n +1+1)m columnsF ( 2n +1)(2n +1+1)m columns⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦(28)˜U0=⎡⎢⎢⎢⎣0 0⎤⎥⎥⎥⎦⎫⎪⎪⎪⎬⎪⎪⎪⎭m ×p elements(29)Copyright 2006John Wiley &Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582A WA VELET-BASED PIECEWISE APPROACH FOR STEADY-STATE ANALYSIS565˜U1=⎡⎢⎢⎢⎢⎢⎣−U( 1)−U( 2)...−U( 2n+1)⎤⎥⎥⎥⎥⎥⎦⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭2n+1m elements(30)˜U2=⎡⎢⎢⎢⎢⎣−U( 1)−U( 2)...−U( 2n+1)⎤⎥⎥⎥⎥⎦(31)˜Up=⎡⎢⎢⎢⎢⎢⎣−U( 1)−U( 2)...−U( 2n+1)⎤⎥⎥⎥⎥⎥⎦(32)F a=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣[W(−1)]T0 00[W(−1)]T 0............00···[W(−1)]T(2n+1+1)m columns⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭m rows(33)F b=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣[−W(+1)]T0 00[−W(+1)]T 0............00···[−W(+1)]T(2n+1+1)m columns⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭m rows(34)Similar to the standard approach outlined in Section2,all the coefficients necessary for gener-ating approximate solutions for each switch state for the steady-state system can be obtained by solving(23).It should be noted that the wavelet-based piecewise method can be further enhanced for approx-imating steady-state solution using different wavelet levels for different switch states.Essentially, Copyright2006John Wiley&Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582566K.C.TAM,S.C.WONG AND C.K.TSEwavelets of high levels should only be needed to represent waveforms in switch states where high-frequency details are present.By using different choices of wavelet levels for different switch states,solutions can be obtained more quickly.Such an application of varying wavelet levels for different switch intervals can be easily incorporated in the afore-described algorithm.4.APPLICATION EXAMPLESIn this section,we present four examples to demonstrate the effectiveness of our proposed wavelet-based piecewise method for steady-state analysis of switching circuits.The results will be evaluated using the mean relative error (MRE)and mean absolute error (MAE),which are defined byMRE =12 1−1ˆx (t )−x (t )x (t )d t (35)MAE =12 1−1|ˆx (t )−x (t )|d t (36)where ˆx (t )is the wavelet-approximated value and x (t )is the SPICE simulated result.The SPICE result,being generated from exact time-domain simulation of the actual circuit at device level,can be used for comparison and evaluation.In discrete forms,MAE and MRE are simply given byMRE =1N Ni =1ˆx i −x i x i(37)MAE =1N Ni =1|ˆx i −x i |(38)where N is the total number of points sampled along the interval [−1,1]for error calculation.In the following,we use uniform sampling (i.e.equal spacing)with N =1001,including boundary points.4.1.Example 1:a single pulse waveformConsider the single pulse waveform shown in Figure 1.This is an example of a waveform that cannot be efficiently approximated by the standard wavelet algorithm.The waveform consists of five segments corresponding to five switch states (S1–S5),and the corresponding state equations are given by (19),where A j and U j are given specifically asA j =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩0if 0 t <t 10if t 1 t <t 21if t 2 t <t 30if t 3 t <t 40if t 4 t T(39)Copyright 2006John Wiley &Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582A WA VELET-BASED PIECEWISE APPROACH FOR STEADY-STATE ANALYSIS567S1S2S3S4S50t1t2t3t4THFigure 1.A single pulse waveform consisting of 5switch states.andU j =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩0if 0 t <t 1H /(t 2−t 1)if t 1 t <t 2−Hif t 2 t <t 3−H /(t 4−t 3)if t 3 t <t 40if t 4 t T(40)where H is the amplitude (see Figure 1).Switch states 2(S2)and 4(S4)correspond to the rising edge and falling edge,respectively.Obviously,when the widths of rising and falling edges are small (relative to the whole switching period),the standard wavelet method cannot provide a satisfactory approximation for this waveform unless very high wavelet levels are used.Theoretically,the entire pulse-like waveform can be very accurately approximated by a very large number of wavelet terms,but the computational efforts required are excessive.As mentioned before,since the piecewise approach describes each switch interval separately,it yields an accurate steady-state waveform description for each switch interval with much less number of wavelet terms.Figures 2(a)and (b)compare the approximated pulse waveforms using the proposed wavelet-based piecewise method and the standard wavelet method for two different choices of wavelet levels with different widths of rising and falling edges.This example clearly shows the benefits of the wavelet-based piecewise approximation using separate sets of wavelet coefficients for the different switch states.Copyright 2006John Wiley &Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582568K.C.TAM,S.C.WONG AND C.K.TSE0−0.2−0.4−0.6−0.8−1−20−15−10−50.20.40.60.81−0.2−0.4−0.6−0.8−10.20.40.60.81(a)051015(b)Figure 2.Approximated pulse waveforms with amplitude 10.Dotted line is the standard wavelet approx-imated waveforms using wavelets of levels from −1to 5.Solid lines are the actual waveforms and the wavelet-based piecewise approximated waveforms using wavelets of levels from −1to 1:(a)switch states 2and 4with rising and falling times both equal to 5per cent of the period;and (b)switch states 2and 4with rising and falling times both equal to 1per cent of the period.4.2.Example 2:simple buck converterThe second example is the simple buck converter shown in Figure 3.Suppose the switch has a resistance of R s when it is turned on,and is practically open-circuit when it is turned off.The diode has a forward voltage drop of V f and an on-resistance of R d .The on-time and off-time equivalent circuits are shown in Figure 4.The basic system equation can be readily found as˙x=A (t )x +U (t )(41)where x =[i L v o ]T ,and A (t )and U (t )are given byA (t )=⎡⎢⎣−R d s (t )L −1L 1C −1RC⎤⎥⎦(42)U (t )=⎡⎣E (1−s (t ))+V f s (t )L⎤⎦(43)Copyright 2006John Wiley &Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582Figure3.Simple buck convertercircuit.Figure4.Equivalent linear circuits of the buck converter:(a)during on time;and(b)during off time.Table ponent and parameter values for simulationof the simple buck converter.Component/parameter ValueMain inductance,L0.5mHCapacitance,C0.1mFLoad resistance,R10Input voltage,E100VDiode forward drop,V f0.8VSwitching period,T100 sOn-time,T D40 sSwitch on-resistance,R s0.001Diode on-resistance,R d0.001with s(t)defined bys(t)=⎧⎪⎨⎪⎩0for0 t T D1for T D t Ts(t−T)for all t>T(44)We have performed waveform approximations using the standard wavelet method and the proposed wavelet-based piecewise method.The circuit parameters are shown in Table I.We also generate waveforms from SPICE simulations which are used as references for comparison. The approximated inductor current is shown in Figure5.Simple visual inspection reveals that the wavelet-based piecewise approach always gives more accurate waveforms than the standard method.Copyright2006John Wiley&Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582−0.5−10.51−0.5−10.51012345670123456712345671234567(a)(b)(c)(d)Figure 5.Inductor current waveforms of the buck converter.Solid line is waveform from piecewise wavelet approximation,dotted line is waveform from SPICE simulation and dot-dashed line is waveform using standard wavelet approximation.Note that the solid lines are nearly overlapping with the dotted lines:(a)using wavelets of levels from −1to 0;(b)using wavelets of levels from −1to 1;(c)using wavelets oflevels from −1to 4;and (d)using wavelets of levels from −1to 5.Table parison of MREs for approximating waveforms for the simple buck converter.Wavelet Number of MRE for i L MRE for v C CPU time (s)MRE for i L MRE for v C CPU time (s)levels wavelets (standard)(standard)(standard)(piecewise)(piecewise)(piecewise)−1to 030.9773300.9802850.0150.0041640.0033580.016−1to 150.2501360.1651870.0160.0030220.0024000.016−1to 290.0266670.0208900.0320.0030220.0024000.046−1to 3170.1281940.1180920.1090.0030220.0024000.110−1to 4330.0593070.0538670.3750.0030220.0024000.407−1to 5650.0280970.025478 1.4380.0030220.002400 1.735−1to 61290.0122120.011025 6.1880.0030220.0024009.344−1to 72570.0043420.00373328.6410.0030220.00240050.453In order to compare the results quantitatively,MREs are computed,as reported in Table II and plotted in Figure 6.Finally we note that the inductor current waveform has been very well approximated by using only 5wavelets of levels up to 1in the piecewise method with extremelyCopyright 2006John Wiley &Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582123456700.10.20.30.40.50.60.70.80.91M R E (m e a n r e l a t i v e e r r o r )Wavelet Levelsinductor current : standard method inductor current : piecewise methodFigure parison of MREs for approximating inductor current for the simple buck converter.small MREs.Furthermore,as shown in Table II,the CPU time required by the standard method to achieve an MRE of about 0.0043for i L is 28.64s,while it is less than 0.016s with the proposed piecewise approach.Thus,we see that the piecewise method is significantly faster than the standard method.4.3.Example 3:boost converter with parasitic ringingsNext,we consider the boost converter shown in Figure 7.The equivalent on-time and off-time circuits are shown in Figure 8.Note that the parasitic capacitance across the switch and the leakage inductance are deliberately included to reveal waveform ringings which are realistic phenomena requiring rather long simulation time if a brute-force time-domain simulation method is used.The state equation of this converter is given by˙x=A (t )x +U (t )(45)where x =[i m i l v s v o ]T ,and A (t )and U (t )are given byA (t )=A 1(1−s (t ))+A 2s (t )(46)U (t )=U 1(1−s (t ))+U 2s (t )(47)Copyright 2006John Wiley &Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582Figure7.Simple boost convertercircuit.Figure8.Equivalent linear circuits of the boost converter including parasitic components:(a)for on time;and(b)for off time.with s(t)defined earlier in(44)andA1=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−R mL mR mL m00R mL l−R l+R mL l−1L l1C s−1R s C s000−1RC⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(48)A2=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−R mR dL mR m R dL m0−R mL m d mR m R dL l−R mR d+R lL l−1L lR mL l d m1C s00R mC(R d+R m)−R mC(R d+R m)0−R+R m+R dC R(R d+R m)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(49)Copyright2006John Wiley&Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582U1=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣EL m⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(50)U2=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣EL m−R m V fL m d mR m V fL l(R d+R m)−V f R mC(R d m⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦(51)Again we compare the approximated waveforms of the leakage inductor current using the proposed piecewise method and the standard wavelet method.The circuit parameters are listed in Table III.Figures9(a)and(b)show the approximated waveforms using the piecewise and standard wavelet methods for two different choices of wavelet levels.As expected,the piecewise method gives more accurate results with wavelets of relatively low levels.Since the waveform contains a substantial portion where the value is near zero,we use the mean absolute error(MAE)forTable ponent and parameter values for simulation ofthe boost converter.Component/parameter ValueMain inductance,L m200 HLeakage inductance,L l1 HParasitic resistance,R m1MOutput capacitance,C200 FLoad resistance,R10Input voltage,E10VDiode forward drop,V f0.8VSwitching period,T100 sOn-time,T D40 sParasitic lead resistance,R l0.5Switch on-resistance,R s0.001Switch capacitance,C s200nFDiode on-resistance,R d0.001Copyright2006John Wiley&Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–5820−0.2−0.4−0.6−0.8−1−50.20.40.60.815100(a)(b)−50.20.40.60.81510Figure 9.Leakage inductor waveforms of the boost converter.Solid line is waveform from wavelet-based piecewise approximation,dotted line is waveform from SPICE simulation and dot-dashed line is waveform using standard wavelet approximation:(a)using wavelets oflevels from −1to 4;and (b)using wavelets of levels from −1to 5.Table IV .Comparison of MAEs for approximating the leakage inductor currentfor the boost converter.Wavelet Number MAE for i l CPU time (s)MAE for i l CPU time (s)levels of wavelets(standard)(standard)(piecewise)(piecewise)−1to 3170.4501710.1250.2401820.156−1to 4330.3263290.4060.1448180.625−1to 5650.269990 1.6410.067127 3.500−1to 61290.2118157.7970.06399521.656−1to 72570.13254340.6250.063175171.563evaluation.From Table IV and Figure 10,the result clearly verifies the advantage of using the proposed wavelet-based piecewise method.Furthermore,inspecting the two switch states of the boost converter,it is obvious that switch state 2(off-time)is richer in high-frequency details,and therefore should be approximated with wavelets of higher levels.A more educated choice of wavelet levels can shorten the simulationCopyright 2006John Wiley &Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582345670.050.10.150.20.250.30.350.40.450.5M A E (m e a n a b s o l u t e e r r o r )Wavelet Levelsleakage inductor current : standard method leakage inductor current : piecewise methodFigure parison of MAEs for approximating the leakage inductor current for the boost converter.time.Figure 11shows the approximated waveforms with different (more appropriate)choices of wavelet levels for switch states 1(on-time)and 2(off-time).Here,we note that smaller MAEs can generally be achieved with a less total number of wavelets,compared to the case where the same wavelet levels are employed for both switch states.Also,from Table IV,we see that the CPU time required for the standard method to achieve an MAE of about 0.13for i l is 40.625s,while it takes only slightly more than 0.6s with the piecewise method.Thus,the gain in computational speed is significant with the piecewise approach.4.4.Example 4:flyback converter with parasitic ringingsThe final example is a flyback converter,which is shown in Figure 12.The equivalent on-time and off-time circuits are shown in Figure 13.The parasitic capacitance across the switch and the transformer leakage inductance are included to reveal realistic waveform ringings.The state equation of this converter is given by˙x=A (t )x +U (t )(52)where x =[i m i l v s v o ]T ,and A (t )and U (t )are given byA (t )=A 1(1−s (t ))+A 2s (t )(53)U (t )=U 1(1−s (t ))+U 2s (t )(54)Copyright 2006John Wiley &Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–5820−0.2−0.4−0.6−0.8−1−6−4−20.20.40.60.81024680−0.2−0.4−0.6−0.8−1−6−4−20.20.40.60.81024680−0.2−0.4−0.6−0.8−1−6−4−20.20.40.60.81024680−0.2−0.4−0.6−0.8−1−6−4−20.20.40.60.8102468il(A)il(A)il(A)il(A)(a)(b)(c)(d)Figure 11.Leakage inductor waveforms of the boost converter with different choice of wavelet levels for the two switch states.Dotted line is waveform from SPICE simulation.Solid line is waveform using wavelet-based piecewise approximation.Two different wavelet levels,shown in brackets,are used for approximating switch states 1and 2,respectively:(a)(3,4)with MAE =0.154674;(b)(3,5)withMAE =0.082159;(c)(4,5)with MAE =0.071915;and (d)(5,6)with MAE =0.066218.Copyright 2006John Wiley &Sons,Ltd.Int.J.Circ.Theor.Appl.2006;34:559–582。
2020年第9期【摘要】为解决利用车辆机理模型设计控制器时的自适应问题,针对非线性车辆动力学系统,提出一种基于数据驱动的横向稳定性控制策略。
利用递推子空间模型辨识算法设计预测器,根据预测器的形式并结合车辆横向稳定性控制提出一种具有模型自适应特性的预测控制器。
利用MATLAB/Simulink 建立7自由度整车动力学仿真模型,结合国际标准ISO/DIS 7401:2000以及ISO 3888:1999进行实车道路试验,并对仿真模型进行了数值验证,基于整车动力学模型,对自适应预测控制器的控制效果进行了数值仿真验证,证明了算法的有效性和鲁棒性。
主题词:车辆稳定性数据驱动子空间辨识预测控制标准道路试验数值仿真中图分类号:U461.1文献标识码:A DOI:10.19620/ki.1000-3703.20190297Adaptive and Predictive Control for Vehicle Lateral StabilityYang Weimiao,Zhang Jianwu,Feng Pengpeng(Shanghai Jiao Tong University,Shanghai 200240)【Abstract 】Targeted for nonlinear vehicle dynamic system,a data-driven stability control strategy is proposed,which aims to solve the problem of lacking self-adaptability of using vehicle mechanism model to design controller.Firstly,a predictor is designed by recursive subspace model identification algorithm,based on which a model-adaptive predictivecontroller for vehicle lateral stability control is proposed.Then,a 7-DOF vehicle dynamic simulation model is established using MATLAB/Simulink,and vehicle road test is performed according to ISO/DIS 7401:2000and ISO 3888:1999,mathematic verification is made to this simulation model.Based on the vehicle dynamic model,control effect of this self-adaptive and predictive controller is simulated and verified,the effectiveness and robustness of the algorithm are validated.Key words:Vehicle stability,Data-driven,Subspace model identification,Predictive control,Standard road test,Numerical simulation杨维妙张建武冯鹏鹏(上海交通大学,上海200240)*基金项目:国家自然科学基金项目(51175333)。