热喷涂与喷焊技术
- 格式:ppt
- 大小:1.35 MB
- 文档页数:5
喷焊包括喷涂和喷焊两种工艺,所获得的覆盖层分别称为喷涂层和喷焊层。
喷涂与喷焊的区别主要表现在以下几个方面:
1、工件受热情况不同
喷涂无重熔过程,工件表面温度可始终控制在250℃以下。
一般不产生变形和使工件的组织状态发生变化。
而喷焊要使涂层融化,重熔温度可达900℃以上,不仅易引起工件变形,而且多数工件会发生退火或不完全退火。
2、与基材的结合状态不同
喷涂层与基材表面的结合以机械咬合为主,尽管存在微区冶金结合,涂层结合强度不高,一般为30~50 MPa。
喷焊通过涂层熔化与基材表面形成冶金结合,结合强度一般可达343~440MPa。
3、所用粉末不同
粉末火焰喷焊所用粉末必须是自熔性合金粉末,而喷涂所用粉末不受限制。
4、覆盖层结构不同
喷焊层均匀致密,一般认为无孔隙,而喷涂层有孔隙。
5、承载能力不同
喷涂层不能承受冲击载荷和较高的接触应力,适用于各种面接触工件的表面喷涂。
喷焊层可承受冲击载荷和较高的接触应力,可用于线接触场合。
综上所述,当工件承载大,尤其是受冲击负荷作用和在腐蚀介质
中使用时,以采用喷焊为宜,当工件不允许有变形发生或不允许改变其原始组织,而且工件不承受或仅承受轻微冲击载荷时,则宜采用喷涂。
目前广泛采用的有粉末火焰喷焊及等离子弧喷焊两种工艺。
热喷涂与热喷焊的区别
1、涂层结合机理不同
热喷涂的结合机理是:机械结合、冶金—化学结合、物理结合。
其中以机械结合为主。
喷焊的结合机理是:化学冶金结合,实现原子间的永久连接。
2、工件受热情况不同
喷涂无重熔过程,工件表面温度可始终控制在250℃以下。
一般不产生变形和使工件的组织状态发生变化。
而喷焊要使涂层融化,重熔温度可达900℃以上,不仅易引起工件变形,而且多数工件会发生退火或不完全退火。
3、与基材的结合状态不同
喷涂层与基材表面的结合以机械咬合为主,尽管存在微区冶金结合,涂层结合强度不高,一般为30~50 MPa。
喷焊通过涂层熔化与基材表面形成冶金结合,结合强度一般可达
343~440MPa。
4、喷涂材料不同
喷焊要求使用自熔性合金粉末,而喷涂则对粉末的自熔性要求不高,且不一定是自熔性合金粉末,各种自熔性合金粉末既可用于喷焊又可用于喷涂,但喷涂粉末不具备自熔性只能用于喷涂而不能用于喷焊工艺。
粉末火焰喷焊所用粉末必须是自熔性合金粉末,而喷涂所用粉末不受限制。
5、覆盖层结构不同
喷焊层均匀致密,一般认为无孔隙,而喷涂层有孔隙。
6、承载能力不同
喷涂层不能承受冲击载荷和较高的接触应力,适用于各种面接触工件的表面喷涂。
喷焊层可承受冲击载荷和较高的接触应力,可用于线接触场合。
综上所述,当工件承载大,尤其是受冲击负荷作用和在腐蚀介质中使用时,以采用喷焊为宜,当工件不允许有变形发生或不允许改变其原始组织,而且工件不承受或仅承受轻微冲击载荷时,则宜采用喷涂。
目前广泛采用的有粉末火焰喷焊及等离子弧喷焊两种工艺。
热喷涂与喷焊1.简要说明表面工程概念的含义,常用的表面工程手段或方法有哪些?表面工程是材料表面经预处理后,通过表面涂覆、表面改性或多种表面工程技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状态,以获得所需要表面性能的系统工程。
表面工程技术分为三类:表面合金化、表面覆层与覆膜技术和表面处理。
表面合金化:包括喷焊、堆焊、离子注入、转化膜技术、扩散渗入、激光熔敷、热渗镀等。
表面覆层与覆膜技术:包括电化学沉积、化学沉积、气相沉积、热喷涂、电镀、化学转化处理、电刷镀、化学镀、气相沉积、涂装、堆焊、金属染色、热浸镀等。
表面处理:包括激光、电子束热处理技术以及喷丸、辊压、孔挤等表面加工硬化技术,表面纳米化加工。
2.什么是热喷涂,主要有哪些具体方法?热喷涂技术是采用气体、液体燃料或电弧、等离子弧、激光等作热源,使金属、合金、金属陶瓷、氧化物、碳化物、塑料以及它们的复合材料等喷涂材料加热到熔融或半熔融状态,通过高速气流使其雾化,然后喷射、沉积到经过预处理的工件表面,从而形成附着牢固的表面层的加工方法。
热喷涂技术依照所采用的热源不同通常可分为:火焰喷涂、电弧喷涂、等离子喷涂和冷喷涂四大类:①火焰喷涂:利用气体燃烧放出的热进行的热喷涂称火焰喷涂。
火焰喷涂最常用的喷涂热源是氧乙炔焰。
根据喷涂材料的形状可分为丝材火焰喷涂和粉末火焰喷涂。
②电弧喷涂:将两根被喷涂的金属丝作为自耗电极,利用其端部产生的电弧作为热源来熔化金属丝材,用压缩空气进行雾化的热喷涂方法。
③等离子喷涂:采用等离子弧为热源,以喷涂粉末材料为主的热喷涂方法。
④冷喷涂:它不使用任何高温火焰来直接加热熔化喷涂粉末。
它采用高压高速的气流驱动喷涂材料粉末来进行喷涂,当固态粉末粒子的速度高于某一临界值时,粒子与基材发生粘合沉积,从而形成涂层。
高压气源产生的高压气体分别用作工作气体和送粉气体,气体加热器分别预热工作气体和送粉气体至100~600℃。
机械设备维修中热喷涂与喷焊技术研究机械设备维护中一个重要的项目就是针对易磨损的零件表面进行维护与修复,相比直接更换而言,利用喷涂(焊)技术对机械部件的表面进行维护与再造可以利用较低的成本恢复零件的性能,对于工厂节能减排和资源节约、建设环境友好型社会具有举足轻重的作用。
热喷涂和喷焊技术是主要的技术类型,技术优势和应用都有较为广阔的前景。
1 热喷涂技术特征1.1 热喷涂概述热喷涂技术是利用电弧等热源,将喷涂材料从固体变为熔融状态,在高压气流的推动下喷涂材料被雾化,直接喷射到机械零件的表面,材料喷射到工件表面上受到阻力影响而形成扁平状,附着到工件表面达到修复磨损表面的目的。
持续的喷涂则可以使得喷涂材料之间相互咬合,进一步形成机械结合,大量的喷涂材料在表面产生堆积,由此形成喷涂层达到维修的目的。
1.2 热喷涂工艺分析1.2.1 工件表面处理:为了保证涂层与零件表面的有效结合,表面必须进行净化和粗化处理,具体的方法则应根据零件材料和涂层材料而定。
净化处理的目的就是去掉零件表面的氧化皮、油渍等污物,关键是要去掉渗入的油脂。
粗化处理则是为了增加涂层材料与基材之间的接触面积,如喷砂、滚花、电拉毛等方式。
1.2.2 预热处理:预热是针对工件进行加热处理,去除水分和湿气,拉近喷涂材料与零件之间的温度差,这样工件材料和喷涂材料的结合强度将得到强化,也可以减少热胀冷缩而导致的涂层材料开裂,通常预热的温度在60°~120°之间。
1.2.3 喷涂操作:在喷涂方法上也有很多种,主要视喷涂材料而定,当然工件的材料特性也必须考虑在内,如果陶瓷层则选用等离子技术;如果是碳化金属陶瓷层,则利用高速火焰喷涂;如果是塑料涂层,则直接利用火焰喷涂。
1.2.4 喷涂后维护:在完成涂层涂覆后应进行防腐处理,主要是防止腐蚀介质深入到涂层内而对基材产生影响。
用于防腐的材料主要有石蜡、环氧树脂、硅树脂等,也可利用氧化物作为防腐剂。