2013-2014学年九年级数学第一学期期中试卷 (新人教版 第92套)
- 格式:doc
- 大小:868.50 KB
- 文档页数:11
湖北省宜城市2013-2014学年第一学期期中测试一、选择题 (本大题有12个小题,每小题3分,共36分.)1.下列二次根式中,的取值范围是3x≥的是()B. C.2. 下列二次根式中,是最简二次根式的是()A. C.3. 下列各式计算正确的是()A.63238=- B. 5102535=+C. 222224=÷ D. 682234=⨯4. 下列方程中,一元二次方程共有().①432=-xx②04322=+-xyx③412=-xx④42=x⑤0332=+-xxA. 2个 B.3个 C.4个 D. 5个5. 关于关于x的一元二次方程1352+=-xxx的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断6. 某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.19% B.10% C.9.5% D.20%7.下列命题中是真命题的是( )A.经过两点不一定能作一个圆B.经过三点不一定能作一个圆C.经过四点一定不能作一个圆D.一个三角形有无数个外接圆8.四边形ABCD的对角线相交于点O,且AO=BO=CO=DO,则这个四边形()A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形 9.如图所示,在正方形ABCD 中,AB=4,点O 在AB 上,且OB=1,点P 是BC 上一动点,连接OP ,将线段OP 绕点O 逆时针旋转90°得到线段OQ.要使点Q 恰好落在AD 上,则BP 的长是( )A .3B .2C .1D .无法确定10. 如图所示,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,错误的是( )A.CE=DEB.弧BC=弧BDC.∠BAC=∠BADD.AC ﹥AD11.下列四个命题:①顶点在圆心的角是圆心角;②两个圆心角相等, 它们所对的弦也相等;③两条弦相等,它们所对的弧也相等;④等弧所对的圆心角相等.其中正确的有( ) A.0个 B.1个 C.2个 D.3个12. 已知⊙O 的半径为5cm ,点P 到⊙O 的最近距离是2,那么点P 到⊙O 的最远距离是( ) A.7cm B.8cm C. 7cm 或12cm D.8cm 或12cm二、填空题 (本大题有5个小题,每小题3分,共15分.)13.计算(236)(236)+-=14. 已知方程x 2-x -1=0有一根为m ,则m 2-m +2013的值为____.15.如图,已知正方形ABCD 的边长为3,E 为CD 边上一点,DE=1.以点A 为中心,把△ADE 顺时针旋转90︒,得△ABF ,连接EF ,则EF 的长等于 .16. 如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为弧BC 上一点,若∠CEA=28o,则∠ABD=°.ABCDE O · 第10题图A第16题图 17.已知等腰△的三个顶点都在半径为5cm 的⊙上,如果底边的长为8cm ,则边上的高为 .三、解答题(本大题共9个小题,计69分.)18.(本题满分5分)计算:4832426-÷+⨯.19.(本题满分7分)先化简,再求值:(a -1+12+a )÷(212+a ),其中a =2-1.20.(本题满分6分)已知方程2(1)140x m x m +-+-=的一个根是3,求m 的值及方程的另一个根.21.(本题满分7分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值。
2013~2014学年上学期九年级期中考试数 学 试 题一、选择题(每小题3分,共计30分)1.如果01)3(2=+-+mx x m 是一元二次方程,则 ( )A 、3-≠mB 、3≠mC 、0≠mD 、03≠-≠m m 且 2. 方程032=-x x 的解是( )A .x=3B .x 1=0,x 2=3C .x 1=0,x 2=-3D .x 1=1,x 2=3 3. 对于反比例函数y = 1x,下列说法正确的是( )A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4. 在函数131y x =-中,自变量x 的取值范围是( )(A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >5. 用配方法解一元二次方程0782=++x x ,则方程可化为( )A 、942=+)(xB 、942=-)(xC 、23)8(2=+xD 、9)8(2=-x6.如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致是( )A B C D7.我地为执行“两免一补”政策, 2011年投入教育经费2500万元,预计2013年投入3600万元.设这两年投入教育经费的年平均增长率为x ,则下列方程正确的是( ). A .225003600x =B .22500(1)3600x +=C .22500(1%)3600x +=D .22500(1)2500(1)3600x x +++=8. 点(-2,3)在函数xk y =图象上,则下列点中,不在该函数图象上的是( )A. (-6, 1)B. (23,-4)C. (3, 2)D. (1, -6)9. 菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错误..的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OC10.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( )A .1k >B .1k <C .1k >-D .1k <- 二、填空题(每小题3分,共15分)11、已知x = 1是关于x 的一元二次方程2x 2 + kx –1 =0的一个根,则实数k 的值是 。
云南省大理州拥翠乡中学2013—2014学年第一学期期中考试九年级数学试卷考生注意:本试卷共三大题,23小题,总分100分,考试时间120分钟。
一、选择题(本题包括8小题,每小题3分,共24分,每小题只有一个正确答案)1.下列方程,是一元二次方程的是()①3x2+x=20,②2x2-3xy+4=0,③x2-1x=4,④x2=0,⑤x2-3x+3=0A.①②B.①②④⑤C.①③④D.①④⑤2、下图中是中心对称图形的是()A B. C. D.3、方程x2 = 3x的根是()A.x=3 B.x= -3 C.0或3 D.无解4、方程3x2-4x+1=0 ()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根 D.没有实数根5、下列计算正确的是()A.20=210B.2·3= 6C.4-2= 2D.(-3)2=-36、下列二次根式中,与3是同类二次根式的是()A.18B.27C.23 D.327、一元二次方程x2-5x+6=0的两根分别是x1、x2,则x1+x2等于()A.5 B.6 C.-5 D.-68、已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是()二、填空题(共7个小题,每小题3分,共21分) 9、二次根式 3-x 有意义的条件是10、当x 为 时,代数式3x 2的值与4x 的值相等。
11、21= , (10)2= , 2)1(-= 12、已知A (a-1,3),B(-2012,b+2)两点关于原点对称,则a= ,b= . 13、若︳x+2 ︳+ y -3=0,则x y的值为14、在平行四边形、矩形、菱形、正方形、等腰梯形的五种图形中,既是轴对称又是中心对称的图形是 。
15.已知方程x 2-7x+12=0的两根恰好是Rt △ABC 的两条边的长,则Rt △ABC•的第三边长为________.三、解答题(本题共8小题,共55分)16、计算: (5分) 4+(3.14-π)0-|-2|+108-236⨯17.(5分)先化简,再求值.a 2a 2+2a -a 2-2a +1a +2÷a 2-1a +1,其中a =2-2.18、(8分)解方程:(每小题4分) (1) 9(x-3)2- 49=0(2)若a 、b 为实数,且a 、b 是方程x 2+5x+6=0的两根,则p(a,b)关于原点对称点Q 的坐标是什么?19、(6分 )三角形两边的长分别是8和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,求该三角形的面积。
12013-2014学年度第一学期期中考试九年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分) 1.根式2)2(-的值是( )A. -2B. 2C. 4±D. 4 2.函数2-=x y 中自变量x 的取值范围是( )A.x >2B.x≥2 C .x <2 D. x≤2 3.用配方法解方程0122=--x x 时,配方后所得的方程为( )A .012=+)(xB .012=-)(xC .212=+)(xD .212=-)(x4.已知x=-1是关于x 的一元二次方程x 2-2x+a=0的一个解,则此方程的另一个解是( ).A. x=3B. x=-2C. x=2D. x=-35.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中既是轴称图形又是中心对称图形的是( )6.如图,将ABC ∆绕顶点C 逆时针旋转得到'''C B A ∆,且点B 刚好落在''B A 上,若∠A=25°,∠BCA ′=45°,则∠A ′BA 等于( )A .30°B .35°C .40°D .45°A'CB AB'(第6题)2B AOC(第14题)7.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是( )A.30°B.45° C .60° D .90°8.如图,点D 为线段AB 与线段BC 的垂直平分线的交点,∠A=35°,则∠D 等于( ) A .50° B . 65° C .55° D .70°9.已知关于x 的方程2()10x a b x ab -++-=,1x 、2x 是此方程的两个实数根,现给出三个结论:①12x x ≠;②12x x ab <;③222212x x a b +<+.其中正确结论个数是( )A. 0B. 1C.2D. 310.已知AB 是⊙O 的直径,C 是⊙O 上一点,︒=∠15CAB ,ACB ∠的平分线与⊙O 交于点D.若CD=3,则AB=( )A. 2B.6C. 22D. 3 二、填空题(每题3分,共18分)11.若点)1,(-a A 与点),2(b B 是关于原点O 的对称点,则b a += .12. 20032004(32)(32)-+=g20032004(32)(32)-+=g . 13.实数a 在数轴上的位置如图所示,则化简2)1(|2|-+-a a 的结果为 .14.如图,在等腰ABO Rt ∆中,OA=OB=23,︒=∠90O ,点C 是AB 上一动点,⊙O 的半径为1,过点C 作⊙O 的切线CD ,D 为切点,则切线长的最小值为 . 15. 如图,直线y = -2x +1与与双曲线y =x k在第一象限交于不同的B 、C 两点,则k 的取值范围 .16.如图,在等边三角形ABC 内有一点P ,PA=10,PB=8,PC=6.则∠BPC= 度.(第7题)A B CD(第8题)y A BCxO(第15题)(第16题)·(3三、解答题(共9小题,共72分)17.(本题满分6分) 计算:3681)2(122-⨯-+ 18.(本题满分6分)(1)当51x =时,求2+2x 4x -的值。
海淀区九年级第一学期期中测评数学试卷(分数:120分时间:120分钟) 2013.11班级姓名学号 成绩试题答案一律填涂或书写在答题卡上,在试卷上做答无效. 一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.一元二次方程2230x x --=的二次项系数、一次项系数、常数项分别是A. 1,2,3--B. 1,-2,3C. 1,2,3D. 1,2,3- 2.在角、等边三角形、平行四边形、圆中,既是中心对称图形又是轴对称图形的是 A .角B .等边三角形 C .平行四边形 D .圆 3.函数2y x =-中,自变量x 的取值范围是A .2≠xB .2≤xC .2>xD .2≥x4.如图,点A 、B 、C 在O ⊙上,若110AOB ∠=o ,则ACB ∠的大小是 A .35o B .ο45 C .55o D .110o5.用配方法解方程09102=++x x ,配方正确的是 A .16)5(2=+x B .34)5(2=+x C .16)5(2=-x D .25)5(2=+x6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是 A .ο60B .ο72 C .90oD .120o7.若230a b ++-=,则a b +的值为A .-1B .1C .5D .6OCBA8.如图,⊙O 的半径为5,点P 到圆心O 的距离为10,如果过点P 作弦,那么长度为整数值的弦的条数为 A .3 B .4C .5D .6二、填空题(本题共16分,每小题4分)9.如图,将ABC △绕点C 顺时针旋转至''A B C △的位置,若 15ACB ∠=o ,120B ∠=o ,则'A ∠的大小为________.10.已知一元二次方程有一个根是0,那么这个方程可以是(填上你认为正确的一个方程即可).11.如图,AB 是⊙O 的直径,点C 、D 为⊙O 上的两点,若 ο40=∠ABD ,则BCD ∠的大小为.12.下面是一个按某种规律排列的数阵:1第1行 2 3 2第2行 5 6 7 22 3第3行 1011 2313 1415 4第4行 L L L L根据数阵排列的规律,则第5行从左向右数第5个数为,第n (3≥n ,且n 是整数)行从左向右数第5个数是(用含n 的代数式表示). 三、解答题(本题共30分,每小题5分) 13.计算:36324⨯+÷.14.用公式法解一元二次方程:241x x +=.15.如图,ABC △与AED △均是等边三角形,连接BE 、CD .请在图中找出一条与CD 长度相等的线段,并证明你的结论.结论:CD =. 证明:ODCBAPO ED CBA16.当15-=x 时,求代数式522-+x x 的值.17.如图,两个圆都以点O 为圆心,大圆的弦AB 交小圆于C 、D 两点.求证:AC =BD . 证明:18.列方程(组)解应用题:如图,有一块长20米,宽12米的矩形草坪,计划沿水平和竖直方向各修一条宽度相同的小路,剩余的草坪面积是原来的34,求小路的宽度.解:四、解答题(每小题5分,共20分)19.已知关于x 的一元二次方程210x mx m -++=的一个根为2. (1) 求m 的值及另一根;(2)若该方程的两个根分别是等腰三角形的两条边的长,求此等腰三角形的周长.20.如图,DE 为半圆的直径,O 为圆心,DE =10,延长DE 到A ,使得EA =1,直线AC 与半圆交于B 、C 两点,且ο30=∠DAC .(1)求弦BC 的长; (2)求AOC △的面积.21.已知关于x 的方程0)1(222=++-k x k x 有两个不相等的实数根. (1)求k 的取值范围;(2)求证:1-=x 不可能是此方程的实数根.DCBA O ECADBO22.阅读下面的材料:小明在研究中心对称问题时发现:如图1,当点1A 为旋转中心时,点P 绕着点1A 旋转180°得到1P 点,点1P 再绕着点1A 旋转180°得到2P 点,这时点P 与点2P 重合.如图2,当点1A 、2A 为旋转中心时,点P 绕着点1A 旋转180°得到1P 点,点1P 绕着点2A 旋转180°得到2P 点,点2P 绕着点1A 旋转180°得到3P 点,点3P 绕着点2A 旋转180°得到4P 点,小明发现P 、4P 两点关于点2P 中心对称.(1)请在图2中画出点3P 、4P , 小明在证明P 、4P 两点关于点2P 中心对称时,除了说明P 、2P 、4P 三点共线之外,还需证明;(2)如图3,在平面直角坐标系xOy 中,当)3,0(1A 、)0,2(2 A 、)0,2(3A 为旋转中心时,点)4,0(P 绕着点1A 旋转180°得到1P 点;点1P 绕着点2A 旋转180°得到2P 点;点2P 绕着点3A 旋转180°得到3P 点;点3P 绕着点1A 旋转180°得到点4P L 点. 继续如此操作若干次得到点56P P L 、、,则点2P 的坐标为,点2017P 的坐为.图3图2图1五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知关于x 的一元二次方程02)12(2=++-x m mx . (1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求m 的整数值; (3)若此方程的两个实数根分别为1x 、2x ,求代数式5)(2))(12()(2122213231+++++-+x x x x m x x m 的值.24.已知在ABC △中,ο90=∠ACB ,26==CB CA ,AB CD ⊥于D ,点E 在直线CD 上,CD DE 21=,点F 在线段AB 上,M 是DB 的中点,直线AE 与直线CF 交于N 点. (1)如图1,若点E 在线段CD 上,请分别写出线段AE 和CM 之间的位置关系和数量关系:___________,___________;(2)在(1)的条件下,当点F 在线段AD 上,且2AF FD =时,求证:ο45=∠CNE ; (3)当点E 在线段CD 的延长线上时,在线段AB 上是否存在点F ,使得ο45=∠CNE .若存在,请直接写出AF 的长度;若不存在,请说明理由.DCBANM FED CBA 图1备用图25.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上,且10=AB ,点M 为线段AB 的中点.(1)如图1,线段OM 的长度为________________;(2)如图2,以AB 为斜边作等腰直角三角形ACB ,当点C 在第一象限时,求直线OC 所对应的函数的解析式; (3)如图3,设点D 、E 分别在x 轴、y 轴的负半轴上,且10=DE ,以DE 为边在第三象限内作正方形DGFE ,请求出线段MG 长度的最大值,并直接写出此时直线MG 所对应的函数的解析式.GFEDxy O ABM图1图2CxyOABM BAOyx图3海淀区九年级第一学期期中练习2013.11数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写的较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分.3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共32分,每小题4分) 题号 12345 6 7 8 答案A D D CABBC二、填空题(本题共16分,每小题4分)9.45°;10.20x x -=(二次项系数不为0,且常数项为0均正确);11.50°;12.21,622+-n n (每空2分).三、解答题(本题共30分,每小题5分) 13.(本小题满分5分)解:36324⨯+÷818=+………………………………………………………………………2分2322+=…………………………………………………………………4分 25=.……………………………………………………………………………5分14.(本小题满分5分)解:原方程可化为2+410x x -=,……………………………………………………1分141a ,b ,c ===-,2441(1)=20>0,∆=-⨯⨯-…………………………………………………………2分方程有两个不相等的实数根,244202522b b ac x a -±--±===-±,……………………………………4分即122525x ,x =-+=--.……………………………………………………5分15.(本小题满分5分)结论:CD BE =.……………………………………………………………………1分 证明:Θ△ABC 与△AED 是等边三角形,∴AE AD =,AB AC =,60CAB DAE ∠=∠=o.…2分 ∴CAB DAB DAE DAB ∠-∠=∠-∠,即CAD BAE ∠=∠.………………………………3分 在△CAD 和△BAE 中,EDCBAAC AB,CAD BAE,AD AE,=⎧⎪∠=∠⎨⎪=⎩∴△CAD ≌△BAE .…………………………………………………………4分 ∴CD =BE .…………………………………………………………………5分16.(本小题满分5分)解:Θ15-=x ,∴15x +=.∴5)1(2=+x .………………………………………………………………1分∴2215x x ++=.………………………………………………………………2分∴224x x +=.…………………………………………………………………3分 ∴225451x x +-=-=-.……………………………………………………5分17.(本小题满分5分)证明:过点O 作AB OM ⊥于M ,…………………………1分由垂径定理可得DM CM BM AM ==,.……………3分∴DM BM CM AM -=-.…………………………4分 即BD AC =.…………………………………………5分18.(本小题满分5分)解:设小路的宽度是x 米.………………………………………………………1分由题意可列方程,3(20)(12)20124x x --=⨯⨯.……………………………2分化简得, 232600x x -+=.解得, 12302x ,x ==.………………………………………………………3分由题意可知3020x =>不合题意舍去,2x =符合题意.…………………4分 答:小路的宽度是2米.……………………………………………………5分四、解答题(本题共20分,每小题5分) 19.(本小题满分5分)解:(1)∵关于x 的一元二次方程210x mx m -++=的一个根为2,∴22210m m -++=.……………………………………………………1分 ∴5m =.……………………………………………………………………2分∴一元二次方程为2560x x -+=.解得1223x ,x ==.…………………………………………………………3分∴5m =,方程另一根为3.(2)当长度为2的线段为等腰三角形底边时,则腰长为3,此时三角形的周长为2+3+3=8;………………………………………………………………4分当长度为3的线段为等腰三角形底边时,则腰长为2,此时三角形的周长为2+2+3=7. ………………………………………………………………5分MODCBA20.(本小题满分5分)解:(1)过点O 作OM ⊥BC 于M .由垂径定理可得:BM=CM .…1分∵30DAC ∠=o , ∴12OM OA =.∵直径DE =10, EA =1,∴=5OD OC OE ==.∴516OA OE EA =+=+=. ∴3OM =.…………………2分在R t △COM 中,222225316CM OC OM =-=-=. ∴4CM =. ∴4BM =.∴+8BC BM CM ==.……………………………………………………3分 (2)在R t △AOM 中,222226327AM OA OM =-=-=.∴33AM =.……………………………………………………………………4分 ∴+334AC AM CM ==+. ∵OM ⊥AC , ∴119(334)336222AOC S AC OM =⋅=⨯+⨯=+V .……………………………5分21.(本小题满分5分)解:(1)∵关于x 的方程0)1(222=++-k x k x 有两个不相等的实数根,∴224(1)4=8+4>0k k k ∆=+-.………………………………………………2分 ∴1>2k -.…………………………………………………………………3分 (2)∵当1-=x 时,左边=222(1)x k x k -++22(1)2(1)(1)k k =--+⨯-+223k k =++…………………………………………4分 2(+1)20k =+>.而右边=0,∴左边≠右边.∴1-=x 不可能是此方程的实数根.……………………………………5分22.(本小题满分5分)(1)正确画出34P P 、点(图略).………………………………………………1分224=P P P P .……………………………………………………………………2分(2)(-4,-2).…………………………………………………………………3分(0,2).……………………………………………………………………5分MECA DB O五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.(本小题满分7分)解:(1)由题意可知0m ≠.2(21)42m m ∆=+-⨯⨯22=441(21)0m m m -+=-≥.……………………………………………2分∴此方程总有两个实数根.(2)方程的两个实数根为2(21)(21)2m m x m+±-=,∴1212x ,x m==.…………………………………………………………4分 ∵方程的两个实数根都是整数,且m 为整数,∴1m =±.…………………………………………………………………5分(3)∵原方程的两个实数根分别为1x 、2x ,∴211(21)20mx m x -++= 222(21)20mx m x -++=.……………………………………………………6分∴5)(2))(12()(2122213231+++++-+x x x x m x x m=1323211222[(21)2]+[(21)2]+5mx m x x mx m x x -++-++=12211222[(21)2]+[(21)2]+5x mx m x x mx m x -++-++=12005x x ⨯+⨯+=5.…………………………………………………………………………7分24.(本小题满分8分)(1)AE ⊥CM ,AE =CM .……………………………………………………2分(2)如图,过点A 作AG ⊥AB ,且AG =BM,,连接CG 、FG ,延长AE 交CM 于H .∵ο90=∠ACB ,26==CB CA ,∴∠CAB =∠CBA =45°,AB=2212CA CB +=. ∴∠GAC =∠MBC =45°. ∵AB CD ⊥,∴CD=AD=BD =162AB =. ∵M 是DB 的中点, ∴3BM DM ==. ∴3AG =. ∵2AF FD =,∴4 2.AF DF ==,∴+2+3=5.FM FD DM == ∵AG ⊥AF , ∴2222+3+4=5.FG AG AF ==FHNGM EDCBA∴.FG FM =……………………………………………………………………3分 在△CAG 和△CBM 中, CA CB CAG CBM AG BM =⎧⎪∠=∠⎨⎪=⎩,,, ∴△CAG ≌△CBM .∴CG =CM ,ACG BCM ∠=∠.∴++90MCG ACM ACG ACM BCM ∠=∠∠=∠∠=o .………………………4分 在△FCG 和△FCM 中, CG CM FG FM CF CF =⎧⎪=⎨⎪=⎩,,, ∴△FCG ≌△FCM .∴FCG FCM ∠=∠.………………………………………………………5分 ∴45FCH ∠=o .由(1)知AE ⊥CM , ∴90CHN ∠=o∴ο45=∠CNE .………………………………………………………………6分 (3)存在.AF =8.…………………………………………………………………………8分25.(本小题满分7分)(1)5;…………………………………………………………………………………1分 (2)如图1, 过点C 分别作CP ⊥x 轴于P ,CQ ⊥y 轴于Q .∴∠CQB =∠CPA =90°,∵∠QOP =90°,∴∠QCP =90°. ∵∠BCA =90°,∴∠BCQ =∠ACP . ∵BC=AC ,∴△BCQ ≌△ACP .∴CQ=CP .………………………………3分 ∵点C 在第一象限,∴不妨设C 点的坐标为(a ,a )(其中0a ≠).设直线OC 所对应的函数解析式为kx y =,∴a ka =,解得k =1,∴直线OC 所对应的函数解析式为x y =.…………………………………4分 (3)取DE 的中点N ,连结ON 、NG 、OM .∵∠AOB=90°,∴OM =152AB =.同理ON =5.Fy OBDGNEAMx图2Q C xy O A BP 图1∵正方形DGFE ,N 为DE 中点,DE=10, ∴NG =2222=+10555DN DG =+=.在点M 与G 之间总有MG ≤MO +ON +NG (如图2),由于∠DNG 的大小为定值,只要12DON DNG ∠=∠,且M 、N 关于点O 中心对称时,M 、O 、N 、G 四点共线,此时等号成立(如图3).………………………5分∴线段MG 取最大值10+55.………………6分此时直线MG 的解析式x y 251+-=.……………………………………7分NM BAOyxDEG图3。
屯脚中学2013—2014年学年度第一学期九年级数学期中测试题时间:90分钟 分数:120分班级———— 姓名———— 学号———— 总分100分 得分————一、选择题(每小题3分,共27分)1.下列各式是二次根式的是( )A .7-B 、mC 、12+aD 、332.(2005·甘肃平凉)若0)1(2=++-c bx x a 是关于x 的一元二次方程,则( )A 、a ≠0B 、a ≠1C 、a ≠-1D 、a=13.化简二次根式23)(-的结果等于( )A .3B .-3C .±3D .±34.下列各式中,一定能成立的是( )。
A .22)5.2()5.2(=-B .22)(a a =C .122+-x x =x-1D .3392+⋅-=-x x x5.计算)32)(21(+-等于( )A .63-B .62232-++C .3D .62232--+6.用配方法解方程2x 2 + 3 = 7x 时,方程可变形为 ( )A 、(x – 72 )2 = 374B 、(x – 72 )2 = 434C 、(x – 74 )2 = 116D 、(x – 74 )2 = 25167.(2005·浙江嘉兴)如果关于x 的一元二次方程022=+-a x x 有实数根,则a 的取值范围是( )A 、a ≤1B 、a<1C 、a ≤– 14D 、a ≥18.若分式x 2 — 7x + 12x 2 — 9 的值为0,则x 的值为( )A 、3、4B 、-3、-4C 、3D 、49.如图1,ΔABC 和ΔADE 均为正三角形,则图中可看作是旋转关系的三角形是( )A. ΔABC 和ΔADEB. ΔABC 和ΔABD图1C . ΔABD 和ΔACE D. ΔACE 和ΔADE二、填空题(每小题3分,共27分)10.将方程1382-=x x 化为一般形式为 ,其中二次项系数为 ,一次项为 ,常数项为 。
孺子学校2013—2014学年上学期期中考试试数学试题一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.下列根式中能与3合并的二次根式为( )A .32B .24C .12D .182.下列等式不成立的是( )A .62366=gB .824÷=C .1333=D .822-=3.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5 4.下列说法中正确的是( )①圆心角是顶点在圆心的角 ②两个圆心角相等,它们所对的弦相等 ③两条弦相等,圆心到这两弦的距离相等 ④在等圆中,圆心角不变,所对的弦也不变A .①③B .②④C .①④D .②③ 5.在下列图形中,既是轴对称图形,又是中心对称图形的是( )6、如图,正方形ABCD 四个顶点都在⊙O 上,点P 是在弧AB 上的一点,则∠CPD 的度数是( )A 、35°B 、40°C 、45°D 、60°二、填空题(本大题共8小题,每小题3分,共24分)7.已知关于x 的方程(m -1)x 2+(m +1)x +3m +2=0,当m 时,该方程为一元二次方程。
8.已知m 是方程210x x --=的一个根,则代数式2226m m -+的值为 。
9.直线y =x+3上有一点P (3,2m ),则点P 关于原点的对称点P '为 。
座位号A B C DP10.已知某个圆的弦长等于它的半径,则这条弦所对的圆周角的度数为。
11.如图,在⊙O中,圆心角∠AOB=120°,弦AB=23cm,则OA=cm。
12.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD=。
13.如图,以原点O为圆心的圆交x轴于点A、B,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=。
河北省邯郸市2013——2014学年上学期期中测试九年级数学试题一、填空题(每题3分,共30分) 1=____ ____. 2=x 的取值范围是 . 32==,且ab <0,则a b -=___ ____.4.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是 .5.如图,△ABC 、△ACD 、△ADE 是三个全等的等边三角形,那么△ABC 绕着顶点A 沿着逆时针方向至少旋转度,才能与△ADE 完全重合.6.一个正边形绕它的中心至少要旋转 度,才能和原来五边形重合.7.已知方程x 2-7x +12=0的两根恰好是Rt△ABC 的两条边的长,则Rt△ABC •的第三边长为________.8.餐桌桌面是长160cm ,宽为100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2倍,且使四周垂下的边等宽.小明设四周垂下的边宽为x cm ,则应列方程为 . 9.如图,矩形ABCD 的边长1,AB AD ==ABCD 以B 为中心,按顺时针方向旋转到''''A B C D 的位置(点'A 落在对角线BD 上),则△'BDD 的形状为 . 10.某超市从我国西部某城市运进两种糖果,甲种a 千克,每千克x元,乙种b 千克,每千克y 元,如果把这两种糖果混合后销售,保本价是_________元/千克. 二、选择题(每题3分,共18分)11.若=-2)2(a 2-a ,则a 的取值范围是( )A .a =2B .a >2C .a ≥2D .a ≤2 12.在下面4个图案中,中心对称图形为( )ABC DE(第5题) ABCDD'C'(第9题)13.下列二次根式中,最简二次根式是( ) A .12 B .32+x C .23D .b a 2 14.如图,下列图形经过旋转后,与图(1)相同的是( )(第14题)图(1) A . B . C . D . 15.如果代数式4y 2-2y+5的值为7,那么代数式221y y -+的值等于( )A .2B .3C .-2D .-316.已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a 为( )A .1B .-2C .1或-2D .2 三、解答题(共72分)17.(8分)计算(1)(3248)(1843);(2)2(13)(3131++-.18.(8分)解方程(1)2220x x --=; (2)22(38)(23)0x x +--=.19.(4分)先化简,再求值33(6)(436)y xxxy x xy x y y-,其中3,272x y ==.20.(4分)已知方程2(1)100x m x m +-+-=的一个根是3,求m 的值及方程的另一个根.21.(4分)如图,若将△ABC 的绕点C 顺时针旋转90°后得到△DEC ,则A 点的对应点D 的坐标是 ,B 点的对应点E 的坐标是 ,请画出旋转后的△DEC .(不要求写画法)22.(4分)如果关于x 的一元二次方程2(1)210m x x ---=有两个不相等的实数根,当m在它的取值范围内取最大整数时,求1014m m-的值.23.(6分)已知x 1,x 2是一元二次方程2x 2-2x +m +1=0的两个实数根. (1)求实数m 的取值范围;(2)如果x 1,x 2满足不等式7+4x 1x 2>x 12+x 22,且m 为整数,求m 的值.24.(6分)如图,正方形ABCD 的对角线相交于点O ,点O 是正方形'''A B C O 的一个顶点.如果两个正方形的边长都等于2,那么正方形'''A B C O 绕O 点无论怎样转动,两个正方形重叠的部分的面积是一个定值,请你写出这定值,并证明你的结论.25.(6分)观察下列分母有理化的计算:, (454)51,34341,23231,12121-=+-=--=+-=+在计算结果中找出规律,用含字母n (n 表示大于0的自然数)表示; 再利用这一规律计算下列式子的值:1)++L 1)的值.ODBFEAA‘B’C‘26.(7分)有100•米长的篱笆材料,•想围成一个矩形露天仓库,•要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个篱笆围成一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求,•现请你设计矩形仓库的长和宽,使它符合要求.27.(7分)南通百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.元旦将至,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?28.(8分)等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.(1)如图1,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状.(2)在(1)问的条件下,FE、PB的延长线交于点G,如图2,求△EGB的面积.(3)在三角板旋转过程中,若CF=AE=2,(CF≠BP),如图3,求PE的长.参考答案一、填空题1.23- 2.x ≥5 3.7- 4.轴对称 5.120 6.72 7.5或78.(1602)(1002)1601002x x ++=⨯⨯ 9.等边三角形 10.ax bya b++ 二、选择题11.D 12.B 13.B 14.D 15.A 16.C 三、解答题17.(1)30-;(2)633- 18.(1)1213,13x x ==(2)121,11x x =-=- 19.92,2xy 20.1,m =另一根为3- 21.(3,0),(2,2)D E 22.3 23.(1)m ≤12-;(2) 2-或1 24.14 25.2013 26. 27.减少库存,降价20元 28.(1)等边三角形;(23;(3)4.。
九年级数学试卷第1 页共7 页密封线内不得答题2013—2014学年度第一学期九年级期中考试数学试卷(满分100分时间:100分钟)1、已知二次函数y=x2-4x+5的顶点坐标为()A.(-2,-1)B.(2,1)C.(2,-1)D.(-2,1)2、二次函数342++=xxy的图像可以由二次函数2xy=的图像平移而得到,下列平移正确的是()A、先向左平移2个单位,再向上平移1个单位B、先向左平移2个单位,再向下平移1个单位C、先向右平移2个单位,再向上平移1个单位D、先向右平移2个单位,再向下平移1个单位3、已知两个相似多边形的相似比是3︰4,其中较小多边形的周长为36 cm,则较大多边形的周长为( )A.48 cmB.54 cmC.56 cmD.64 cm4、下列四个点中,有三个点在同一反比例函数y=kx的图象上,则不在..这个函数图象上的点是().A.(5,1) B.(-1,5) C.⎛⎪⎫5,3D. ⎛⎪⎫-3,-5 2AB AB2AB2BP6、反比例函数y=1kx-的图象,在每个象限内,y的值随x值的增大而增大,则k可以为()A、0B、1C、2D、37、如图,在△ABC中,∠ADE=∠A CD=∠ABC,则图中相似三角形有()对。
A、1B、2C、3D、48、对于二次函数y=2(x+1)(x-3),下列说法正确的是()A.图象的开口向下B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=-19、如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落九年级数学试卷第 2 页 共 7 页第14题10、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中正确的结论是( )A 、①②B 、①③④C 、①②③⑤D 、①②③④⑤二、填空题(本题共5小题,每小题4分,满分20分) 11、已知3=b ,则a b a +=______。
九年级数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卡相应位置.......上.) 1.函数2(1)2y x =+-的最小值是 ( ▲ ) A .1 B .-1 C .2 D .-23.如果⊙A 的半径是4cm ,⊙B 的半径是10cm ,圆心距AB =8cm ,那么这两个圆的位置关系是 ( ▲ ) A .外离 B .外切 C .相交 D .内切 4.如果圆锥的底面半径为3cm ,母线长为4cm ,那么它的侧面积等于( ▲ )A .24π2cmB .12π2cmC .122cmD .6π2cm5.将抛物线23y x =先向上平移3个单位,再向左平移2个单位后得到的抛物线解析式为( ▲ )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+- D .23(2)3y x =--7.某种型号的电视机经过连续两次降价,每台售价由原来的1500元,降到了980元,设平均每次降价的百分率为x ,则下列方程中正确的是 ( ▲ ) A .215001)980x -=( B .21500(1)980x += C .2980(1)1500x -= D .2980(1)1500x +=8.如图,抛物线2(0)y ax bx c a =++≠经过点(-1,0),对称轴为:直线1x =,则下列结论中正确..的是 ( ▲ ) A .a >0 B .当1>x 时,y 随x 的增大而增大 C .c <0D .3x =是一元二次方程20(0)ax bx c a ++=≠的一个根二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.) 12.如图,A 、B 、C 是⊙O 上的三个点,∠ABC =25°,则∠AOC 的度数是 ▲ °.xOy -1 113.如图,PA 、PB 分别切⊙O于A 、B 两点,∠APB =50°,则∠AOP = ▲ °.14.如图所示,抛物线2y ax bx c =++(0a ≠)与x 轴的两个交点分别为(20)A -,和(60)B ,,当0y <时,x 的取值范围是 ▲ . 15.当m = ▲ 时,一元二次方程240x x m -+=(m 为常数)有两个相等的实数根. 16.已知抛物线2y ax bx c =++(a >0)的对称轴为直线12x =,且经过点(-3,1y ),(4,2y ),试比较1y 和2y 的大小:1y ▲ 2y (填“>”,“<”或“=”). 17. 已知实数m 是关于x 的方程2310x x --=的一根,则代数式2262m m -+值为 ▲ . 18.如图,依次以三角形,四边形,…,n 边形的各顶点为圆心画半径为1的圆,且任意两圆均不相交.把三角形与各圆重叠部分面积之和记为3S ,四边形与各圆重叠部分面积之和记为4S ,…,n 边形与各圆重叠部分面积之和记为n S ,则100S 的值为 ▲ .(结果保留π)……三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文 字说明、证明过程或演算步骤.)20.(本题满分8分)解方程:2(3)2(3)0x x x -+-=22.(本题满分8分)如图,已知CD 是⊙O 的直径,弦AB CD ⊥,垂足为点M ,点P 是AB 上一点,且60BPC ∠=︒.试判断ABC ∆的形状,并说明你的理由.24.(本题满分10分)如图,抛物线232(0) 2y ax x a=--≠的图象与x轴交于A、B两点,与y轴交于C点,已知点B坐标为(4,0).(1)求抛物线的解析式;(2)判断△ABC的形状,说出△ABC外接圆的圆心位置,并求出圆心的坐标.26.(本题满分10分)如图,AB是⊙O的直径,直线EF切⊙O于点C,AD⊥EF于点D.(1)求证:AC平分∠BAD;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.(结果保留π)27.(本题满分12分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)观察图象判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润W(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.28.(本题满分12分)如图,抛物线2(0)y ax bx c a=++≠与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F 的坐标为时,四边形FQAC是平行四边形;当点F的坐标为时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).2013年秋学期期末教研片教学调研九年级数学参考答案及评分标准一、选择题(本大题共8小题,每题3分,计24分)题号 1 2 3 4 5 6 7 8 答案DACBADAD二、填空题(本大题共10小题,每题3分,计30分)9.4 10.3a - 11.5 12.50 13.65 14.x <-2或x >6 15.4 16.= 17.4 18.49π 三、解答题(本大题共9小题,计96分)19.解:原式=2218122+-- ………………………………………………4分 =17 ………………………………………………8分20.解:0)23)(3(=+--x x x ………………………………………………4分 0)33)(3(=--x x03=-x 或033=-x ………………………………………………6分∴31=x ,12=x ………………………………………………8分 21.解:(1)统计量 平均数 极差 方差 立定跳远 8 4 2 一分钟跳绳820.4………………………………………………6分 (说明:每空2分)(2)选一分钟跳绳 ………………………………………………7分因为平均分数相同,但一分钟跳绳成绩的极差和方差均小于立定跳远的极差和方差,说明一分钟跳绳的成绩较稳定,所以选一分钟跳绳.(答案基本正确,不扣分)………………………………………………8分22.解:方法一:ABC ∆为等边三角形 ……………………………………1分 ∵AB ⊥CD ,CD 为⊙O 的直径∴AC BC = ……………………………………3分 ∴AC =BC ……………………………………4分 又∵在⊙O 中,∠BPC =∠A ……………………………………5分 ∵∠BPC =60°∴∠A =60° ……………………………………7分 ∴ABC ∆为等边三角形 ……………………………………8分 方法二:ABC ∆为等边三角形 ……………………………………1分∵AB ⊥CD ,CD 为⊙O 的直径∴AM =BM ……………………………………3分 即CD 垂直平分AB∴AC =BC ……………………………………4分 又∵在⊙O 中,∠BPC =∠A ……………………………………5分 ∵∠BPC =60°∴∠A =60° ……………………………………7分 ∴ABC ∆为等边三角形 ……………………………………8分23.(1)证明:∵四边形ABCD 是矩形∴AC =BD , AB ∥CD又∵BE ∥AC∴四边形ABEC 是平行四边形 ……………………………………3分 ∴BE = AC∴BD =BE ……………………………………5分(2)解:∵四边形ABCD 是矩形∴∠DCB =90° ∵∠DBC =30︒,CD =4∴BD =8,BC =43 ……………………………………7分 ∴AB =DC =CE =4,DE =8 ……………………………………8分 ∵AB ∥DE ,AD 与BE 不平行∴四边形ABED 是梯形,且BC 为梯形的高∴四边形ABED 的面积=1()2AB DE BC +⨯=1(48)432+⨯=243∴四边形ABED 的面积为243 ……………………………………10分(若不说明四边形ABED 是梯形,直接按梯形面积公式计算不扣分,其它方法,参照给分)24.解:(1)∵点B (4,0)在抛物线232(0)2y ax x a =--≠的图象上 ∴3016422a =-⨯- ……………………………………2分 ∴12a =∴抛物线的解析式为:213222y x x =--………………………………4分 (2)△ABC 为直角三角形 ……………………………………5分令0x =,得:2y =- ∴C (0,-2) 令0y =,得2132022x x --=∴11x =-,24x =∴A (-1,0),B (4,0) ……………………………………7分 ∴AB =5,AC =5,BC =20 ∴222AC BC AB +=∴△ABC 为直角三角形 ……………………………………8分 ∴AB 为△ABC 外接圆的直径∴该外接圆的圆心为AB 的中点,且坐标为:(32,0)…………………10分 25.解:(1)若四边形ABCD 是菱形则AB =AD又∵AB 、AD 的长是方程的两个实数根∴240b ac -= ……………………………………1分即21()4()024m m --⨯-= ∴2210m m -+=∴121m m == ……………………………………3分此时方程可化为:2104x x -+=∴1212x x == ……………………………………4分∴当1m =时,四边形ABCD 是菱形,菱形的边长为12……………………5分(2)∵AB =2即此时方程的一个根为2 ……………………………………6分∴把2x =代入04122=-+-m mx x 得: 52m =……………………………………7分 ∴2515102224x x -+⨯-=∴1212,2x x == ……………………………………9分即此时平行四边形相邻的两边长分别为:2,12∴平行四边形的周长为5 ……………………………………10分26.解:(1)证明:连接OC∵直线EF 切⊙O 于点C ∴OC ⊥EF ∵AD ⊥EF∴OC ∥AD ……………………………………2分 ∴∠OCA =∠DAC ∵ OA =OC∴∠BAC =∠OCA ……………………………………4分 ∴∠DAC =∠BAC即AC 平分∠BAD ……………………………………5分(2)∵∠ACD =30°,∠OCD =90°∴∠OCA =60°. ∵OC =OA∴△OAC 是等边三角形 ∵⊙O 的半径为2∴AC =OA =OC =2,∠AOC =60° ……………………………………7分 ∵在R t △ACD 中,AD =12AC =1 由勾股定理得:DC =3 ……………………………………8分 ∴阴影部分的面积=S 梯形OCDA ﹣S 扇形OCA=12×(2+1)×3﹣2602360π⋅⋅33223π=- ∴阴影部分的面积为:33223π- ……………………………………10分 27.解:(1)由图象知:y 是x 的一次函数设y kx b =+ ……………………………………1分∵图象过点(10,300),(12,240)∴1030012240k b k b +=⎧⎨+=⎩ ……………………………………2分∴30600k b =-⎧⎨=⎩……………………………………3分∴30600y x =-+当14x =时,180y =;当16x =时,120y =即点(14,180),(16,120)均在函数30600y x =-+的图象上∴y 与x 之间的函数关系式为:30600y x =-+…………………………4分 (不把另两对点代入验证不扣分)(2)(6)(30600)W x x =--+ ……………………………………6分2307803600W x x =-+-即W 与x 之间的函数关系式为:2307803600W x x =-+-……………………………………8分(3)由题意得6(-30x +600)≤900解之得:x ≥15 ……………………………………9分而2307803600W x x =-+-230(13)1470W x =--+ ……………………………………10分 ∵-30<0∴当x >13时,W 随x 的增大而减小又∵x ≥15∴当x =15时,W 最大=1350即以15元/个的价格销售这批许愿瓶可获得最大利润,最大利润是1350元 ……………………………………12分28.解:(1)∵抛物线2(0)y ax bx c a =++≠与x 轴交于点A (-1,0)、B (3,0), ∴可设抛物线的解析式为:(1)(3)y a x x =+- ……………………1分 又∵抛物线 与y 轴交于点C (0,3), ∴3(01)(03)a =+-∴1a =-∴(1)(3)y x x =-+-即抛物线的解析式为:223y x x =-++ ……………………2分 ∴2(1)4y x =--+∴抛物线顶点D 的坐标为(1,4) ……………………3分(2)设直线BD 的解析式为:y kx b =+由B (3,0),D (1,4)得304k b k b +=⎧⎨+=⎩解得26k b =-⎧⎨=⎩∴直线BD 的解析式为26y x =-+ ……………………5分 ∵点P 在直线PD 上,点P 的横坐标为m∴点P 的纵坐标为:26m -+ ……………………6分 (3)由(1),(2)知:OA =1,OC =3,OM = m ,PM =26m -+ ∴OAC PMAC OMPC S S S ∆=+四边形梯形()111332622m m =⨯⨯+⨯-+⨯29322m m =-++ ……………………………………8分29105416m ⎛⎫=--+ ⎪⎝⎭∵9134<<,∴当94m =时,四边形PMAC 的面积取得最大值为10516…9分此时点P的坐标为(9342,)……………………10分(4)(2,3);(1115416,)(每空1分)……………………12分。
金华市聚仁教学集团2013-2014学年第一学期期中考试九年级数学试卷考生须知:1.全卷共三大题,24小题,满分为120分.2.考试时间为120分钟,本次考试采用闭卷形式,不允许使用计算器. 3.全卷答案必须做在答题卷的相应位置上,做在试卷上无效.4.请用钢笔或圆珠笔将学校、班级、姓名、学号分别填在答题卷的相应位置上. 一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.反比例函数xy 2-=的图象在………………………………………………………( ▲ ) A .第一、三象限 B .第二、 四象限 C .第一、二象限 D .第三、四象限 2.如图所示,点A ,B ,C 是⊙O 上三点,∠AOC =130°,则∠ABC 等于……( ▲ ) A.50° B.60° C.65° D.70°3.二次函数22(1)3y x =-+的图象的顶点坐标是…………………………………( ▲ ) A .(13), B .(13)-, C .(13)-, D .(13)--,4.若29a b =,则a b b += …………………………………………………………………( ▲ )A .119B . 79C .911D .79-5.如图,D 、E 分别是AB 、AC 的中点,则ABC ADE S S ∆∆:= ……………………( ▲ ) A . 1∶2 B.1∶3 C .1∶4 D. 2∶36.过⊙O 内一点P 的最长弦长为10cm ,最短弦长为8cm ,那么OP 的长为……( ▲ ) A .3 cm B .6cm C.9cm7.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是………………( ▲ )A .y =(x -2)2+1 B .y =(x -2)2-3 C .y =(x +2)2+1 D .y =(x +2)2-3第9题图第5题图第2题图8.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为…………………………………………………………………………………( ▲ ) A .b c >B .b c <C .b c =D .无法判断9.如图,A 、B 两点在⊙O 上,点P 为⊙O 上的动点,当弦AB 的长度小于⊙O 半径的长度,要使△ABP 为等腰三角形,则所有符合条件的点P 有……………………( ▲ ) A .1个 B .2个 C .3个 D .4个10.如图,AB 是半圆O 的直径,点P 从点O 出发,沿线段OA -弧AB -线段BO 的路径匀速运动一周.设线段OP 长为s ,运动时间为t ,则下列图形能大致刻画s 与t 之间关系的是…………………………………………………………………………( ▲ )二、填空题(本题有6小题,每小题4分,共24分) 11.22的比例中项是_____▲_____. 12.已知点P (1,-3)在反比例函数y =xk(k ≠0)的图象上,则k 的值是_____▲_____. 13.如图,已知抛物线与x 轴的一个交点为A (1,0),对称轴是x =-1,则抛物线与x 轴的另一个交点坐标是_____▲_____.14.如图,为了测量某棵树的高度,小明用长为2m 的竹竿作测量工具,移动竹竿,使垂直于地面的竹竿顶端、树的顶端的影子恰好落在地面的同一点.此时竹竿与这一点相距6m ,与树相距15m ,则树的高度为_____▲_____ m .15.如图,以原点O 为圆心的圆交x 轴于点A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD 的度数为____▲______.16.如图,长方形纸片ABCD 中,AB=4cm ,AD =6cm ,按下列步骤进行裁剪和拼图:第13题图第14题图第15题图 A . B . C . D .第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC (余下部分不再使用);第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任 意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180°,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180°,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为 ▲ cm ,最大值为 ▲ cm .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.已知抛物线c bx x y ++-=221经过点A (1,0),B (-2,92),求二次函数的关系式.18.已知正比例函数x y 31=与反比例函数x my =的图像都经过点.求: (1)反比例函数的解析式;(2)正比例函数与反比例函数的图像的另一个交点的坐标.19.已知:如图,AB 、DE 是⊙O 的直径,AC ∥DE ,交⊙O 于点C ,求证: BE =CE .20.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:2240w x =-+.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?21.如图,点D 在⊙O 上,且CD ⊥OD 于点D,连结OC ,交⊙O 于点B ,过点B 作弦AB ⊥OD ,点E 为垂足,已知⊙O 的半径为12,∠COD =60°.(1)求弦AB 的长.(2)阴影部分的面积.22.如图 ,四边形ABCD 中,AB CD ∥,点E 在线段DA 上,直线CE 与BA 的延长线交于点G ,DE :EA =1:2. (1)求CE :CG 的值;(2)过点E 作EF CD ∥交BC 于点F ,且CD=4,EF =6,求AB 的长.23.探究一:如图1,正△ABC 中,E 为AB 边上任一点,△CDE 为正三角形,连结AD ,猜想AD 与BC 的位置关系,并说明理由.探究二:如图2,若△ABC 为任意等腰三角形,AB =AC ,E 为AB 上任一点,△CDE 为等腰三角形,DE =DC ,且∠BAC =∠EDC ,连接AD ,猜想AD与BC 的位置关系,并说明理由.24.将一块足够大的三角形板,其直角顶点放在点A (3,2),两直角边分别交x 轴、y 轴于点B ,C. 设B (t ,0).(1)如图1,当t =3时,求线段BC 的长;(2)如图2,点B ,C 分别在x 轴,y 轴的正半轴上,设△BOC 的面积为S ,试求S 关于t 的 函数关系式,并求出S 的最大值;(3)取BC 的中点D , 过点D 作y 轴的垂线与直线AC 交于点E , △CDE 能否成为等腰三角形?若能,请求出点B 的坐标;若不能,请说明理由.A DBCE图1A DBCE图2一、选择题(本题有10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(本题有6小题,每小题4分,共24分)11. ______________________ 12. ______________________13. ______________________ 14. ______________________15. ______________________ 16. ______________________三、解答题(本题有8小题,共66分)17.18.19.20.21.22.23.A DBCE 图1A DBCE图216.16,三、解答题17.y =-12x 2-2x +5218.(1)因为正比例函数x y 31=的图像经过点A (m ,1),所以将A (m ,1)代入x y 31=中,得m =3。
故A 点坐标为(3,1)。
将A (3,1)代入xmy =,得3=m ,所以反比例函数的解析式为xy 3=.(2)联立方程组⎪⎪⎩⎪⎪⎨⎧==x y x y 331解得⎩⎨⎧==13y x 或⎩⎨⎧-=-=13y x ,所以正比例函数与反比例函数的图像的另一个交点的坐标为(-3, -1). 19.略20.解:(1)2(50)(50)(2240)234012000y x w x x x x =-=--+=-+-··,y ∴与x 的关系式为:2234012000y x x =-+-.(2)222340120002(85)2450y x x x =-+-=--+,∴当85x =时,y 的值最大.(3)当2250y =时,可得方程22(85)24502250x --+=. 解这个方程,得175x =,295x =. 根据题意,295x =不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.21.解:(1) ∵CD 切⊙O 点D, ∴CD ⊥OD ,又∵AB ⊥OD , ∴BE = AE (3分) ∵∠COD=60°, ∵OB = 12 , ∴∴分) (2)S 阴=S △ODC – S 扇形ODB =21³12 - 36012602⨯⨯ππ (2分) 22.(1)证明:∵ AB CD ∥, ∴∠CDE=∠GAE, ∠DCE=∠EGA , ∴△CDE ∽△GAE∴DE:EA=DC:GA ∵DE:EA=1:2, CD =4, ∴GA=8, CE:CG=1:3 (5分) (2) 由(1)△CDE ∽△GAE,又∵EF CD ∥,AB CD ∥, ∴EF ∥GB , ∴ △CEF ∽△CGB, ∴CE:CG=EF:GB, ∵EF =6, ∴GB=18. ∴AB=GB -GA=18-8=10 (5分) 23.(1)AD BC ∥∵△ABC 与△DEC 为正三角形AC BC DC EC ∴==,122360+=+=∠∠∠∠ 13∴=∠∠ 在ADC △与BEC △中有13DC EC AC BC =⎧⎪=⎨⎪=⎩∠∠ ADC BEC ∴△≌△ 60DAC B ∴==∠∠ DAC ACB ∴=∠∠ AD BC ∴∥(5分)(2)AD BC ∥△ABC 与△DEC 为等腰三角形,且∠BAC =∠EDC △ABC ∽△DECDC EC DC AC AC BC EC BC∴=⇒= ACB DCE =∠∠ 即1223+=+∠∠∠∠ 13∴=∠∠ ADC BEC ∴△∽△ DAC B ∴=∠∠ 又AB AC = ABC ACB ∴=∠∠DAC ACB ∴=∠∠ AD BC ∴∥(5分)24.(1)BC =(4分)(2)过A 作AH ⊥x 轴与H , AP ⊥y 轴于P ,易证△ABH ∽△ACP , ∴AH BH =AP CP 即 23-t = 3CP 或 2t -3 = 3CP ∴CP = 9-3t 2 或 CP = 3t -92∴OC =13-3t2∴S =12 ²t ²13-3t 2 =-34 t 2+ 134t (2分)A D BCE12 3ADBCE 2 31当t =136 时,S 最大=16948 (2分)(3)① 当0<t <3时,当点E 与点A 重合时,△CDE 为等腰三角形,即直线DE 经过点A ∴13-3t 4 =2 ∴t =53 ∴B ( 53 ,0)② 当3<t <133时,设CD =CE ,过A 作AM ⊥y 轴,易证△AMC ∽△DHC ∴HD HC =AMMC∴t2 13-3t 4 =32-13-3t2∴t =±13 ∴B ( 13 ,0); ………………1分③当t >133 时,CED 为钝角,设CE =DE∴CF =BF ∴△OCF ≌△ABF ∴AB =OC ∴(13-3t 2)2=(t -3)2+22解得t 1=3 (舍去), t 2=7.8 ∴ B (7.8,0) ④当t <0时可求得OF =3t -13t -3当CD =CE 时 ∴CB =CF ∴OB =OF∴3t -13t -3 =-t 解得t =±13 ∴B (-13 ,0) 又由Ⅰ可知,当B ( 53,0)时,AF =AC .当点B AC 逐渐增大同时AF 逐渐减小,∴当t <0时不存在BC =BF 的情形,即不存在CD =DE 的情形; 若CE =DE ,则CF =BF , 易证△COF ≌△BAF ∴AB =OC∴(13-3t 2 )2=(t -3)2+22解得t 1=3 (舍去),t 2=7.8 (舍去).综上所述,存在点B 使△DCE 为等腰三角形,此时B 点坐标为B 1( 53,0);B 2( 13 ,0);B 3 (7.8,0); B 4(-13 ,0). ……………………1分。