通过添加辅助线把三角形ABC分成两个全等的三角形,
只要证得被分成的两个三角形全等即可得∠B=∠C.
已知:如图,在△ABC中,AB=AC.
A
求证:∠B=∠C.
证明:作底边BC上的高AD交BC于点D.
∴∠ADB=∠ADC=90°(垂线的定义)
在Rt△ABD和Rt△ACD中, ∵AB=AC(已知),AD=AD(公共边),
BD=CD, ∴AD⊥BC
∠1=∠2.
B ∥D ∥C
⑶∵AB=AC, AD⊥BC
∴BD=CD, ∠1=∠2.
发现与证明
对于“等腰三角形的两个底角等”,有逆命 题吗?逆命题是什么,怎样证明呢?
逆命题:
有两个底角相等的三角形是等腰三角形. A
1.作辅助线AD⊥BC.
B DC
2.根据∠ADB= ∠ADC=90°, AD=AD,可推出AB=AC.
3.如图,△ABC是等边三角形,BD是AC边上的 高,延长BC至E,使CE=CD.连接DE.
(1)∠E等于多少度? (2)△DBE是什么三角形?为什么?
1.等腰三角形的性质定理和判定定理: 2.等边三角形的性质定理和判定定理:
2)找等腰或等边三角形;
3)对顶角相等;
还有什么其他的方法?
4)等角的余角(或补角)相等;
1.已知,如图D是⊿ABC内的一点,且DB=DC,BD 平分∠ABC,CD平分∠ACB.
求证:AB=AC. A
D
B
C
2.在△ABC中,∠ABC、∠ACB的平分线相交于 点O,过点O作DE∥BC,分别交AB、AC于点D、E.请 证明DE=BD+EC.
∴△ABC是等边三角形。
2)若∠B=60°,AB=AC.也可证得△ABC是等AC,D是AB上的一 点,DE⊥BC,交BC于点E,交CA的延长线于点F。