基于eigenface的人脸识别算法研究
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
人脸识别综述摘要:首先介绍了人脸识别的发展历程及基本分类;随后对人脸识别技术方法发展过程中一些经典的流行的方法进行了比较详细的阐述。
最后介绍了人脸识别的应用及发展现状,总结了人脸识别所面临的困难。
关键词:人脸识别1引言人脸是人类最重要的生物特征之一,反映了很多重要的生物信息,如身份,性别,种族,年龄,表情等等。
随着计算机技术的飞速发展,基于人脸图像的计算机视觉和模式识别问题也成为近些年研究的热点问题。
其中包括人脸检测,人脸识别,人脸表情识别等各类识别问题。
对于人脸识别问题的研究已有几十年的时间,在理论研究和实际开发方面都取得了一定的进展,并且目前已有一些电子产品配备了人脸识别系统。
但是,对于人脸性别和种族识别的研究却比较少,但研究这个问题的意义和实际价值却是不可忽视的。
在实际公共场所的安检系统中,大多数情况下都是将多种模式识别系统结合在一起,以尽量提高检测识别的准确度,性别识别系统也是其中不可缺少的一部分。
对它的研究不仅有助于提供更多个性化的人机交互方式,还可以应用于各种监控系统、电子产品的用户身份鉴别和信息采集系统。
从理论意义上来说,也丰富了原有的人脸识别方法,使得人脸识别系统不但可以识别出被识别者是谁,还能自动给出其性别和种族,从而提高人脸识别的准确率和图像检索效率。
所谓人脸识别,就是利用计算机分析人脸视频或者图像,并从中提取出有效的识别信息,最终判别人脸对象的身份。
人脸与人体的其他生物特征(指纹、虹膜等)一样与生俱来,它们所具有的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提;同其他生物特征识别技术相比,人脸识别技术具有操作简单、结果直观、隐蔽性好的优越性。
因此,人脸识别在信息安全、刑事侦破、出入口控制等领域具有广泛的应用前景。
2人脸识别的发展历程及方法分类关于人脸识别的研究最早始于心理学家们在20世纪50年代的工作,而真正从工程应用的角度来研究它则开始于20世纪60年代。
最早的研究者是Bledsoe,他建立了一个半自动的人脸识别系统,主要是以人脸特征点的间距、比率等参数为特征。
分类号:密级:学校代码:10414 学号:2012160032硕士研究生学位论文基于OpenCV的人脸识别算法研究与实现Research and implementation of facerecognition algorithm based on OpenCV钟官长院所:江西师范大学导师姓名:曾纪国学位类别:工程硕士专业领域:软件工程二0一五年五月独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。
据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。
学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解江西师范大学研究生院有关保留、使用学位论文的规定,有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。
本人授权江西师范大学研究生院可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。
(保密的学位论文在解密后适用本授权书)学位论文作者签名:导师签名:摘要人脸识别作为一项安全性很高的生物识别技术,近些年来,它的发展速度非常快,并且逐渐成为生物识别的重要方法。
OpenCV是一个开源的跨平台计算机视觉库,它包含了很多通用的图像处理算法,并且开放源码,OpenCV具有很好的移植性,代码都经过优化,因此可用于科研也可用于商业用途。
本文基于OpenCV分别进行了人脸检测和人脸识别的实验。
针对人脸检测,通过实验验证了几种有效的图像预处理方法。
人脸检测算法是基于AdaBoost 方法的,AdaBoost方法引入了“积分图”的概念,这能有效的提高了算法效率。
针对人脸识别,介绍了几种传统的人脸识别方法,讨论了基于特征脸的人脸识别算法的设计,这种方法主要是通过对人的正脸进行二维矩阵描述,并将其投影到一个已经训练好的特征空间中,识别时只需要比较已知的人脸权值即可,这种方法计算速度快,容易发展成商业技术。
—基于机器学习的人脸识别算法的设计与实现基于机器学习的人脸识别算法的设计与实现承诺人签名:日期:年月日基于机器学习的人脸识别算法的设计与实现摘要人脸识别技术是一种新型的生物特征认证技术。
人脸识别技术也是一个非常活跃的研究领域,涵盖了许多领域,例如数字图象处理。
随着人们对应用程序需求的增长,面部识别技术趋向于大量使用,使用微芯片和标准化。
人脸检测是快速准确识别人脸的先决条件。
其目的是检测图象背景下的人脸,并将其与数据中的人脸进行比较,以实现人脸识别。
本文以 python 为开辟技术,前端实时检测摄像头人脸,人脸识别主要是使用 mtcnn 做人脸提取,使用facenet 做人脸特征提取,通过余弦相似度分类进行人脸识别。
系统界面简洁、识别迅速、使用方便。
本文首先介绍了人脸识别系统的现状及其发展背景,然后讨论了系统设计目标,系统要求和总体设计计划,并详细讨论了人脸识别系统的详细设计和实现。
系统最后进行面部识别。
并对系统进行特定的测试。
人脸识别,顾名思义就是在图片和视频中检测有没有人脸。
当发现一个人的脸时,会获取其他面部特征(眼睛,嘴巴,鼻子等),并根据此信息将该人与已知人脸的数据库进行比较。
标识一个人的身份。
人脸检测是使用计算机确定输入图象中所有人脸的位置和大小的过程。
面部识别系统是由面部识别系统引入的,该系统可以包括面部图象,输出是面部和面部图象的存在之和,描述了位置,大小,参数化位置 Do 和方向信息[1]。
假定检测面部的问题始于识别面部的研究。
全自动面部识别系统包括与两项主要技术的链接:面部检测和提取以及面部识别。
完成自动面部识别的第一个要求是确定一个人的面部。
人脸识别是自动人脸识别过程的第一步,它基于自动人脸识别技术。
自动人脸识别系统的速度和准确性起着重要作用。
人脸识别系统可以应用于考勤、安全、金融等领域,应用广泛,大大提高了工作效率,提高了服务水平,身份认证变得更加科学、规范、系统、简单。
1.2 国内外研究现状面部识别的研究始于 1960 年代末和 1970 年代初。
⼈脸识别经典算法⼀特征脸⽅法(Eigenface)这篇⽂章是撸主要介绍⼈脸识别经典⽅法的第⼀篇,后续会有其他⽅法更新。
特征脸⽅法基本是将⼈脸识别推向真正可⽤的第⼀种⽅法,了解⼀下还是很有必要的。
特征脸⽤到的理论基础PCA在另⼀篇博客⾥:。
本⽂的参考资料附在最后了^_^步骤⼀:获取包含M张⼈脸图像的集合S。
在我们的例⼦⾥有25张⼈脸图像(虽然是25个不同⼈的⼈脸的图像,但是看着怎么不像呢,难道我有脸盲症么),如下图所⽰哦。
每张图像可以转换成⼀个N维的向量(是的,没错,⼀个像素⼀个像素的排成⼀⾏就好了,⾄于是横着还是竖着获取原图像的像素,随你⾃⼰,只要前后统⼀就可以),然后把这M个向量放到⼀个集合S ⾥,如下式所⽰。
步骤⼆:在获取到⼈脸向量集合S后,计算得到平均图像Ψ,⾄于怎么计算平均图像,公式在下⾯。
就是把集合S⾥⾯的向量遍历⼀遍进⾏累加,然后取平均值。
得到的这个Ψ其实还挺有意思的,Ψ其实也是⼀个N维向量,如果再把它还原回图像的形式的话,可以得到如下的“平均脸”,是的没错,还他妈的挺帅啊。
那如果你想看⼀下某计算机学院男⽣平均下来都长得什么样⼦,⽤上⾯的⽅法就可以了。
步骤三:计算每张图像和平均图像的差值Φ,就是⽤S集合⾥的每个元素减去步骤⼆中的平均值。
步骤四:找到M个正交的单位向量un,这些单位向量其实是⽤来描述Φ(步骤三中的差值)分布的。
un⾥⾯的第k(k=1,2,3...M)个向量uk是通过下式计算的,当这个λk(原⽂⾥取了个名字叫特征值)取最⼩的值时,uk基本就确定了。
补充⼀下,刚才也说了,这M个向量是相互正交⽽且是单位长度的,所以啦,uk还要满⾜下式:上⾯的等式使得uk为单位正交向量。
计算上⾯的uk其实就是计算如下协⽅差矩阵的特征向量:其中对于⼀个NxN(⽐如100x100)维的图像来说,上述直接计算其特征向量计算量实在是太⼤了(协⽅差矩阵可以达到10000x10000),所以有了如下的简单计算。
《基于深度学习的人脸识别算法及在树莓派上的实现》一、引言随着科技的飞速发展,人工智能技术已经渗透到人们生活的方方面面。
其中,人脸识别技术作为人工智能的重要应用之一,在安全监控、身份认证、智能家居等领域得到了广泛应用。
本文将介绍基于深度学习的人脸识别算法,并探讨其在树莓派上的实现方法。
二、深度学习人脸识别算法概述1. 算法原理深度学习人脸识别算法主要通过构建深度神经网络,从大量的人脸数据中学习和提取特征,进而实现人脸的识别和分类。
该算法通过不断调整网络参数,使网络能够自动学习和提取人脸的特征,如眼睛、鼻子、嘴巴等部位的形状、大小、位置等信息。
这些特征可以有效地表示人脸的形态和结构,从而提高识别的准确性和稳定性。
2. 常用算法目前,常用的人脸识别算法包括卷积神经网络(CNN)、深度神经网络(DNN)等。
这些算法在人脸识别任务中取得了显著的成果,可以有效地处理大规模的人脸数据,实现高精度的识别。
三、在树莓派上的实现1. 硬件环境树莓派是一款基于ARM架构的微型计算机,具有体积小、功耗低、价格便宜等优点。
在实现人脸识别系统时,我们需要将树莓派与摄像头等设备连接起来,以获取人脸图像数据。
此外,为了保障系统的稳定性和性能,我们还需要为树莓派配备适当的存储设备和电源等。
2. 软件环境在软件方面,我们需要安装操作系统、深度学习框架等软件。
常用的操作系统包括Raspbian等,而深度学习框架则可以选择TensorFlow、PyTorch等。
此外,我们还需要安装一些辅助软件,如图像处理库、Python编程环境等。
3. 实现步骤(1)数据准备:收集大量的人脸数据,并进行预处理和标注。
这些数据将用于训练和测试人脸识别算法。
(2)模型训练:使用深度学习框架构建神经网络模型,并使用准备好的数据进行训练。
在训练过程中,我们需要不断调整网络参数,以优化模型的性能。
(3)模型测试:使用测试数据对训练好的模型进行测试,评估模型的准确性和稳定性。
人脸识别主要算法原理主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。
1. 基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;2. 基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。
3. 基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。
1. 基于几何特征的方法人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。
几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。
Jia 等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。
采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。
可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。
这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。
基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。
同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。
2. 局部特征分析方法(Local Face Analysis)主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。
1.1 人脸识别的主要方法目前,国内外人脸识别的方法很多,并且不断有新的研究成果出现。
人脸识别的方法根据研究角度的不同,有不同的分类方法。
根据输入图像中人脸的角度不同,可以分为正面,侧面,倾斜的人脸图像的识别;根据图像来源的不同,可分为静态和动态的人脸识别;根据输入图像的特点,又可分为灰度图像和彩色图像的人脸识别等等。
本文重点研究基于正面的、静态的灰度图像的识别方法。
对于静态的人脸识别方法从总体上看可以分为三大类:一是基于统计的识别方法,主要包括特征脸(Eigenface)方法和隐马尔科夫模型(Hidden Markov Model 简称HMM)方法等;二是基于连接机制的识别方法,包括人工神经网路(Artifical Neural Network 简称ANN)方法和弹性图匹配(Elastic Bunch Graph Matching 简称EBGM)方法等;三是一些其他的综合方法及处理非二维灰度图像的方法。
下面分别进行介绍。
1.1.1 基于特征脸的方法特征脸方法[5],又称为主成份分析法(Principal Component Analysis 简称PCA),它是20 世纪90 年代初期由Turk 和Pentland 提出的,是一种经典的算法。
它根据图像的统计特征进行正交变换(即K-L 变换),以消除原有向量各个分量之间的相关性。
变换得到对应特征值依次递减的特征向量,即特征脸。
特征脸方法的基本思想是将图像经过K-L 变换后由高维向量转换为低维向量,并形成低维线性向量空间,利用人脸投影到这个低维空间所得到的投影系数作为识别的特征矢量。
这样,就产生了一个由“特征脸”矢量张成的子空间,称为“人脸子空间”或“特征子空间”,每一幅人脸图像向其投影都可以获得一组坐标系数,这组坐标系数表明了人脸在子空间中的位置,因此利用特征脸方法可以重建和识别人脸。
通过人脸向量向特征子空间作投影得到的向量称之为主分量或特征主分量。
人脸识别技术的算法模型人脸识别技术是计算机视觉领域中的一道难题,主要任务是通过数字图像或视频中的人脸来确认其身份。
目前,该技术已经成为了许多领域的关键工具,如边境管理、视频监控、金融服务等。
其应用领域的广阔和市场潜力的巨大,让人脸识别技术受到了越来越多的关注和研究。
那么人脸识别技术的算法模型是怎样的呢?一、人脸检测模型人脸识别的第一步是人脸检测。
其目的是从背景中准确确定人脸的位置。
常用的人脸检测方法包括Haar检测器、基于区域的CNN(R-CNN)、YOLO(You Only Look Once)等。
Haar检测器是基于Haar特征的一种传统的人脸检测模型。
它先将图像分成不同的区域并计算出每个区域内的Haar特征值,再通过AdaBoost算法进行分类,最后使用级联分类器对人脸进行检测。
R-CNN是在2014年提出的一种发现物体的方式,它需要在大量图像中共同学习目标物体的检测和分类。
该方法使用了区域建议网络(RPN)来生成可能的物体位置区域,然后再对这些区域进行分类。
YOLO是一种全新的目标检测算法,其优点是速度快,准确率高且可以检测多个物体。
该模型将图像分为多个格子,并对每个格子使用卷积神经网络进行分类和回归,最后再通过非极大值抑制来排除重叠的检测框。
人脸对齐模型的目的是将检测到的人脸对齐,以便在后续的特征提取过程中提高准确性。
常见的对齐方法包括在人脸上标记关键点(即人脸特征点)和基于三维模型的人脸对准方法。
基于关键点的对齐方法目前是最常用和最有效的方法之一。
该方法通过在人脸上标记多个关键点来确定人脸的几何形状,然后将脸部旋转、缩放和平移等变换以进行对齐。
人脸特征提取是人脸识别的核心过程,这是由于人脸图像所包含的信息太多太杂,而且不同人之间的面部特点也具有很强的差异性。
人脸识别模型的目的是提取出鲁棒性、代表性和可重复性强的特征来。
常见的模型包括Eigenface、Fisherface、LBPH(Local Binary Patterns Histograms)、DeepFace、VGGFace等。
人脸识别主要算法原理主流的人脸识别技术基本上可以归结为三类,即:基于几何特征的方法、基于模板的方法和基于模型的方法。
1.基于几何特征的方法是最早、最传统的方法,通常需要和其他算法结合才能有比较好的效果;2.基于模板的方法可以分为基于相关匹配的方法、特征脸方法、线性判别分析方法、奇异值分解方法、神经网络方法、动态连接匹配方法等。
3.基于模型的方法则有基于隐马尔柯夫模型,主动形状模型和主动外观模型的方法等。
1.基于几何特征的方法人脸由眼睛、鼻子、嘴巴、下巴等部件构成,正因为这些部件的形状、大小和结构上的各种差异才使得世界上每个人脸千差万别,因此对这些部件的形状和结构关系的几何描述,可以做为人脸识别的重要特征。
几何特征最早是用于人脸侧面轮廓的描述与识别,首先根据侧面轮廓曲线确定若干显著点,并由这些显著点导出一组用于识别的特征度量如距离、角度等。
Jia等由正面灰度图中线附近的积分投影模拟侧面轮廓图是一种很有新意的方法。
采用几何特征进行正面人脸识别一般是通过提取人眼、口、鼻等重要特征点的位置和眼睛等重要器官的几何形状作为分类特征,但Roder对几何特征提取的精确性进行了实验性的研究,结果不容乐观。
可变形模板法可以视为几何特征方法的一种改进,其基本思想是:设计一个参数可调的器官模型(即可变形模板),定义一个能量函数,通过调整模型参数使能量函数最小化,此时的模型参数即做为该器官的几何特征。
这种方法思想很好,但是存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数优化过程十分耗时,难以实际应用。
基于参数的人脸表示可以实现对人脸显著特征的一个高效描述,但它需要大量的前处理和精细的参数选择。
同时,采用一般几何特征只描述了部件的基本形状与结构关系,忽略了局部细微特征,造成部分信息的丢失,更适合于做粗分类,而且目前已有的特征点检测技术在精确率上还远不能满足要求,计算量也较大。
2.局部特征分析方法(Local Face Analysis)主元子空间的表示是紧凑的,特征维数大大降低,但它是非局部化的,其核函数的支集扩展在整个坐标空间中,同时它是非拓扑的,某个轴投影后临近的点与原图像空间中点的临近性没有任何关系,而局部性和拓扑性对模式分析和分割是理想的特性,似乎这更符合神经信息处理的机制,因此寻找具有这种特性的表达十分重要。
人脸识别的算法模型比较与性能分析人脸识别技术近年来得到了广泛应用,涵盖了安防监控、手机解锁、人脸支付等领域。
而作为人脸识别技术重要组成部分的算法模型,其性能直接关系到系统的精确性和鲁棒性。
本文将比较和分析几种常见的人脸识别算法模型,探讨它们的优劣和适用场景。
1. Eigenfaces(特征脸)算法模型Eigenfaces算法是人脸识别算法的开山鼻祖,通过将人脸图像转换成低维度的特征向量,并使用线性判别分析(LDA)进行分类。
该模型在中小规模人脸库上表现良好,但在大规模数据库的性能较差。
此外,对于光照、角度变化较大的人脸,特征脸模型的准确性也会受到影响。
2. Fisherfaces(判别脸)算法模型Fisherfaces算法是对特征脸算法的改进,引入了线性判别分析(LDA)来提高分类性能。
相对于特征脸算法,判别脸算法在光照和角度变化较大的情况下具有更好的鲁棒性。
然而,对于遮挡较多、表情变化较大的人脸,该算法的准确率仍然会有所下降。
3. Local Binary Patterns(局部二值模式)算法模型Local Binary Patterns(LBP)算法是一种基于纹理特征的人脸识别算法,通过计算图像局部区域的纹理信息来描述特征点。
LBP算法具有简单、高效的特点,并对光照和姿态变化较为鲁棒。
然而,LBP算法在人脸成像质量较低或遮挡较多的情况下可能会出现性能下降的问题。
4. SIFT和SURF算法模型SIFT(尺度不变特征变换)和SURF(加速稳健特征)算法是两种基于图像局部特征的人脸识别算法。
它们通过检测和提取图像中的关键点,并利用这些关键点构建特征向量进行匹配。
这些算法对于光照变化较为鲁棒,能够处理一定程度的遮挡和表情变化。
然而,由于这些算法需要计算大量特征点,其速度相对较慢。
5. 神经网络算法模型神经网络算法在深度学习的浪潮下受到广泛应用,也在人脸识别领域取得了显著的成果。
深度神经网络通过构建多个卷积层、池化层和全连接层,能够从原始图像中学习出高级特征,并实现准确的人脸识别。
中 北 大 学
毕业设计任务书
学 专 院、系: 业: **************** ********************* ******** 学 号: ************
学 生 姓 名: 设 计 题 目:
基于 eigenface 的人脸识别算法研究
起 迄 日 期: 2012 年 2 月 13 日 ~ 2011 年 6 月 17 日 指 导 教 师: 系 主 任: 李永红 程耀瑜
发任务书日期: 2011 年 2 月 13 日
毕 业 设 计 任 务 书
1.毕业设计的任务和要求:
具备基本的数字图像处理技术,熟悉 eigen Face 的各项功能,人脸识别算法及其实 现方法,熟悉 MATLAB 或 C/C++等编程语言,通过编程实现所设计的算法并对实验结果进 行评估,最好对不同的实验环境进行性能比较,如行人脸的姿态,大小,远近等,最后把 所研究内容编写成论文。
2.毕业设计的具体工作内容:
要求完成: 1.熟悉数字图像处理技术及其实现方法 2.熟悉 eigenFace 的各项功能和实现方法(通过文献搜索) 3.研究人脸识别算法 4.编程实现算法 5.对实验结果进行评价
图像处理和图形处理一直是计算机技术发展的重要领域,目前对它的应 用已经渗透到了生产和生活 的许多方面,并产生了巨大的实际效益。
在国外 将一幅图像通过雕刻机雕刻出来很普遍了,但是国 内这方面的软件还不是很 成熟, 本文将在这个方面结合实际作详细的介绍。
由于不可能用雕刻机象 打印机那样直接将图像雕刻出来 (这样效率太低 而且效果不好) 所以它应该象绘图仪那样通过刀具 , 的行走轨迹来留下我们 所需要的图像信息,这种轨迹毫无疑问都应该是矢量,所以我们的目标就是 要将图像进行各种加工,并提取出其中关于物体的轮廓信息再尽量作一定程 度上的折线化,使之成 为刀具的行走轨迹。
在图像中保存有关于物体的各种信息, 除了包括图像中物体的边缘信息 外还有 图像中物体的各种噪声,这两者都表现为图像中的高频部分,但前者 是我们需要的,后者是需要被 滤除的,所以为了准确提取出图像中物体的轮 廓,还必须要进行诸如滤除噪声,增强边缘效应的图
像处理工作, 为后续的 处理打下好的基础。
然后在得到了这个类二色图像后, 我们就可以采用其它 手 段(如边缘检测、区域生长、阈值分割等方法)从中提取出比较准确清晰 的物体轮廓;最后利用图 形矢量化的有关原理和方法来得到图像中关于物体 轮廓的各个关键点,顺次连接这些关键点就可以 重现这个图像中物体的轮 廓。
本篇论文从一个实际应用出发,讨论了这样一个完整的系统,并给出 了 在实现中所碰到的几个问题的解决算法。
毕 业 设 计 任 务 书
3.对毕业设计成果的要求:
1.完成毕业设计论文 2.提供源代码及其可执行文件
4.毕业设计工作进度计划: 起 迄 日 期
2012 年 2 月 13 日 ~ 2 月 25 日 2 月 26 日 ~ 3 月 6 日 3 月 7 日 ~ 4 月 14 日 4 月 15 日 ~ 6 月 9 日 6 月 10 日 ~ 6 月 12 日 明确设计任务,收集资料 文献检索,翻译英文资料,完成开题报告 按任务书要求,完成设计任务 撰写毕业论文 论文答辩
工 作 内 容
学生所在系审查意见:
系主任: 年 月 日
。