第五章 高分子分离膜与膜分离技术
- 格式:pdf
- 大小:1.82 MB
- 文档页数:66
高分子膜分离技术摘要:对现有的超滤、微滤、渗透汽化及气体分离等膜技术在水处理和石油化工产业领域的研究与应用现状进行了综述,分析了各种膜产品的市场占有率及未来发展趋势.提出了利用膜分离技术改造传统产业及提高工业生产经济效益的可能途径。
关键词:膜分离;水处理;气体分离;石油化工一、研究背景膜分离过程作为现代材料科学、高分子物理化学以及化学工程交叉融会而形成的新型高效分离技术,近10多年以来得到了显著的技术进步和应用市场发展.膜分离技术进步的动力主要来自两个方面,现代分析技术和微细加工技术的发展使得从微观或介观尺寸上对材料加工过程进行有效控制成为现实,能够高质量地稳定生产具有特定微观结构的分离膜.另外,在工业生产过程中存在许多现有技术难于解决的技术难题,例如,对采油、炼油过程产生的大量含油污水深度处理和油田回注用水的低成本化;燃料油储存、运输过程中产生的大量有机蒸气回收利用;膜分离能够有效克服精馏过程恒沸点,降低精馏过程能耗等问题.以上技术需求极大地推动膜分离过程在石油化工领域的应用基础研究,所取得的成果为膜分离技术在石油化工领域的推广应用奠定坚实基础.通过论述膜分离技术本身特征,分析了石油开采和石油产品加工过程膜分离技术的应用研究现状,以技术经济的综合评价为基础,对膜分离技术在石油化工领域应用研究现状和巨大的市场发展潜力进行了阐述.二、研究现状1 膜分离技术和分离膜市场膜分离是利用功能性分离膜作为过滤介质,实现液体或气体高度分离纯化的现代高新技术之一.和普通过滤介质相比较,分离膜具有更小的孔径和更窄的孔径分布.根据分离膜孔径从大到小的顺序,可以分为微滤(microfiltration)、超滤(ultrafiltration)、纳滤(nanofiltration)和反渗透(reverseosmosis).如图1所示,微孔滤膜孔径在1~0.01Lm左右,可以有效除去水中的大部分微粒、细菌等杂质,超滤膜孔径在几十纳米附近,能够很容易地实现蛋白质等大分子的分级、纯化,能够除去水中的病毒和热原体.纳滤膜和反渗透膜孔径更小,大约在几个埃(1∪=1×10-10m),能够从水中脱除离子,达到海水和苦咸水淡化目的.一般认为,当分离膜孔径小于0.01Lm以后,分离作用的实现,不仅仅依靠孔径大小的/筛分0效果,分子或离子渗透通过膜材料时,渗透物和分离膜间的表面相到作用逐渐占据主要地位.气体分离膜和渗透汽化膜的分离作用是依靠不同渗透组分在膜中溶解度和扩散系数不同来实现,通常可用溶解扩散机理进行定量描述.例如,使用聚乙烯醇和聚丙烯腈为原料的渗透汽化PVA/PAN复合膜,能够从乙醇水溶液中脱除微量的水生产无水乙醇,与萃取精馏、恒沸精馏相比,制取无水乙醇的能耗大约降低1/3左右。
膜分离技术膜分离技术是一种重要的分离技术,通过膜将混合物中不同分子大小、形状、电荷和极性等特性的物质分离出来。
它广泛应用于各种领域,如环境保护、医药制造、食品加工、化学工业和电子行业等。
本文将介绍膜分离技术的工作原理、分类和应用,并探讨其未来的发展前景。
一、膜分离技术的基本原理膜分离技术利用膜作为分离介质,将混合物分离成两个或更多的组分,其中其中至少有一种组分通过膜而另一种组分不直接通过。
根据膜分离的机制可以分为以下三种类型:1、压力驱动膜分离技术压力驱动膜分离技术是指通过施加压力将混合物推动到膜上,以实现分离的技术。
膜的孔径大小、膜的材质和压力差均会影响分离效果。
该技术主要包括超滤、逆渗透和微滤等。
超滤是指利用孔径大小在10-100纳米的超滤膜去除溶液中的高分子物质。
逆渗透是利用高压驱动水通过0.1纳米左右的逆渗透膜,将混合物中的水增量分离出来,这是制取纯水的主要技术之一。
微滤是利用孔径在0.1-10微米的微滤膜去除悬浮物、细菌和微生物等。
2、电力驱动膜分离技术电力驱动膜分离技术是利用电场将混合物推动到膜上,实现分离的技术。
例如电渗析技术是利用电场和离子之间的电荷作用,将含有离子的溶液通过电场驱动到离子交换膜中,使得原来溶液中的阴离子和阳离子在两侧集中,最终通过两个极板分别收集。
3、扩散驱动膜分离技术扩散驱动膜分离技术是指利用分子间的扩散速率的大小差异,将混合物中的混合物分离的技术。
例如气体分离、液体浓缩和溶液析出等。
二、膜分离技术的分类根据膜的性质和分离机制的不同,可以将膜分离技术分为以下几种类型:1、纳滤技术纳滤技术是利用孔径在10-100纳米的纳滤膜,将分子大小在10-100纳米之间的物质分离出来。
纳滤技术主要应用于制备高分子材料、微电子器件制造和水处理等领域中。
2、超滤技术超滤技术是利用孔径在0.01-0.1微米之间的超滤膜,将分子大小在1000道100万道之间的物质分离出来。
超滤技术主要应用于蛋白质提取、水处理、生物制品制备和废水处理等领域中。
高分子膜分离技术摘要:对现有的超滤、微滤、渗透汽化及气体分离等膜技术在水处理和石油化工产业领域的研究与应用现状进行了综述,分析了各种膜产品的市场占有率及未来发展趋势.提出了利用膜分离技术改造传统产业及提高工业生产经济效益的可能途径。
关键词:膜分离;水处理;气体分离;石油化工一、研究背景膜分离过程作为现代材料科学、高分子物理化学以及化学工程交叉融会而形成的新型高效分离技术,近10多年以来得到了显著的技术进步和应用市场发展.膜分离技术进步的动力主要来自两个方面,现代分析技术和微细加工技术的发展使得从微观或介观尺寸上对材料加工过程进行有效控制成为现实,能够高质量地稳定生产具有特定微观结构的分离膜.另外,在工业生产过程中存在许多现有技术难于解决的技术难题,例如,对采油、炼油过程产生的大量含油污水深度处理和油田回注用水的低成本化;燃料油储存、运输过程中产生的大量有机蒸气回收利用;膜分离能够有效克服精馏过程恒沸点,降低精馏过程能耗等问题.以上技术需求极大地推动膜分离过程在石油化工领域的应用基础研究,所取得的成果为膜分离技术在石油化工领域的推广应用奠定坚实基础.通过论述膜分离技术本身特征,分析了石油开采和石油产品加工过程膜分离技术的应用研究现状,以技术经济的综合评价为基础,对膜分离技术在石油化工领域应用研究现状和巨大的市场发展潜力进行了阐述.二、研究现状1 膜分离技术和分离膜市场膜分离是利用功能性分离膜作为过滤介质,实现液体或气体高度分离纯化的现代高新技术之一.和普通过滤介质相比较,分离膜具有更小的孔径和更窄的孔径分布.根据分离膜孔径从大到小的顺序,可以分为微滤(microfiltration)、超滤(ultrafiltration)、纳滤(nanofiltration)和反渗透(reverseosmosis).如图1所示,微孔滤膜孔径在1~0.01Lm左右,可以有效除去水中的大部分微粒、细菌等杂质,超滤膜孔径在几十纳米附近,能够很容易地实现蛋白质等大分子的分级、纯化,能够除去水中的病毒和热原体.纳滤膜和反渗透膜孔径更小,大约在几个埃(1∪=1×10-10m),能够从水中脱除离子,达到海水和苦咸水淡化目的.一般认为,当分离膜孔径小于0.01Lm以后,分离作用的实现,不仅仅依靠孔径大小的/筛分0效果,分子或离子渗透通过膜材料时,渗透物和分离膜间的表面相到作用逐渐占据主要地位.气体分离膜和渗透汽化膜的分离作用是依靠不同渗透组分在膜中溶解度和扩散系数不同来实现,通常可用溶解扩散机理进行定量描述.例如,使用聚乙烯醇和聚丙烯腈为原料的渗透汽化PVA/PAN复合膜,能够从乙醇水溶液中脱除微量的水生产无水乙醇,与萃取精馏、恒沸精馏相比,制取无水乙醇的能耗大约降低1/3左右。
膜分离技术膜分离技术是一种新型高效、精密分离技术,它是材料科学与介质分离技术的交叉结合,具有高效分离、设备简单、节能、常温操作、无污染等优点,广泛应用于工业领域,尤其在食品、医药、生化领域发展迅猛。
据统计,膜销售每年以10%~20%的速度增长,而最大的市场为生物医药市场。
一膜分离技术1.1原理膜分离技术是一种使用半透膜的分离方法,在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术,其中在食品、药学工业中常用的有微滤、超滤和反渗透种。
1.2特点膜分离技术具有如下特点, (1)膜分离过程不发生相变化,因此膜分离技术是一种节能技术;2)膜分离过程是在压力驱动下,在常温下进行分离,特别适合于对热敏感物质,如酶、果汁、某些药品的分离、浓缩、精制等。
(3)膜分离技术适用分离的范围极广,从微粒级到微生物菌体,甚至离子级都有其用武之地,关键在于选择不同的膜类型;(4)膜分离技术以压力差作为驱动力,因此采用装置简单,操作方便。
1.3分类超滤的截留相对分子质量在1000~10000之间,选择某一截留相对分子质量的膜可以将杂质与目标产物分离。
超滤技术在生化产品分离中应用最早、最为成熟,已广泛应用于各种生物制品的分离、浓缩。
纳滤膜具有纳米级孔径,截留相对分子质量为200~1000,能使溶剂、有机小分子和无机盐通过。
纳滤可以采用两种方式提取抗生素,一是用溶剂萃取抗生素后,萃取液用纳滤浓缩,可改善操作环境;二是对未经萃取的抗生素发酵液进行纳滤浓缩,除去水和无机盐,再用萃取剂萃取,可减少萃取剂用量。
微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05~10um 之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。
高分子材料的膜分离性能与应用一、引言高分子材料是一类具有特殊结构和性质的化合物,广泛应用于日常生活和工业领域。
其中,高分子膜材料因其独特的分离性能受到了人们的广泛关注。
本文将探讨高分子膜材料的膜分离性能与应用,并进行分类和分析。
二、高分子材料的膜分离性能1.渗透性能高分子膜材料的渗透性能是评价其膜分离性能的重要指标之一。
渗透性能取决于高分子膜材料的孔隙结构和空间分布。
具有高孔隙率和合适孔径分布的膜材料,可实现溶剂和溶质的选择性渗透,从而实现分离作用。
2.选择性高分子膜材料的选择性是指该材料对不同溶剂或溶质的选择性渗透能力。
不同的高分子材料对不同的分子具有不同的选择性,如对有机物的选择性、离子的选择性等。
通过调节高分子材料的结构和成分,可以实现对目标组分的高选择性分离。
3.热稳定性高分子膜材料在分离过程中需要承受一定的温度和压力,因此其热稳定性也是一个重要的性能指标。
热稳定性不仅影响膜材料的使用寿命,还关系到其分离效果和稳定性。
提高高分子膜材料的热稳定性可以通过添加稳定剂、优化材料的组成和结构等方式来实现。
三、高分子材料膜分离应用的分类根据不同的分离机制,高分子材料膜分离应用可分为以下几类。
1.微滤分离微滤分离主要通过高分子膜材料的孔径,对不同粒径的微粒进行筛分。
其应用范围广泛,包括饮用水净化、食品加工、医药领域等。
高分子材料微滤膜能够有效去除悬浮固体、胶体和大分子物质等。
2.超滤分离超滤分离是利用高分子膜材料的分子筛效应,将溶液中的低分子物质、胶体颗粒等分离出来。
超滤膜广泛应用于饮用水净化、废水处理、制药工业等领域,具有高选择性和高通量的特点。
3.逆渗透分离逆渗透分离是指利用高分子逆渗透膜对水和溶质进行分离。
逆渗透膜对水分子具有高渗透性,但对大分子溶质具有较高的拒绝性。
逆渗透分离广泛应用于海水淡化、工业废水处理、饮用水净化等领域。
4.气体分离高分子膜材料在气体分离领域也有广泛应用。
例如,聚醚酯膜被广泛用于二氧化碳的分离,用于酸性气体和碱性气体的分离。
膜分离技术膜分离技术是材料科学和过程工程科学等诸多学科交叉结合、相互渗透而产生的新领域,是当代新型高效的共性技术,特别适合于现代工业对节能、低品位原材料再利用和消除环境污染的需要,成为实现经济可持续发展战略的重要组成部分。
膜分离技术推广应用的覆盖面在一定程度上反映一个国家过程工业,能源利用和环境保护的水平。
膜分离技术以选择性透过膜为分离介质。
在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体膜分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术。
膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换等)相比较,其过程大多为无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小和污染轻等优点。
1.微滤(MF)Microfiltration,其特点:对称细孔高分子膜,孔径0.03~10 nm,滤除≥50 nm的颗粒,以压力差为分离驱动力,透过物质:水、溶剂和溶解物,被截留物质:悬浮物、细菌和微粒子。
2.超滤(UF)Ultrafiltration,其特点:非对称结构的多孔膜,孔径l~20 nm,滤除5~100 nm的颗粒,以压力差为分离驱动力,透过物质:溶剂、离子和小分子,被截留物质:蛋白质、各类酶、细菌和乳胶。
3.纳滤(NF)Nanofiltration,其特点:1 nm的微孔结构,滤除相对分子质量在200~2000,以压力差为分离驱动力,透过物质:水、溶剂、相对分子质量<200,被截留物质:溶质、二价盐、糖和染料 (相对分子质量200~1000)。
4.反渗透(RO)Reverse Osmosis,其特点:带皮层的不对称膜、复合膜(<l nm),用于水溶液中溶解性盐的脱除,以压力差为分离驱动力,透过物质:水、溶剂,被截留物质:无机盐、糖类、氨基酸和BOD。
膜分离技术膜分离技术是材料科学和过程工程科学等诸多学科交叉结合、相互渗透而产生的新领域,是当代新型高效的共性技术,特别适合于现代工业对节能、低品位原材料再利用和消除环境污染的需要,成为实现经济可持续发展战略的重要组成部分。
膜分离技术推广应用的覆盖面在一定程度上反映一个国家过程工业,能源利用和环境保护的水平。
膜分离技术以选择性透过膜为分离介质。
在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体膜分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术。
膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换等)相比较,其过程大多为无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小和污染轻等优点。
1.微滤(MF)Microfiltration,其特点:对称细孔高分子膜,孔径0.03~10 nm,滤除≥50nm的颗粒,以压力差为分离驱动力,透过物质:水、溶剂和溶解物,被截留物质:悬浮物、细菌和微粒子。
2.超滤(UF)Ultrafiltration,其特点:非对称结构的多孔膜,孔径l~20nm,滤除5~100nm的颗粒,以压力差为分离驱动力,透过物质:溶剂、离子和小分子,被截留物质:蛋白质、各类酶、细菌和乳胶。
3.纳滤(NF)Nanofiltration,其特点:1nm的微孔结构,滤除相对分子质量在200~2000,以压力差为分离驱动力,透过物质:水、溶剂、相对分子质量<200,被截留物质:溶质、二价盐、糖和染料(相对分子质量200~1000)。
4.反渗透(RO)Reverse Osmosis,其特点:带皮层的不对称膜、复合膜(<l nm),用于水溶液中溶解性盐的脱除,以压力差为分离驱动力,透过物质:水、溶剂,被截留物质:无机盐、糖类、氨基酸和BOD。