04 ANSYS13.0 Workbench 结构非线性培训 一般过程解析
- 格式:ppt
- 大小:3.18 MB
- 文档页数:29
ANSYS教程,非线性结构分析过程尽管非线性分析比线性分析变得更加复杂,但处理基本相同。
只是在非线形分析的适当过程中,添加了需要的非线形特性。
非线性结构分析的基本分析过程也主要由建模、加载并求解和观察结果组成。
下面来讲解其主要步骤和各个选项的处理方法。
建模这一步对线性和非线性分析都是必需的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。
加载求解在建立好有限元模型之后,将进入ANSYS求解器(GUI:Main Menu | Solution),并根据分析的问题指定新的分析类型(ANTYPE)。
求解问题的非线性特性在ANSYS中是通过指定不同的分析选项和控制选项来定义的。
非线性分析不同于线性分析之处在于,它通常要求执行多荷载步增量和平衡迭代。
下面就详细讲解一下进行非线性结构分析需要定义的各个求解选项、分析选项和控制选项是如何设置的,以及他们的意义是什么。
求解控制对于一些基本的非线性问题的分析选项,可以通过ANSYS提供的求解控制对话框中的选项设置来完成。
选择菜单路径:Main Menu | Solution | Analysis Type | Sol’n Controls,将弹出求解控制(Solution Controls)对话框,如下图所示。
从图中可以看出该对话框主要包括5个选项卡:基本选项(Basic)、瞬态选项(Transient)、求解选项(Sol’n Options)、非线性选项(Nonlinear)和高级非线性选项(Advanced NL)。
如果开始一项新的分析,在设置分析类型和非线性选项时,选择“Large Displacement Static”选项(不是所有的非线性分析都支持大变形)。
如果想要重新启动一个失败的非线性分析,则选择“Restart Current Analysis”选项。
选中下面的“Calculate prestress effects”单选按钮用于有预应力的模态分析时的预应力计算,具体内容见模态分析部分。
ANSYS非线性命令解析〔1ANSYS应用基于问题物理特性的自动求解控制方法,把各种非线性分析控制参数设置到合适的值。
如果用户对这些设置不满意,还可以手工设置。
下列命令的缺省设置已进行了优化处理:AUTOTS PRED MONITORDELTIM NROPT NEQITNSUBST TINTP SSTIFCNVTOL CUTCONTROL KBCLNSRCH OPNCONTROL EQSLVARCLEN CDWRITE LSWRITE这些命令及其设置在将在后面讨论。
参见《ANSYS Commands Reference》。
如果用户选择自己的设置而不是ANSYS的缺省设置,或希望用以前版本的ANSYS的输入列表,则可用/ SOLU 模块的SOLCONTROL ,OFF命令,或在/ BATCH 命令后用/ CONFIG ,NLCONTROL,OFF命令。
参见SOLCONTROL 命令的详细描述。
ANSYS对下面的分析激活自动求解控制单场的非线性或瞬态结构以及固体力学分析,在求解自由度为UX、UY、UZ、ROTX、ROTY、ROTZ 的结合时;单场的非线性或瞬态热分析,在求解自由度为TEMP时;注意-- 本章后面讨论的求解控制对话框,不能对热分析做设置。
用户必须应用标准的ANSYS求解命令或GUI来设置。
2.2 非线性静态分析步骤尽管非线性分析比线性分析变得更加复杂,但处理基本相同。
只是在非线形分析的过程中,添加了需要的非线形特性。
非线性静态分析是静态分析的一种特殊形式。
如同任何静态分析,处理流程主要由以下主要步骤组成:建模;设置求解控制;设置附加求解控制;加载;求解;考察结果。
2.2.1 建模这一步对线性和非线性分析基本上是一样的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,参考§4《材料非线性分析》,和§6.1《单元非线性》。
如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实<或对数>应变表示。
AnsysWorkbench工程应用之——结构非线性(上):几何非线性(1)在上一篇文章中,我们已经对非线性有了初步的了解,本文将详细介绍几何非线性,以及非线性的计算原理。
本文较长,将分为上下两篇。
1 大变形选项在线性计算中,结构的刚度矩阵是不变的,而且不应用非线性收敛准则。
大变形Large Deflection只是一种算法,它考虑了结构变形后的刚度矩阵重建。
理论上来说,开启大变形后计算精度更高,但是将消耗更多的计算资源和时间。
所以在小变形、小转动等问题中,无需开启大变形选项。
假设构件转角为α,小转动时,构成结构刚度矩阵的三角函数因子cosα≈1,所以无需开启大变形选项。
而当大变形、大转动时,cosα与1相差较大,此时重建刚度矩阵是必要的。
如果出现了大变形、大转动,程序计算后会跳出警告信息,提示用户开启大变形选项。
一般工程经验上,对于普通精度要求的问题,变形超过5%或转角超过10°时,建议打开大变形开关。
2 非线性控制2.1收敛求解的原理在非线性求解中,真实的载荷-位移曲线是未知的,不能直接使用一组线性方程得到结果,而需要使用一系列的线性方程迭代,逼近非线性解。
有限元计算中使用的迭代过程为Newton-Raphson方法,简称牛顿法,达到收敛的迭代称为平衡迭代。
牛顿法的原理如下:在牛顿法中,第一次迭代,施加总载荷Fa。
得到位移结果x1。
根据位移,算出内力F1 。
如果Fa≠F1,系统不平衡。
因此,根据当前的条件,计算新的刚度矩阵(虚线的斜率)。
Fa-F1的值称为不平衡力或残余力。
残余力达到足够小时,求解收敛。
重复以上过程,直到Fa=Fi。
在这个例子之中,四次迭代之后,系统达到平衡,求解收敛。
实际计算中,残差Fa-Fi不可能正好等于0,所以规定只要残差小于一个规定的微小量,就认为计算已经收敛了,这个微小量就是力收敛准则,此处以[R]表示,即Fa-Fi<[R],则达到收敛。
每一次迭代中,当残差小于[R]表现为收敛,大于[R]表现为发散。
1、ANSYS Workbench基本分析过程1)几何建模技术2)网格划分与有限元建模技术3)施加载荷与求解过程4)结果后处理技术2、PRO/E导入DS的两种方法1)从ANSYS Workbench中进入打开Workbench→simulation→在geometry的下拉菜单下找到文件→ok2)从PRO/E中系统中直接进入在PRO/E中打开要分析的模型→点击ANSYS按钮→下拉菜单中找到Workbench进入→new simulation→ok3、鼠标的控制方法左键用来选中实体,或对实体进行显示操作左键的功能由 Graphics工具条进行控制,用户可以选一项 (点、线、面、体) 或对视角进行控制 (转动、平动、放大或缩小)选取模式可以为框选或点选在单选模式下,点中拖拉左键可以多选用ctrl 键加左键可以在单选模式下多选或反选在框选模式下,从左到右拖拉,可选中框内实体在框选模式下,从右到左拖拉,可选中框内实体,并同时选中与框搭接的实体在选取模式下,中键转换视角点击中键拖拉鼠标,可以转动模型Shift加中键可以平移模型中键滚轮可以对模型进行缩放(这种情况下,用户不用总在图形窗口和模式转换工具条之间进行切换)在图形窗口中点击右键一下,会出现常用菜单点右键,同时拖动可以对关注的区域进行放大点击右键一次,选择“ fit”可以使图形大小适合窗口显示4、结构树为模型、材料、载荷和分析结果提供了一种很好的组织方式5、结构树中每一个分支都有一个按钮和图标,下面是对一些图标的解释:▪说明分支全部被定义▪说明还有没有输入的数据▪说明需要求解▪说明还存在问题▪“X”说明被抑制(不能被求解)▪说明体或零件被隐藏▪说明当前项待求解▪说明映射网格划分失败以上前三项是重点6、各个区域颜色表示的意思白色区域: 显示当前输入的数据在白色文本区域内的数据可以通过点击改变,有些数据的输入要求用户在屏幕上选取实体模型,然后点击“Apply”,还有的数据需要通过键盘或从下拉菜单中选取。
前面的内容属于线性问题,其符合虎克定律(Hooke),满足公式:F=kx。
其中,k表示刚度矩阵常量,力与位移呈线性关系。
实际工程中多数结构的力与位移是呈非线性关系的,出现非线性行为,即载荷能够引起结构刚度的显著改变。
引起结构刚度变化的原因有:应变超出弹性极限,即产生塑性变形;大挠度,如钓鱼竿受力变形的过程;接触,物体之间的接触变形。
本章所要学习的内容包括:¾了解结构非线性基础¾熟悉ANSYS Workbench软件大变形分析的步骤¾了解结构非线性分析的应用场合¾理解非线性分析的计算结果¾了解非线性分析与其他分析的不同之处7.1 结构非线性分析基础7.1.1 引起非线性的原因结构在承受大变形时,几何形状发生变化会导致结构的非线性变化,如悬臂杆一端受力使杆发生弯曲,力臂明显减少,从而使得杆端的刚度不断增大,这是大挠度引起的非线性响应。
此外,钓鱼竿也是常见的几何非线性,如图7-1所示。
几何非线性主要有大应变、大挠度、应力刚化引起的非线性响应。
非线性应力-应变关系是典型的材料非线性。
影响材料应力-应变关系的因素有加载历史、环境问题、加载的时间总量等。
材料非线性如图7-2所示。
图7-1 钓鱼竿大变形图7-2 材料非线性接触是一种很普遍的非线性行为,是状态变化非线性类型中一个特殊且很重要的部分。
当两个接触物体相互接触或者分离时会发生刚度的突然变化,此时也会出现非线性。
在非线性静力分析中,刚度矩阵[K ]依赖于位移矩阵[x ]:[k(x)](x)={F}. 式中,力与位移的关系是非线性的,同样可参考图7-2。
Contact (接触类型) Iterations (迭代次数) Normal Behavior (法向分离) Tangential Behavior (切向滑移) Bonded (绑定) 1 Closed (无间隙) Closed (不能滑移) No Separation (不分离) 1 Closed (无间隙) Open (允许滑移) Frictionless (光滑) Multiple (多次) Open(允许有间隙) Open (允许滑移) Rough (粗糙) Multiple (多次) Open(允许有间隙) Closed (不能滑移) Frictional (摩擦)Multiple (多次)Open(允许有间隙)Open (允许滑移)其中,Bonded 和No Separate 两种接触是最基础的线性行为,故仅需要迭代一次,所以计算速度非常快。
第四章材料非线性分析4.1 材料非线性概述许多与材料有关的参数可以使结构刚度在分析期间改变。
塑性、非线性弹性、超弹性材料、混凝土材料的非线性应力—应变关系,可以使结构刚度在不同载荷水平下(以及在不同温度下)改变。
蠕变、粘塑性和粘弹性可以引起与时间、率、温度和应力相关的非线性。
膨胀可以引起作为温度、时间、中子流水平(或其他类似量)函数的应变。
ANSYS程序应可以考虑多种材料非线性特性:1.率不相关塑性指材料中产生的不可恢复的即时应变。
2.率相关塑性也可称之为粘塑性,材料的塑性应变大小将是加载速度与时间的函数。
3.材料的蠕变行为也是率相关的,产生随时间变化的不可恢复应变,但蠕变的时间尺度要比率相关塑性大的多。
4.非线性弹性允许材料的非线性应力应变关系,但应变是可以恢复的。
5.超弹性材料应力应变关系由一个应变能密度势函数定义,用于模拟橡胶、泡沫类材料,变形是可以恢复的。
6.粘弹性是一种率相关的材料特性,这种材料应变中包含了弹性应变和粘性应变。
7.混凝土材料具有模拟断裂和压碎的能力。
8.膨胀是指材料在中子流作用下的体积扩大效应。
4.2 塑性分析4.2.1 塑性理论简介许多常用的工程材料,在应力水平低于比例极限时,应力—应变关系为线性的。
超过这一极限后,应力—应变关系变成非线性,但却不一定是非弹性的。
以不可恢复的应变为特征的塑性,则在应力超过屈服点后开始出现。
由于屈服极限与比例极限相差很小,ANSYS程序在塑性分析中,假设这二个点相同,见图4-1。
图4-1 弹塑性应力-应变曲线塑性是一种非保守的(不可逆的),与路径相关的现象。
换句话说,荷载施加的顺序,以及什么时候发生塑性响应,影响最终求解结果。
如果用户预计在分析中会出现塑性响应,则应把荷载处理成一系列的小增量荷载步或时间步,以使模型尽可能附合荷载—响应路径。
最大塑性应变是在输出(Jobname.OUT)文件的子步信息中打印的。
在一个子步中,如果执行了大量的平衡迭代,或得到大于15%的塑性应变增量,则塑性将激活自动时间步选项[AUTOTS ](GUI :Main Menu>Solution> Sol'n Control:Basic Tab 或 MainMenu>Solution>Unabridged Menu> Time /Frequenc>Time and Substps)。
AnsysWorkbench工程应用之——结构非线性(序):概述各位道友,在时隔半年后,我又回来了,虽然由于水平有限,我依然无法给各位答疑解惑,但是我可以和大家一起学习学习一下基本理论知识。
从本文开始,图惜和大家开始共同学习结构非线性。
本文作为非线性知识的序篇,我们主要通过以下问题来学习结构非线性基本概念:问题1:什么是非线性?问题2:非线性的类型?1 什么是非线性前面介绍的许多内容都是结构线性问题,即满足胡克定律其中刚度矩阵[K]是一个常量,通俗地说,如果力F增大一倍,位移u也将增大一倍。
然而,实际工程中很多结构的力和位移的关系不呈线性关系,称之为非线性结构。
结构刚度不再是常数,而是随着载荷的变化而发生变化。
KT(切向刚度)代表了经过载荷位移曲线上的某一点,该曲线切线的斜率。
非线性问题分为三类,三类往往交叉出现:1.几何非线性,如大应变、大挠度大转动、应力钢化、旋转软化等。
2.材料非线性,如弹塑性、超弹性、蠕变、黏弹性等。
3.状态非线性,也称为边界条件非线性,如接触、生死单元等。
#2 非线性分析基础2.1几何非线性物体受载荷后,内部会发生变形,当应变远小于1%时,可忽略物体前后变形的形状和位置,简化为线性分析。
但是当结构承受大变形时,变形的几何形状可能会引起结构非线性响应。
一般几何非线性有大应变,大挠度,应力钢化等,它们的关系如下在Ansys Workbench中,如果要使用几何非线性功能,只需要打开分析设置中的大变形选项:Large Deflection=On,程序将考虑大应变,大挠度,应力钢化、旋转软化等效应。
(1)大应变,结构刚度由网格单元刚度和方向决定,单元的形状发生变化,从而最终引起结构的非线性响应。
所有的几何非线性现象几乎最终都会导致网格单元的大应变。
有限应变也属于这一类型,例如金属冷作成型过程中的有限塑性变形。
值得注意的是,大应变不一定导致大应力,如橡胶、海绵的大变形大变形不一定导致大应力。
ANSYS求解非线性问题牛顿一拉森方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
然而,非线性结构的行为不能直接用这样一系列的线性方程表示。
需要一系列的带校正的线性近似来求解非线性问题。
逐步递增载荷和平衡迭代一种近似的非线性救求解是将载荷分成一系列的载荷增量。
可以在几个载荷步内或者在一个载步的几个子步内施加载荷增量。
在每一个增量的求解完成后,继续进行下一个载荷增量之前程序调整刚度矩阵以反映结构刚度的非线性变化。
遗憾的是,纯粹的增量近似不可避免地随着每一个载荷增量积累误差,导种结果最终失去平衡,如图1所示所示。
(a)纯粹增量式解(b)全牛顿-拉普森迭代求解图1 纯粹增量近似与牛顿-拉普森近似的关系ANSYS程序通过使用牛顿-拉普森平衡迭代克服了这种困难,它迫使在每一个载荷增量的末端解达到平衡收敛(在某个容限范围内)。
图1(b)描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。
在每次求解前,NR方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值。
程序然后使用非平衡载荷进行线性求解,且核查收敛性。
如果不满足收敛准则,重新估算非平衡载荷,修改刚度矩阵,获得新解。
持续这种迭代过程直到问题收敛。
ANSYS程序提供了一系列命令来增强问题的收敛性,如自适应下降,线性搜索,自动载荷步,及二分等,可被激活来加强问题的收敛性,如果不能得到收敛,那么程序或者继续计算下一个载荷前或者终止(依据你的指示)。
对某些物理意义上不稳定系统的非线性静态分析,如果你仅仅使用NR方法,正切刚度矩阵可能变为降秩短阵,导致严重的收敛问题。
这样的情况包括独立实体从固定表面分离的静态接触分析,结构或者完全崩溃或者“突然变成”另一个稳定形状的非线性弯曲问题。
对这样的情况,你可以激活另外一种迭代方法,弧长方法,来帮助稳定求解。
弧长方法导致NR平衡迭代沿一段弧收敛,从而即使当正切刚度矩阵的倾斜为零或负值时,也往往阻止发散。