求不规则图形的面积
- 格式:doc
- 大小:175.00 KB
- 文档页数:22
不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算般我们称这样的图形为不规则图形那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和12 厘米.求阴影部分的面积。
思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白三角形(△ ABG、△ BDE、△ EFG)的面积之和。
例2 如右图,正方形ABCD的边长为6 厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:∵△ ABE、△ ADF与四边形AECF的面积彼此相等,∴四边形AECF的面积与△ ABE、△ ADF的面积都等于正方形1 ABCD的1。
3在△ ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=,2∴△ ECF的面积为2×2÷ 2=2。
所以S△AEF=S四边形AECF-S△ ECF=12-2=1(0 平方厘米)。
例3两块等腰直角三角形的三角板,直角边分别是10 厘米和6 厘米。
如右图那样重合.求重合部分(阴影部分)的面积思路导航:在等腰直角三角形ABC中∵AB=10∵EF=BF=AB-AF=10-6=,4∴阴影部分面积=S△ ABG-S△BEF=25-8=1(7 平方厘米)例4 如右图,A 为△ CDE的DE边上中点,BC=CD,若△ ABC阴影部分)面积为5平方厘米.求△ ABD及△ ACE的面积.思路导航:取BD 中点F,连结AF.因为△ ADF、△ ABF和△ ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ ACD的面积等于15 平方厘米,△ ABD的面积等于10平方厘米。
五年级不规则图形⾯积计算(供参考)五年级不规则图形⾯积计算我们曾经学过的三⾓形、长⽅形、正⽅形、平⾏四边形、梯形、菱形、圆和扇形等图形,⼀般称为基本图形或规则图形.我们的⾯积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,⽽是由⼀些基本图形组合、拼凑成的,它们的⾯积及周长⽆法应⽤公式直接计算.⼀般我们称这样的图形为不规则图形。
那么,不规则图形的⾯积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等⽅法将它们转化为基本图形的和、差关系,问题就能解决了。
⼀、例题与⽅法指导例1 如右图,甲、⼄两图形都是正⽅形,它们的边长分别是10厘⽶和12厘⽶.求阴影部分的⾯积。
思路导航:阴影部分的⾯积等于甲、⼄两个正⽅形⾯积之和减去三个“空⽩”三⾓形(△ABG、△BDE、△EFG)的⾯积之和。
例2 如右图,正⽅形ABCD的边长为6厘⽶,△ABE、△ADF 与四边形AECF的⾯积彼此相等,求三⾓形AEF的⾯积.思路导航:∵△ABE 、△ADF 与四边形AECF 的⾯积彼此相等,∴四边形 AECF 的⾯积与△ABE 、△ADF 的⾯积都等于正⽅形ABCD 的1 3。
在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF 的⾯积为2×2÷2=2。
所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平⽅厘⽶)。
例3两块等腰直⾓三⾓形的三⾓板,直⾓边分别是10厘⽶和6厘⽶。
如右图那样重合.求重合部分(阴影部分)的⾯积。
思路导航:在等腰直⾓三⾓形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分⾯积=S △ABG-S △BEF=25-8=17(平⽅厘⽶)。
例4如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC(阴影部分)⾯积为5平⽅厘⽶. 求△ABD 及△ACE 的⾯积.BC思路导航:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等⾼,所以它们的⾯积相等,都等于5平⽅厘⽶.∴△ACD的⾯积等于15平⽅厘⽶,△ABD的⾯积等于10平⽅厘⽶。
求不规则图形面积的五种方法
一、相加法:临方法是将不规则图形分解转化成几个基本规测图形,分别计算它们的面积,然后相加求出整个图形的面积。
二、相减法:这种方法是将所求的不规则图形的面积看成是若千个基本规则图形的面积之差.
三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积
四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可4个角处,这时采用相减法就可求出其面积了.
五、割补法:这种方法是把原图形的受部分切割下来补在图形中的另部分使之成为基本规则图形,从而使问题得到解决。
不规则图形面积的计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求及△ACE的面积.例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘米,它是△DEC的面积的45,求正方形ABCD的面积。
例6 如右图,已知:S△ABC=1,例7 如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米?例8 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.例9 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.练习1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。
2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE 的长。
不规则几何图形面积计算方法有一次坐车,曾与一位大学一年级的学生坐邻座。
问她现在还学不学数学,她说正学呢,学微积分。
问微积分有什么用,她想了想,说:“可以求不规则图形的面积”。
我将手拍在我们前面座椅的靠背上,问:“用你高中以前的知识,你怎么求我的手掌印的面积?”她马上说:“这没有办法求。
我们求面积都是求的规则图形的面积。
这个没有办法求。
”她没有用过新课程下的数学教材。
对于用过新课程下的数学教材的学生来说,这样的问题,小学生应当能够解决了。
新世纪小学数学教材安排了探索不规则图形及物体的测量方法,如,“估计自己脚印的面积”的活动,“学生可以在脚印上画出透明的正方形格子,由此进行估计。
对于感兴趣的学生,教师还可以引导他们计算出鞋印覆盖住的整方格数,得到鞋印面积的不足近似值;再计算出被鞋印接触过的所有方格数,得到鞋印面积的过剩近似值,鞋印的实际面积介于二者之间。
根据经验,学生还可能认识到方格分得越细,不足近似值和过剩近似值越接近,这种认识实际上蕴涵了微积分的基本思想。
[1]”大方格不能上文说“根据经验,学生还可能认识到……”,似乎是编写者“一厢情愿”的猜度。
我们看到下面的材料,想来你会体会到编写者这样设计的意义和价值。
这是一位教师在上课中的实录节选。
例2[2] 求一块不规则图形的面积.这与数学中的常规问题是不同的,我们在数学中面对的一般都是规则图形,可以直接用公式计算,或者通过适当割补后再用公式计算.如何解决这一问题呢?我们把它交给学生,竟然得到了如下一些成果:方法1 将图形放在坐标纸上,也即将图形分割,看它有多少个“单位面积”.[1]义务教育课程标准实验教科书·数学教师教学用书(四年级上册)·致教师(一),北京师范在学出版社,[2]试谈以人为本的三维课堂教学,/jy zx/Print.asp方法2 将图形从内外两个方面用规则图形(或规则图形的组合)逼近.方法3 将这块图形用一个正方形围住,然后随机地向正方形内扔“点”(如小石子等小颗粒),当点数P足够大时,统计落入不规则图形中的点数A,则图形的面积与正方形面积的比约为.方法4“称量”面积:在正方形区域内均匀铺满一层细沙,分别称得重量是P(正方形区域内细沙重)、A(所求图形内细沙重),则所求图形的面积与正方形面积的比是.我们欣赏一下学生的思路,你会发现,这里的每一种方法都有极其深刻的背景。
求不规则图形的面积
————————————————————————————————作者:————————————————————————————————日期:
求不规则图形的面积
李荣璋
在实际问题中,有些图形不是以基本图形(如三角形、矩形、正方形、平行四边形等)的形状出现,而是由一些基本图形组合、拼凑而成的简单图形,在计算它们的面积时无法直接应用公式。
但是,对这些图形进行割补、剪拼等操作,可将它们转化为基本图形加以解决。
1. 等积变形
三角形面积计算公式为
(1)等底同高
如图1所示,在△ABC中,BD=DC,则
引申:当等高时,两三角形面积的比等于底的比。
图1
如图2所示,若,则
图2 (2)同底等高
如图3所示,
图3
例1. 如图4所示,点A为△CDE的边DE的中点,。
若△ABC的面积为5平方厘米,求△ABD及△ACE的面积。
图4
解:取BD中点F,连结AF。
因为等底、同高,所以它们的面积相等,都等于5平方厘米。
即平方厘米
平方厘米
又因为等底、同高
所以平方厘米。
例2. 如图5所示,已知,求阴影部分的面积。
图5 解:连结DF
因为
所以
因为所以即
所以
2. 利用矩形性质
例3. 如图6所示,在正方形有ABCD中,△ABE的面积是8平方厘米,它是△D EC的面积的,求正方形ABCD的面积。
图6
解:过E作于F
平方厘米
平方厘米
所以正方形的面积
(平方厘米)
3.其它根据题意计算
例4. 如图7所示,有一个三角形纸片沿虚线折叠得图8,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米,求原三角形面积。
图7
图8
解:如图9所示,设折叠后重合部分的面积为x平方厘米,则
原三角形面积为平方厘米
依题意得:
解得:
所以原三角形的面积为
(平方厘米)。
图9
练习:
1. 如图10所示,四边形ABCD为矩形,AB=10厘米,BC=6厘米,E、F分别为AB、AD的中点,且FG=2GE,求阴影部分面积。
图10
2. 如图11所示,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米,求长方形的长、宽各是多少?
图11
3.如图12所示,平行四边形ABCD的边长BC=10厘米,Rt△BCE的直角边EC=8厘米,已知阴影部分的面积比△EFG的面积大20平方厘米,求CF的长。
图12
答案:
1. 7.5平方厘米。
2. 长5.5米,宽2.5米。
3. 5厘米。