自动控制原理试-7
- 格式:doc
- 大小:35.99 KB
- 文档页数:11
《 自动控制原理 》典型考试试题(时间120分钟)院/系 专业 姓名 学号第二章:主要是化简系统结构图求系统的传递函数,可以用化简,也可以用梅逊公式来求一、(共15分)已知系统的结构图如图所示。
请写出系统在输入r(t)和扰动n(t)同时作用下的输出C(s)的表达式。
G4H1G3G1G 2N(s)C(s)R(s)--+++二 、(共15分)已知系统的结构图如图所示。
试求传递函数)()(s R s C ,)()(s N s C 。
三、(共15分)已知系统的结构图如图所示。
试确定系统的闭环传递函数C(s)/R(s)。
G1G2R(s)-++C(s)-+四、(共15分)系统结构图如图所示,求X(s)的表达式G4(s)G6(s)G5(s)G1(s)G2(s)N(s)C(s)R(s)--G3(s)X(s)五、(共15分)已知系统的结构图如图所示。
试确定系统的闭环传递函数C(s)/R(s)和C(s)/D(s)。
G1G2R(s)-++C(s)-+D(s)G3G4六、(共15分)系统的结构图如图所示,试求该系统的闭环传递函数)()(s R s C 。
七、(15分)试用结构图等效化简求题图所示各系统的传递函数)()(s R s C一、(共15分)某控制系统的方框图如图所示,欲保证阻尼比ξ=0.7和响应单位斜坡函数的稳态误差为ss e =0.25,试确定系统参数K 、τ。
二、(共10分)设图(a )所示系统的单位阶跃响应如图(b )所示。
试确定系统参数,1K 2K 和a 。
三、(共15分)已知系统结构图如下所示。
求系统在输入r(t)=t 和扰动信号d(t)=1(t)作用下的稳态误差和稳态输出)(∞C2/(1+0.1s)R(s)-C(s)4/s(s+2)E(s) D(s)四、(共10分)已知单位负反馈系统的开环传递函数为:2()(2)(4)(625)KG s s s s s =++++试确定引起闭环系统等幅振荡时的K 值和相应的振荡频率ω五、(15分)设单位反馈系统的开环传递函数为12 )1()(23++++=s s s s K s G α若系统以2rad/s 频率持续振荡,试确定相应的K 和α值第三章:主要包括稳、准、快3个方面稳定性有2题,绝对稳定性判断,主要是用劳斯判据,特别是临界稳定中出现全零行问题。
《自动控制原理》试题及答案1、若某串联校正装置的传递函数为(10s+1)/(100s+1),则该校正装置属于(B )。
3分2、在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是(A)3分3、在系统中串联PD调节器,以下那一种说法是错误的(D)3分A是一种相位超前校正装置B能影响系统开环幅频特性的高频段C使系统的稳定性能得到改善D使系统的稳态精度得到改善4、用超前校正装置改善系统时,主要是利用超前校正装置的(A )3分5、I型系统开环对数幅频特性的低频段斜率为(B )9分6、设微分环节的频率特性为G(jω),当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是()9分7、关于线性系统稳定性的判定,下列观点正确的是( )。
9分8、若两个系统的根轨迹相同,则有相同的( ) 9分9、关于系统零极点位置对系统性能的影响,下列观点中正确的是( ) 7分10、高阶系统的主导闭环极点越靠近虚轴,则系统的( ) 2分11、若某最小相位系统的相角裕度γ>0,则下列说法正确的是( )。
2分12、某环节的传递函数是G(s)=5s+3+2/s,则该环节可看成由(D )环节组成。
2分13、主导极点的特点是(A )2分14、设积分环节的传递函数为G(s)=K/s,则其频率特性幅值A(ω)=()2分15、某环节的传递函数为K/(Ts+1),它的对数幅频率特性随K值增加而()2分16、某系统的传递函数是G(s)=1/(2s+1),则该可看成由(C )环节串联而成2分17、若系统的开环传递函数在s右半平面上没有零点和极点,则该系统称作(B)2分18、某校正环节传递函数G(s)=(100s+1)/(10s+1),则其频率特性的奈氏图终点坐标为(D)2分19、一般为使系统有较好的稳定性,希望相位裕量为(C)2分20、最小相位系统的开环增益越大,其()2分21、一阶微分环节G(s)=1+Ts,当频率ω=1/T时,则相频特性∠G(jω)为()2分22、ω从0变化到+∞时,延迟环节频率特性极坐标图为()2分23、开环传递函数为G(s)H(s)=(s+3)/(s+2)(s+5),则实轴上的根轨迹为(B)2分24、开环传递函数为G(s)H(s)=K/(s*s*s(s+4)),则实轴上的根轨迹为()2分25、某单位反馈系统的开环传递函数为:G(s)=K/(s(s+1)(s+5)),当k=(C )时,闭环系统临界稳定。
红色为重点(2016年考题)第一章1-2仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如下图所示。
1-4 题1-4图为水温控制系统示意图。
冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。
冷水流量变化用流量计测量。
试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么?解工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。
如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。
其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。
系统方块图如下图所示。
这是一个按干扰补偿的复合控制系统。
1-5图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。
解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压Uc的平方成正比,Uc增高,炉温就上升,Uc 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压Uf。
Uf作为系统的反馈电压与给定电压Ur进行比较,得出偏差电压Ue,经电压放大器、功率放大器放大成au后,作为控制电动机的电枢电压。
第一章测试1【单选题】(1分)自动控制系统工作原理正确的是?A.自动控制系统需要人的直接参与即可自动完成控制任务B.自动控制系统需要人的间接参与即可自动完成控制任务C.自动控制系统不需要人的参与即可自动完成控制任务D.自动控制系统的运行完全与人没有任何关系2【单选题】(1分)自动控制系统的组成说明正确的是?A.自动控制系统包括控制器、被控对象和传感器三部分B.自动控制系统包括比较环节、控制器、执行器、被控对象和传感器五部分C.自动控制系统包括控制系统的输入、控制器、执行器、被控对象和传感器和控制系统输出等D.自动控制系统包括控制器、执行器、被控对象和传感器四部分3【单选题】(1分)自动控制系统的反馈类型说明正确的是?A.自动控制系统既需要正反馈也需要负反馈B.自动控制系统需要正反馈C.自动控制系统离不开负反馈D.自动控制系统需构成负反馈闭环控制系统4【单选题】(1分)自动控制系统的广义被控对象由哪几部分组成?A.控制器、执行元件、测量元件B.控制器、测量元件、被控对象C.执行元件、被控对象、测量元件D.控制器、执行元件、被控对象5【单选题】(1分)关于开环系统的叙述正确的是?A.控制装置与被控对象之间既没有顺向作用也没有反向联系的控制过程B.控制装置与被控对象之间既有顺向作用又有反向联系的控制过程C.控制装置与被控对象之间只有顺向作用而没有反向联系的控制过程D.控制装置与被控对象之间只有反向联系而没有顺向作用的控制过程6【单选题】(1分)下列说法不是开环控制系统的特性?A.抗干扰能力差,控制精度不高B.结构简单经济C.调试方便D.系统具有减小或消除偏差的能力7【单选题】(1分)自动控制系统的准确性通过哪个性能指标判断?A.稳态误差B.调节时间C.上升时间D.超调量8【单选题】(1分)将水槽中的液位高度控制在一个恒定值,这样的系统是一个()。
A.离散控制系统B.恒值控制系统C.随动控制系统D.程序控制系统9【判断题】(1分)某系统微分方程为,则该系统是线性的。
红色为重点(2016年考题)第一章1-2 仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如下图所示。
1-4 题1-4图为水温控制系统示意图。
冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。
冷水流量变化用流量计测量。
试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么?解工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。
如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。
其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。
系统方块图如下图所示。
这是一个按干扰补偿的复合控制系统。
1-5图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。
解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压Uc的平方成正比,Uc增高,炉温就上升,Uc 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压Uf。
Uf作为系统的反馈电压与给定电压Ur进行比较,得出偏差电压Ue,经电压放大器、功率放大器放大成au后,作为控制电动机的电枢电压。
第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。
用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。
(2) 缺点:不能自动调节被控量的偏差。
因此系统元器件参数变化,外来未知扰动存在时,控制精度差。
2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。
它是一种按偏差调节的控制系统。
在实际中应用广泛。
⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。
1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。
闭环控制系统常采用负反馈。
由1-1中的描述的闭环系统的优点所证明。
例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。
1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++= (6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dt dt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变 (4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。
红色为重点(2016年考题)第一章1—2仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制.系统方框图如下图所示。
1-4 题1—4图为水温控制系统示意图。
冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水.冷水流量变化用流量计测量。
试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么?解工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零.如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。
其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。
系统方块图如下图所示。
这是一个按干扰补偿的复合控制系统.1-5图为工业炉温自动控制系统的工作原理图.分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。
解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压Uc的平方成正比,Uc增高,炉温就上升,Uc 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压Uf.Uf作为系统的反馈电压与给定电压Ur进行比较,得出偏差电压Ue,经电压放大器、功率放大器放大成au后,作为控制电动机的电枢电压。
期末复习题概念题一、填空题1、把输出量直接或间接地反馈到输入端,形成闭环参与控制的系统,称作 闭环控制系统 。
2、传递函数反映系统本身的瞬态特性,与本身参数和结构 有关 ,与输入和初始条件无关 。
3、最大超调量只决定于阻尼比ξ,ξ越小,最大超调量越 小 .4、已知系统频率特性为151+ωj ,当输入为t t x 2sin )(=时,系统的稳态输出为110)t tg --。
5、校正装置的传递函数为TsaTss G c ++=11)(,系数a 大于1,则该校正装置为 超前 校正装置.6、如果max ω为)(t f 函数有效频谱的最高频率,那么采样频率s ω满足条件max 2s ωω≥ 时,采样函数)(*t f 能无失真地恢复到原来的连续函数)(t f 。
二、单选题1、闭环控制系统的控制方式为 D 。
A. 按输入信号控制 B 。
按扰动信号控制 C 。
按反馈信号控制 D. 按偏差信号控制2、某一系统在单位速度输入时稳态误差为零,则该系统的开环传递函数可能是 D 。
A 。
1+Ts KB. ))((b s a s s d s +++C. )(a s s K + D 。
)(2a s s K +3、已知单位反馈系统的开环奈氏图如图所示,其开环右半S 平面极点数P=0,系统型号1v =,则系统 A 。
A 。
稳定 B.不稳定 C.临界稳定 D. 稳定性不能确定4、串联滞后校正是利用 B ,使得系统截止频率下降,从而获得足够的相角裕度。
A . 校正装置本身的超前相角B .校正装置本身的高频幅值衰减特性C .校正装置本身的超前相角和高频幅值衰减D .校正装置富裕的稳态性能 5、设离散系统闭环极点为i i i z j σω=+,则 C 。
A .当0i ω=时,其对应的阶跃响应是单调的;B .当0i σ<时,其对应的阶跃响应是收敛的;C 1<时,其对应的阶跃响应是收敛的;D .当0i ω=时,其对应的阶跃响应是等幅振荡。
期末考试-复习重点自动控制原理1一、单项选择题(每小题1分,共20分)1. 系统和输入已知,求输出并对动态特性进行研究,称为()A。
系统综合 B.系统辨识 C.系统分析 D.系统设计2。
惯性环节和积分环节的频率特性在()上相等。
A。
幅频特性的斜率 B.最小幅值C。
相位变化率D。
穿越频率3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为()A.比较元件B。
给定元件C。
反馈元件 D.放大元件4. ω从0变化到+∞时,延迟环节频率特性极坐标图为()A.圆B。
半圆C。
椭圆 D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( )A。
比例环节B。
微分环节 C.积分环节 D.惯性环节6。
若系统的开环传递函数为,则它的开环增益为( )A.1 B。
2 C。
5 D.107。
二阶系统的传递函数,则该系统是()A.临界阻尼系统B。
欠阻尼系统C。
过阻尼系统D。
零阻尼系统8. 若保持二阶系统的ζ不变,提高ωn,则可以( )A。
提高上升时间和峰值时间B。
减少上升时间和峰值时间C.提高上升时间和调整时间D.减少上升时间和超调量9。
一阶微分环节,当频率时,则相频特性为()A.45°B.-45°C.90°D.-90°10。
最小相位系统的开环增益越大,其()A.振荡次数越多B。
稳定裕量越大C.相位变化越小D.稳态误差越小11.设系统的特征方程为,则此系统( )A。
稳定 B.临界稳定C。
不稳定 D.稳定性不确定。
12.某单位反馈系统的开环传递函数为:,当k=()时,闭环系统临界稳定。
A。
10 B.20 C.30 D。
4013.设系统的特征方程为,则此系统中包含正实部特征的个数有( )A。
0 B。
1 C。
2 D.314.单位反馈系统开环传递函数为,当输入为单位阶跃时,则其位置误差为()A。
2 B。
0。
2 C.0。
5 D。
试题一答案 1、给定值2、输入;扰动;3、G 1(s)+G 2(s); 40.7072=;2220s s ++=;衰减振荡 5、1050.20.5s s s s+++; 6、开环极点;开环零点 7、(1)(1)K s s Ts τ++8、1()[()()]p u t K e t e t dt T =+⎰;1[1]p K Ts+; 稳态性能 1、D 2、A 3、C 4、A 5、D 6、A 7、B 8、C 9、B 10、B解:1、建立电路的动态微分方程 根据KCL有200i 10i )t (u )]t (u )t (d[u )t (u )t (u R dt C R =-+-(2分)即 )t (u )t (du )t (u )()t (du i 2i 21021021R dtC R R R R dt C R R +=++ (2分)2、求传递函数对微分方程进行拉氏变换得)(U )(U )(U )()(U i 2i 21021021s R s Cs R R s R R s Cs R R +=++ (2分)得传递函数 2121221i 0)(U )(U )(R R Cs R R R Cs R R s s s G +++==(2分) 解:1、(4分) 22222221)()()(n n n s s K s K s K sK s K s Ks R s C s ωξωωββ++=++=++==Φ 2、(4分) ⎩⎨⎧=====2224222n n K K ξωβω ⎩⎨⎧==707.04βK3、(4分) 0010032.42==--ξξπσe83.2244===ns t ξω4、(4分) )1(1)(1)(2+=+=+=s s K s s K sK s K s G βββ ⎩⎨⎧==11v K K β414.12===βKss K Ae 5、(4分)令:0)()(11)()()(=s s G ss K s N s C s n n ∆-⎪⎭⎫ ⎝⎛+==Φβ 得:βK s s G n +=)(五、(共15分)1、绘制根轨迹 (8分)(1)系统有有3个开环极点(起点):0、-3、-3,无开环零点(有限终点);(1分)(2)实轴上的轨迹:(-∞,-3)及(-3,0); (1分)(3) 3条渐近线: ⎪⎩⎪⎨⎧︒︒±-=--=180,602333a σ (2分) (4) 分离点: 0321=++d d 得: 1-=d (2分)432=+⋅=d d K r (5)与虚轴交点:096)(23=+++=r K s s s s D[][]⎩⎨⎧=+-==+-=06)(Re 09)(Im 23r K j D j D ωωωωω ⎩⎨⎧==543r K ω (2分) 绘制根轨迹如右图所示。
自动控制原理试卷1答案一.填空 1. 微分方程、传递函数、频率特性、结构图。
2. 闭环极点都位于S 平面左侧;系统的特性方程的根都在Z 平面上以原点为圆心的单位圆内.3. 5.02+S ;0;8。
4. 4,Ⅱ;62.5.5. 110100+S ;10。
6. P-I;利用G(s )的负斜率使ωC 减小,改善静态性能。
7. 将连续信号变为离散信号;0。
二.(14分) 解:(1)(2)C (Z)=)()(1)()(1232321Z H Z H G G Z G G Z RG •+•三.(20分)解:(1)F (s)=[]T s st f 111)(+-=(2)F (s )=525125151)5(122++-=+s s ss s(3)G 1(s )=s s s s s s s s s s 321030)2(10)2(3101)2(102+=++=+⨯++G 2(s )=ss s a s )32(10)(2+⨯+sa s s a s s s s a s a s s R s C 1010321010)32(10)(10)()()(232++++=++⨯+⨯+=∴ a s s s s A 101032)(23+++=∴ 要使系统稳定,则必须满足{{032010101032><>>⨯⇒a a a a320<<∴a (两内项系数乘积>两外项系数乘积)521634432125152125143321521251243213211352126346321251132122111)1()()(1001)()(G G G G G G G G G G G G G G G G G G G G G G G G s R s C G G G G G G G G P G G G P L G G G L G G G G G G G G G G L L L L P P s R s C +-+++++++=∴+++=∆==∆==∑=∑+---=∑∑-∑+∑-=∆∆∆+∆= t e t s F 5125125151)]([f(t)--+-== (1分) (1分) (1分) (1分) (1分) (1分) (1分) (1分) (1分)(1分)(4分) (4分)(3分) (3分)(3分)(1分)(2分) (1分)(1分) (2分)(每空1分。
第七章非线性控制系统分析练习题及答案7-1设一阶非线性系统的微分方程为xx3 x试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。
解令x0得3(21)(1)(1)0xxxxxxx系统平衡状态x e0,1,1其中:x0:稳定的平衡状态;ex1,1:不稳定平衡状态。
e计算列表,画出相轨迹如图解7-1所示。
x-2-11301312x-600.3850-0.38506x112010211图解7-1系统相轨迹可见:当x(0)1时,系统最终收敛到稳定的平衡状态;当x(0)1时,系统发散;x(0)1 时,x(t);x(0)1时,x(t)。
注:系统为一阶,故其相轨迹只有一条,不可能在整个x~x平面上任意分布。
7-2试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。
(1)xxx0(2) x1x2xx122xx12解(1)系统方程为1:xxx0(x0):xxx0(x0)令xx0,得平衡点:x e0。
系统特征方程及特征根:132:ss10,sj(稳定的焦点)1,2222:ss10,s1.618,0.618(鞍点)1,2xf(x,x)xx, d xdxxxxdx dx 1xx,1xxx11I:1(x0)1II:1(x0)计算列表-∞-3-1-1/301/313∞x0:11-1-2/302-∞-4-2-4/3-1x0:11-1-4/3-2-4∞20-2/3-1用等倾斜线法绘制系统相平面图如图解7-2(a)所示。
2图解7-2(a)系统相平面图(2)xxx112①x22xx②12由式①:x2x1x1③式③代入②:(x1x1)2x1(x1x1)即x12x1x10④令x1x10得平衡点:x e0由式④得特征方程及特征根为2.4142ss2101,2(鞍点)0.414画相轨迹,由④式xx 11 d x1dxx12x1x1x 1 x1 2计算列表322.53∞11.52=1/(-2)∞210-1-2∞用等倾斜线法绘制系统相平面图如图解7-2(b)所示。
自动控制原理试卷A(1)1.(9分)设单位负反馈系统开环零极点分布如图所示,试绘制其一般根轨迹图。
(其中-P 为开环极点,-Z ,试求系统的传递函数及单位脉冲响应。
3.(12分)当ω从0到+∞变化时的系统开环频率特性()()ωωj j H G 如题4图所示。
K 表示开环增益。
P 表示开环系统极点在右半平面上的数目。
v 表示系统含有的积分环节的个数。
试确定闭环系统稳定的K 值的范围。
4.(12分)已知系统结构图如下,试求系统的传递函数)()(,)()(s R s E s R s C5.(15分)已知系统结构图如下,试绘制K 由0→+∞变化的根轨迹,并确定系统阶跃响应分别为衰减振荡、单调衰减时K 的取值范围。
Re Im ∞→ω00→ωK 2-0,3==p v (a )Re Im ∞→ω00→ωK 2-0,0==p v (b ) Re Im ∞→ω00→ωK 2-2,0==p v (c ) 题4图题2图 1G 2G 3G 5G C R +E --4G +6G6.(15分)某最小相位系统用串联校正,校正前后对数幅频特性渐近线分别如图中曲线(1)、(2)所示,试求校正前后和校正装置的传递函数)(),(),(21s G s G s G c ,并指出Gc (S )是什么类型的校正。
7.(15分)离散系统如下图所示,试求当采样周期分别为T=秒和T=秒输入)(1)23()(t t t r ⋅+=时的稳态误差。
8.(12分)非线性系统线性部分的开环频率特性曲线与非线性元件负倒数描述曲线如下图所示,试判断系统稳定性,并指出)(1x N -和G (j ω)的交点是否为自振点。
参考答案A(1)1、 根轨迹略,2、 传递函数)9)(4(36)(++=s s s G ;单位脉冲响应)0(2.72.7)(94≥-=--t ee t c tt 。
3、 21,21,21><≠K K K 4、6425316324215313211)()(G G G G G G G G G G G G G G G G G G s R s C ++++= 642531632421653111)()(G G G G G G G G G G G G G G G G G s R s E +++-= 5、 根轨迹略。
第7章 非线性系统的分析1.试计算并绘制下列各微分方程的相平面图。
解:(1)求得运用积分法解得相轨迹方程为其相轨迹如图7-1所示。
(2)求得运用积分法解得相轨迹方程为其相轨迹如图7-2所示。
图7-1 系统的相轨迹 图7-2 系统的相轨迹(3)求得令切线斜率,则可得等倾线方程为,即可见等倾线为一簇水平线。
①当α=0时,,则该等倾线亦为一条相轨迹,因相轨迹互不相交,故其他相轨迹均以此线为渐近线。
②当α→∞时,,表明相轨迹垂直穿过x轴。
③当α→-1/T时,,说明相平面上下无穷远处的相轨迹斜率为-1/T。
最后根据等倾线作图法可得其概略相轨迹如图7-3所示。
图7-3 系统的概略相轨迹(4)求得令切线斜率,则可得等倾线方程为,即可见等倾线为一簇水平线。
①当α=0时,x=M,则该等倾线亦为一条相轨迹,因相轨迹互不相交,故其他相轨迹均以此线为渐近线。
②当α→∞时,,表明相轨迹垂直穿过x轴。
③当α→-1/T时,,说明相平面上下无穷远处的相轨迹斜率为-1/T。
最后根据等倾线作图法可得其概略相轨迹,如图7-4所示。
图7-4 系统的概略相轨迹(5)求得运用积分法可解得相轨迹方程为为一抛物线,其概略相轨迹如图7-5所示。
图7-5 系统的概略相轨迹(6)运用积分法可解得相轨迹方程为其中c为一常数,其相轨迹如图7-6所示。
图7-6 系统的相轨迹2.非线性控制系统结构图如图7-7所示,M =1。
要使系统产生振幅A=4,频率ω=1的自振运动,试确定参数K ,τ的值。
图7-7 系统结构图解:画出和G (jω)曲线如图8.7所示,当K 改变时,只影响自振振幅A ,不改变自振频率ω;而当τ≠0时,会使自振频率降低,幅值增加。
因此可以调节K ,τ大小实现要求的自振运动。
由自振条件N (A )G (jω)=-1即将ω=1代入上式可解得K =9.93,τ=0.322图7-8 和G (jω)曲线3.设继电型控制系统结构如图7-9所示,输入r (t )=R·1(t ),c (0)=0。
第7章系统的性能分析与校正控制系统良好的稳定性是其正常工作的必要条件,在进行系统设计时往往发现设计出来的系统不能满足指标的预期要求,且有时相互矛盾。
如当提高系统的稳定精度时,其稳定性下降;反之系统有了足够稳定性时,精度又可能达不到要求,这就要求调整系统中原有的某些参数,或者在原系统中加入某些环节使其全面满足给定的设计指标要求。
7.1 频域性能指标与时域性能指标关系一个控制系统可以分为被控制对象和控制器两大部分。
被控制对象包括了执行器,它是推动负载对象的基本部分,其结构在全工作过程中,结构形式和参数属于不可变的,通常称为系统的固有部分;如何设计出一个符合系统的性能指标要求的控制器,成为反馈控制系统研究的重要内容。
这一节侧重讨论系统性能指标,根据性能指标设计控制器将在本章中讨论。
控制系统的性能包括稳定性、快速性、准确性、抗干扰能力。
分别从以下五个方面说明:(1) 稳定性指在干扰去除后,系统恢复原有工作状态的能力。
稳定性与惯性不同,惯性是系统试图保持原有运动状态的能力。
(2) 瞬态性能指系统受到输入作用后,系统输出和内部状态参数在整个时间过程中表现出来的特性。
控制系统分析与设计中,对单输入单输出系统,通常关心系统在输入作用后较短时间内,输出的结果;侧重讨论响应过渡过程中各时间指标和动态误差的变化规律。
(3)准确性能指系统受到输入作用后,系统输出和内部状态参数在足够长的时间后表现出来的特性。
主要讨论足够长时间后,系统稳态误差与系统结构及输入信号形式的关系和特征。
(4) 对参数变化的不敏感性指当系统中结构参数变化时,系统保持原有运动状态的能力。
(5) 抗噪声能力指当系统承受噪声污染后,系统保持原有运动状态的能力。
抗噪声能力是系统抗外部干扰的能力;而对参数变化的不敏感性是系统抗内部干扰的能力。
抗噪声能力强调干扰的持续作用,这一点有别于稳定性。
从控制系统工程实现的基本要求上,设计出一个性能优越的系统,其基本任务是使系统的稳定性储备充足、快速性好且被控制量准确。
1习题7-1 已知采样器的采样周期为T 秒,连续信号为(1) x(t)=te –at (2) x(t)=e -at sin ωt (3) x(t)=t 2cos ωt (4) x(t)=ta 4t求采样的离散输出信号x *(t)及离散拉氏变换x *(s)。
7-2 求下列函数的Z 变换(1) x(kt)=1-e -akT (2) x(kt)=e -aktcos ωk T (3) x(t)=t 2e -5t (4) x(t)=tsin ωt (5) G(S)=)(a s s k + (6) G(S)=)2)(1(1++s s s(7) G(s)=2)1(1ss seT S+-- (8) G(S)=)1(5+-s s eTS7-3 求下列函数x(z)的原函数 (1) X(Z)=)5)(1(6++z z z(2) X(Z)=11+z(3) X(Z)=2)2)(1(++z z z(4) X(Z)=)1)(6.0(2--z z z7-4 求题图T=1秒。
Y(Z)s1题图7-1 题7-4的采样系统7-5 题 图7-2所示的采样系统采样周期T=1秒。
求 (1) 系统的脉冲传递函数G (Z )=)()(Z R Z Y(2) 当输入r (t )=1(t )时,求y*(t)y*(t)r (t) y (t)题图7-2 题7-5的采样系统7-6 对题图7-2所示采样系统计算T=0.1秒,T=0.5秒时采样系统的输出y*(t )。
7-7 求题图7-3所示系统的脉冲传递函数。
y*(t)r (t) y (t) 题图7-3 题7-7所示采样系统7-8 求题图7-4所示系统脉冲传递函数或输出Z 变换表达式。
y*(t)r (t) y (t)题图7-4 题7-8所示采样系统7-9 求题图7-5所示采样系统输出的Z 变换表达式Y (Z )。
y*(t) r (t) y (t)题图7-5 题7-9所示采样系统7-10 已知采样系统如题图7-6,采样周期T=0.5秒 (1) 判别系统稳定性。
⾃动控制原理试题有参考答案解析⼀、填空题(每空 1 分,共15分)1、反馈控制⼜称偏差控制,其控制作⽤是通过给定值与反馈量的差值进⾏的。
2、复合控制有两种基本形式:即按输⼊的前馈复合控制和按扰动的前馈复合控制。
3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联⽅式连接,其等效传递函数为()G s ,则G(s)为G 1(s)+G 2(s)(⽤G 1(s)与G 2(s) 表⽰)。
4、典型⼆阶系统极点分布如图1所⽰,则⽆阻尼⾃然频率=n ω 1.414 ,阻尼⽐=ξ 0.707 ,该系统的特征⽅程为 2220s s ++= ,该系统的单位阶跃响应曲线为衰减振荡。
5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+,则该系统的传递函数G(s)为1050.20.5s s s s+++。
6、根轨迹起始于开环极点,终⽌于开环零点。
7、设某最⼩相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为(1)(1)K s s Ts τ++。
1、在⽔箱⽔温控制系统中,受控对象为⽔箱,被控量为⽔温。
2、⾃动控制系统有两种基本控制⽅式,当控制装置与受控对象之间只有顺向作⽤⽽⽆反向联系时,称为开环控制系统;当控制装置与受控对象之间不但有顺向作⽤⽽且还有反向联系时,称为闭环控制系统;含有测速发电机的电动机速度控制系统,属于闭环控制系统。
3、稳定是对控制系统最基本的要求,若⼀个控制系统的响应曲线为衰减振荡,则该系统稳定。
判断⼀个闭环线性控制系统是否稳定,在时域分析中采⽤劳斯判据;在频域分析中采⽤奈奎斯特判据。
4、传递函数是指在零初始条件下、线性定常控制系统的输出拉⽒变换与输⼊拉⽒变换之⽐。
5、设系统的开环传递函数为2(1)(1)K s s Ts τ++,则其开环幅频特性为2222211K T τωωω++;相频特性为arctan 180arctan T τωω--(或:2180arctan1T T τωωτω---+) 。
自动控制原理试-7(总分:100.00,做题时间:90分钟)一、(总题数:22,分数:100.00)1.试确定当p与g为何值时下列系统可控,为何值时可观测。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:系统的能控性矩阵为因为rankS=2=n,则p 2 +p-12≠0,得p≠-4且p≠3。
系统的能观性矩阵因为rankQ=2=n,则12q 2 -q-1≠0,得且。
2.将下列状态方程化为能控标准型(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:因为|S|≠0,所以系统可控。
构造非奇异性矩阵易得P 1 =(2 0 -1)则P 2 =(0 1 0),P 3 =(-1 0 1)所以所以能控标准型为3.将下列状态方程和输出方程化为能观标准型。
y=[-1 1]x(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:系统能观性矩阵,求得,最后一列为。
B 0 =0,C 0 =CP=(0 1)所以4.验证如下系统能控性,并进行结构分解。
y(t)=[1 -1 1]x(t)(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:能控性矩阵为,rankS=2<3故系统不可控。
选出线性无关的前两列,附加任意列矢量(0 1 0) T,构成非奇异变换矩阵T -1,则有令,则有故系统的能控性结构分解为5.验证题的能观性,并进行结构分解。
y(t)=[1 -1 1]x(t)(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:系统的能观性矩阵为,rankQ=2<n系统不可观,取Q的两行和(0 0 1)构成非奇异矩阵T,则故系统的可观结构分解表达式为6.已知系统传递函数为试求系统可控不可观测、可观测不可控、不可控不可观测的动态方程。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:(1)可控不可观:列写可控标准型,即(2)可观不可控:列写可观标准型,即(3)取不可观不可控的状态变量为x 2,所以,系统的不可控不可观的动态方程为7.试用李雅普诺夫稳定性定理判断下列系统在平衡状态的稳定性。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:平衡状态X e =0;令P 1 =-4<0,P 2 =12>0,P 3 =-12<0所以V(x)负定,又,故系统在原点是大范围渐进稳定的。
8.试用李雅普诺夫第二方法判断如下系统其在平衡状态的稳定性。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:平衡点(0 0)取,则因为P 1 =-2,|P|=12-9=3>0,所以V(x)负定,又,故系统是大范围渐进稳定的。
设系统状态方程为(分数:12.00)(1).当取Q=I时,求P。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:取Q=I,则由A T P+PA=-Q得整理,得(2).若选Q为正半定矩阵时,求Q及对应的P。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:取,Q正半定,同理,有整理,得(3).并判断系统的稳定性。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:对于第一小题中的矩阵P,P 11<0,P 22<0,P 33需要0,矩阵P不定,故系统不渐定稳定。
考虑到A阵|λI-A|=(λ+1)2 (λ-2)=0,λ1 =2>0,所以系统不稳定。
9.给定系统的传递函数为试确定状态反馈控制律,使闭环极点为-2,-4,-7。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:系统可控,可控标准型为设状态反馈矩阵k=(k 0 k 1 k 2 )则状态反馈系统特征方程为期望系统的特征方程为(λ+2)(λ+4)(λ+7)=λ2 +3λ2 +50λ+56比较两个特征方程,由同幂项系数相同,得因此满足系统要求的状态反馈阵为k=(56 18 1)10.给定系统的状态空间表达式为y(t)=[2 -1]x(t)设计一个具有特征值为-10,-10的全维状态观测器。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:设计全维状态观测器:观测器的期望特征多项式为λ*(s)=(s+10)(s+10)=s 2 +20s+100与期望特征多项式比较,得所以11.给定系统的传递函数为试问能否用状态反馈将函数变为(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:原系统写成可控标准型,即y=(-2 1 1)x假设可以实现期望的系统,设状态反馈阵为k=(k 0 k 1 k 2 )则状态反馈特征方程为期望系统所以期望的特征方程为f*(s)=s 2 +7s 2 +16s+12比较两特征方程,得状态反馈阵为k=(18 21 5)所以可以用状态反馈实现G k (s)。
状态反馈为u=-(18 21 5)x12.已知x(0)=0,x(1)=1,试求使泛函J取极值的轨迹x*(t),并判别泛函极值的性质(极大/极小值)。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:构造拉格朗日函数根据欧拉方程,得即,则x=t 3 +at+b由边界条件x(0)=0,x(1)=1,得x*=t 3。
此时泛函极值为最小值。
13.,x(0)=3,x(2)=0,求u*(t)使(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:构造拉格朗日函数由欧拉方程,得即2u+λ=0,-λ+λ=0所以又x(0)=3,x(2)=0,得14.,x 1 (2)=0,求u*(t)使(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:构造哈密顿函数协态方程为故λ1 (t)=a,λ2 (t)=-at+b控制方程为u 1 (t)=-a即u 2 (t)=at-b由状态方程,得所以解得c=d=1又Ψ=x 2 (t f ),由横截条件,得λ1 (2)=γ,λ2 (2)=0即2a=b联解,得所以,x( 0 )=1,x(t f )=0,求u*(t)使(分数:8.00)4.00)__________________________________________________________________________________________ 正确答案:()解析:构造哈密顿函数协态方程为即λ(t)=a控制方程为即u=-a状态方程为即x=-at+b又x(0)=1,故b=1,又x(tf)=0,,则当时,J最小,则4.00)__________________________________________________________________________________________ 正确答案:()解析:由第一小题,得u=-0,x=-at+1,当时,J最小,则15.,x(0)=1,求及u*(t)使为最小。
(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:构造哈密顿函数协态方程为得λ=-t+b控制方程为得u=t-b状态方程为得又Φ=0,Ψ=0,由横截条件,得λ(t f )=0,t f =b所以当b=2时,J最小,则,u*(t)=t-216.,x(0)=x 0,0≤u≤1,求u*(t)使(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:构造哈密顿函数要使H极大,则由协态方程由横截条件,得λ(t f )=0C=-10e -100≤t≤100,λ≥0所以u*(t)=117.,x(0)=1,|u|≤1,求u*(t)使(分数:4.00)__________________________________________________________________________________________ 正确答案:()解析:构造哈密顿函数要使H极小,则协态方程为由横截条件,得λf =0所以当时,t=1-ln2,故18.,x(0)=5,0≤u≤2,求u*(t)使α≥0)为极大。