调制器频道和频率对照表1
- 格式:doc
- 大小:179.00 KB
- 文档页数:1
Two Point Modulation一.IntroductionFM调制就是指用声音信号对载波波形的频率参数进行控制,使载波信号带有声音信息。
调频是指让高频振荡的频率随着音频信号大小而变化,常用的调频方式为:1.直接调频;2.间接调频。
1.直接调制这种方法一般用调制电压直接控制振荡器的振荡频率,使振荡频率f(t)按调制电压的规律变化。
在LC振荡器中,采用的是变容二极管实现直接调频,其电路简单,性能良好,以成为目前最广泛采用的调频电路之一,在实现线性调频的要求下,可以获的最大的频偏,但缺点就是频率稳定度差,在许多场合需要采取稳频措施或对晶体振荡进行调制。
因此延伸出来两点调制,一路音频去调变容管,另一路音频去调参考晶振。
2.间接调制通常是先将调制信号积分,然后在对载波进行调相,间接调制时,调制器与振荡器是分开的,对振荡器的影响小,频率稳定度高,但设备复杂。
二.Experiment Equipment基于PLL的两点调制的FM调制器如图1所示。
音频信号分别对锁相环路的温补压控晶振和压控振荡VCO进行调制。
图1 基于PLL的两点调制的FM调制器电路实现为:PLL选用富士通的小数分频芯片MB15E65UV,VCO为用分离器件搭建的,振荡范围在为420MHz~450MHz,环路采用经典的3介无源滤波器。
音频信号Vm(t)分两路去调制,通过调节滑阻R来调节两者的比例。
三.Experiment Process And Data1.滑阻R1调节总的进入调制的音频信号,滑阻R2调节去VCO和去REF两端的音频信号的比例。
Audio Frequency Signal图2 测试电路一输入音频信号的频率f=1KHz,幅度为3000mV,调节滑动变阻器,使其产生3KHz的频偏,并取该点做为参考点进行测试,测试结果入下表1。
(载波频率为425.00MHz)图3 随输入音频信号的频率产生的频偏的变化 从图中可以看出:1.低频部分偏离零点大,高频部分偏离小。
[编辑本段]频率调制(FM)Frequency Modulation我们习惯上用FM来指一般的调频广播(76-108MHz,在我国为87.5-108MHz、日本为76-90MHz),事实上FM也是一种调制方式,即使在短波范围内的27-30MHz之间,做为业余电台、太空、人造卫星通讯应用的波段,也有采用调频(FM)方式的。
FM radio即为调频收音机。
频率调制(FM)合成技术频率调制(FM)在电子音乐合成技术中,是最有效的合成技术之一,它最早由美国斯坦福大学约翰.卓宁(JohnChowning)博士提出。
20世纪60年代,卓宁在斯坦福大学开始尝试使用不同类型的颤音,他发现当调制信号的频率增加并超过某个点的时候,颤音效果就在调制过的声音里消失了,取而代之的是一个新的更复杂的声音。
今天看来,卓宁当时只是在完成无线电广播发射中最常用的调频技术(也就是FM广播)。
但卓宁的偶然发现,却使这种传统的调频技术在声音合成方面有了新的用武之地。
当卓宁领悟了FM调制的基本原理后,他立即开始着手研究FM理论合成技术,并在1966年成为使用FM技术制作音乐的第一人。
适合收听欣赏调频的收音机基本原理音频信号的改变往往是周期性的,一个最容易理解音频调制技术的范例是小提琴和揉弦,揉弦通过手指和手腕在琴弦上快速颤动,使琴弦的长度发生快速变化,从而最终影响小提琴声音的柔和度。
与“FM无线电波”相同,“FM合成理论”同样也有着发音体(载体)和调制体两个元素。
发音体或称载波体,是实际发出声音的频率振荡器;调制体或称调制器,负责调整变化载波所产生出来的声音。
载波频率、调制体频率以及调制数值大小,是影响FM合成理论的重要因素。
最基本的FMinstrument包括两个正弦曲线振荡器,一个是稳定不变的载波频率fc(CarrierFrequnecy)振荡器;一个是调制频率fm(ModulationFrequency)振荡器。
载波频率被加在调制振荡器的输出上。
Two Point Modulation一.IntroductionFM调制就是指用声音信号对载波波形的频率参数进行控制,使载波信号带有声音信息。
调频是指让高频振荡的频率随着音频信号大小而变化,常用的调频方式为:1.直接调频;2.间接调频。
1.直接调制这种方法一般用调制电压直接控制振荡器的振荡频率,使振荡频率f(t)按调制电压的规律变化。
在LC振荡器中,采用的是变容二极管实现直接调频,其电路简单,性能良好,以成为目前最广泛采用的调频电路之一,在实现线性调频的要求下,可以获的最大的频偏,但缺点就是频率稳定度差,在许多场合需要采取稳频措施或对晶体振荡进行调制。
因此延伸出来两点调制,一路音频去调变容管,另一路音频去调参考晶振。
2.间接调制通常是先将调制信号积分,然后在对载波进行调相,间接调制时,调制器与振荡器是分开的,对振荡器的影响小,频率稳定度高,但设备复杂。
二.Experiment Equipment基于PLL的两点调制的FM调制器如图1所示。
音频信号分别对锁相环路的温补压控晶振和压控振荡VCO进行调制。
图1 基于PLL的两点调制的FM调制器电路实现为:PLL选用富士通的小数分频芯片MB15E65UV,VCO为用分离器件搭建的,振荡范围在为420MHz~450MHz,环路采用经典的3介无源滤波器。
音频信号Vm(t)分两路去调制,通过调节滑阻R来调节两者的比例。
三.Experiment Process And Data1.滑阻R1调节总的进入调制的音频信号,滑阻R2调节去VCO和去REF两端的音频信号的比例。
Audio Frequency Signal图2 测试电路一输入音频信号的频率f=1KHz,幅度为3000mV,调节滑动变阻器,使其产生3KHz的频偏,并取该点做为参考点进行测试,测试结果入下表1。
(载波频率为425.00MHz)图3 随输入音频信号的频率产生的频偏的变化 从图中可以看出:1.低频部分偏离零点大,高频部分偏离小。
声光调制实验【实验目的】1、了解声光调制实验原理;2、研究声场与光场相互作用的物理过程;3、测量声光效应的幅度特性和偏转特性。
【实验仪器及装置】声光调制实验仪(半导体激光器、声光调制晶体、光电接收等)、示波器。
图5.1 所示为声光调制实验仪的结构框图。
由图可见,声光调制实验系统由光路与电路两大单元组成。
图5.1 声光调制实验系统框图一、光路系统由激光管(L)、声光调制晶体(AOM)与光电接收(R)、CCD接收等单元组装在精密光具座上,构成声光调制仪的光路系统。
二、电路系统除光电转换接收部件外,其余电路单元全部组装在同一主控单元之中。
图5.2 主控单元前面板图5.2为电路单元的仪器前面板图,各控制部件的作用如下:∙电源开关控制主电源,按通时开关指示灯亮,同时对半导体激光器供电。
∙解调输出插座解调信号的输出插座,可送示波器显示。
∙解调幅度旋钮用于调节解调监听与信号输出的幅度。
∙载波幅度旋钮用于调节声光调制的超声信号功率。
∙载波选择开关用于对声光调制超声源的选择:关——无声光调制80MHz——使用80MHz晶振的声光调制Ⅰ——60~80MHz 声光调制Ⅱ——80~100MHz 声光调制∙载波频率旋钮用以调节声光调制的超声信号频率。
∙调制监视插座将调制信号输出到示波器显示的插座。
(输出波形既可与解调信号进行比较,也可呈现出射光的能量分布状态)∙外调输入插座用于对声光调制的载波信号进行音频调制的插座。
(插入外来信号时1kHz内置的音频信号自动断开)∙调制幅度旋钮用以调节音频调制信号的幅度。
∙接收光强指示数字显示经光电转换后光信号大小。
∙载波电压指示数字显示声光调制的超声信号幅度。
∙载波频率指示数字显示声光调制的超声信号频率。
图5.3 控制单元后面板图5.3为电路单元的仪器后面板图,板面各插座的功能如下:∙交流电源右侧下部为标准三芯电源插座,用以连接220V交流市电,插座上方系保护电源用的熔丝。
∙至接收器与光电接收器连接的接口插座。
一、实验目的1. 理解频率调制的原理,掌握频率调制的基本方法。
2. 通过实验,观察和分析频率调制信号的特性。
3. 学习使用频率调制器,并了解其工作原理。
4. 掌握频率调制信号解调的方法。
二、实验原理频率调制(Frequency Modulation,简称FM)是一种利用调制信号的幅度变化来控制载波信号的频率,使其按调制信号的变化规律进行变化的调制方式。
频率调制具有抗干扰能力强、音质好等优点,广泛应用于广播、通信等领域。
在频率调制中,调制信号称为调制信号(Modulating Signal),载波信号称为载波(Carrier Signal)。
调制信号的频率称为调制频率(Modulating Frequency),载波的频率称为载波频率(Carrier Frequency)。
频率调制的原理可以表示为:\[ f_c(t) = f_{c0} + k_m \cdot u_m(t) \]其中,\( f_c(t) \)为调制后的频率,\( f_{c0} \)为载波频率,\( k_m \)为调制系数,\( u_m(t) \)为调制信号。
三、实验仪器与设备1. 频率调制器2. 高频信号发生器3. 低频信号发生器4. 示波器5. 频率计6. 双踪示波器7. 万用表四、实验步骤(1)连接实验仪器,确保各仪器工作正常。
(2)设置高频信号发生器,输出频率为\( f_{c0} \)的载波信号。
(3)设置低频信号发生器,输出调制信号。
2. 频率调制实验(1)将载波信号输入频率调制器,调节调制系数\( k_m \),观察调制后的频率调制信号。
(2)使用示波器观察调制信号的波形,记录调制信号的频率变化范围。
(3)使用频率计测量调制信号的频率,记录频率变化范围。
3. 频率调制信号解调实验(1)将频率调制信号输入解调器,观察解调后的信号。
(2)使用示波器观察解调信号的波形,记录解调信号的波形。
(3)使用示波器观察解调信号的频率,记录解调信号的频率。
收音机重要指标定义标准及具体测试方法基本原理:调频(FM)是用音频信号去调制高频载波的频率,使高频载波的频率随信号而有规律的变化,载波的幅度保持不变无线电广播的过程是:首先利用话筒将声音变成音频电信号,经音频放大器放大后送往调制器,对高频载波信号进行调制,从调制器输出的调副或调频信号再经过高频放大器放大后送到发射天线,将载有声音“信息”的无线电波发出。
优点:1.抗干扰能力好2.频带宽,音质好3.频道容量大,解决电台拥挤问题. 调频收音( FM ,FREQUENCY MODULATION )的测试:1.FM频率范围( FM RANGE )要求:频偏:22.5KHZ DEV 调制频率:1KHZ方法:A扭转主机台钮转最低点.B调整RF频率.使收音机得到最强的信号(失真最小)此时的频率为低端C.将台钮至高端,同样的方法得到高端频率D,低端-高端为全频覆盖范围.2 最大灵敏度( MAX SENS )要求:频偏:22.5KHZ DEV,调制频率为:1KHZ,测试频率:90MHZ、98MHZ. 106MHZ。
定义:收音机在最大音量时,输出信号强度达到标准功率时输入信号的强度要求:调制度22.5KHZ,调制频率为1KHZ方法:A.同调(使测试机与RF信号发生器的频率基本一致频率)90MHZ、98MHZ、106KHZ.失真最小B.将音量(VR)最大,变调电平(ATT)值,使毫伏表指标回到(REF O/P)时的dB数就是最大灵敏度3.30DB限噪灵敏度(30DB S\N SENS)方法:同调90MHZ、98MHZ、106MHZ.要求:调制度22.5KHZ 调制频率:1KHZ方法:A.同调(测试机与RF信号发生器的频率基本一致)频率90MHZ,98MHZ, 106MHZB首先测出它们的最大灵敏度,增加DB数,将音量调到标准输出,关掉调制度(MOD)C衰减毫伏表VTVM下降的数值刚好为30dB,看指标能否回到标准输出如果没有回到标准输出:,减少电平DB数使它达到如果超过标准输出:增加电平DB数例如:标准输出为0.632V -4DB,电平数为21DB假如衰减30BD刚好在-4DB处,然后ATT 值21DB. 21DB就是测试机的限噪灵敏度注意:测试FM的时候.高频信号发生器应连接至到收音机FM天线PCB板,输入端,断开天线拉杆天线,地线则需要接至收音机高频放大的地线,一般为PVC地线.4.中频频率/中频抑制( IF FREQUENCY/IF REJECTION)要求:调制度为22.5KHZ,调制频率为1KHZ。
目录1GSM部分 (1)1。
1常用频段介绍 (1)1。
2发射(transmitter)指标 (2)1.2.1发射功率 (2)1。
2。
2发射频谱(Output RF spectrum〈ORFS〉) (4)1。
2。
2.1调制频谱 (4)1.2.2。
2开关频谱 (5)1.2.3杂散(spurious emission) (5)1。
2.4频率误差(Frequency Error) (6)1.2。
5相位误差(Phase Error) (6)1.2.6功率时间模板(PVT) (7)1。
2接收(receiver)指标 (8)1。
2。
1接收误码率(BER) (8)2 WCDMA (9)2。
1常用频段介绍 (9)2。
2发射(Transmitter)指标 (9)2。
3接收(receiver)指标 (15)3 CDMA2000 (15)3。
1常用频段介绍 (15)3。
2发射(transmitter)指标 (16)3.3接收(receiver)指标 (19)4 TD-SCDMA部分 (20)4。
1常用频段介绍 (20)4.2发射(transmitter)指标 (20)4。
3接收指标(Receiver) (26)1GSM部分1.1常用频段介绍1.2发射(transmitter)指标1。
2。
1发射功率定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送到手机天线或收集及其天线发射的功率的平均值.测量目的:测量发射机的载波输出功率是否符合GSM规范的指标。
如果发射功率在相应的级别达不到指标要求,会造成很难打出电话的毛病,即离基站近时容易打出而离基站远时打出困难,往往表现出发射时总是提示用户重拨号码。
如果发射功率在相应的级别超出指标的要求,则会造成邻道干扰.测试方法:手机发射部分由发射信号形成电路、功率放大电路、功率控制电路三个单元组成。
GSM频段分为124个信道,功率级别为5—-—-33dBm,即LEVEL5-—-—LEVEL19共15个级别;DCS频段分为373个信道(512——--885),功率级别为0————30dBm,即LEVEL0————LEVEL15共15个级别;每个信道有15个功率等级,测试时选上、中、下三个信道对每个功率等级进行测试,每个功率等级以2dBm增减。
FM频率调制(Frequency ModulationModulation))我们习惯上用FM来指一般的调频广播(76-108MHz,在我国为87.5-108MHz、日本为76-90MHz),事实上FM也是一种调制方式,即使在短波范围内的27-30MHz之间,做为业余电台、太空、人造卫星通讯应用的波段,也有采用调频(FM)方式的。
FM radio即为调频收音机。
FM调频即收音机功能。
作为MP3的一项附加功能,从实用角度来说,现在的MP3这方面做得并不很出色,应该说还不如普通的收音机,在接收范围、精度等等方面还都有差距,只能说是一个有益的补充。
当然,如果你注重这个功能的话,也有做得不错的产品。
而在具体机型上,针对FM,不同产品还有细分,是否可以保存选定的频道、可以保存多少个频道、立体声和普通声道可以自己设定还是由机器来设定。
频率调制(FM)合成技术频率调制(FM)在电子音乐合成技术中,是最有效的合成技术之一,它最早由美国斯坦福大学约翰.卓宁(JohnChowning)博士提出。
20世纪60年代,卓宁在斯坦福大学开始尝度使用不同类型的颤音,他发现当调制信号的频率增加并超过某个点的时候,颤音效果就在调制过的声音里消失了,取而代之的是一个新的更复杂的声音。
今天看来,卓宁当时只是在完成无线电广播发射中最常用的调频技术(也就是FM广播)。
但卓宁的偶然发现,却使这种传统的调频技术在声音合成方面有了新的用武之地。
当卓宁领悟了FM调制的基本原理后,他立即开始着手研究FM理论合成技术,并在1966年成为使用FM技术制作音乐的第一人。
基本原理音频信号的改变往往是周期性的,一个最容易理解音频调制技术的范例是小提琴和揉弦,揉弦通过手指和手腕在琴弦上快速颤动,使琴弦的长度发生快速变化,从而最终影响小提琴声音的柔和度。
与“FM 无线电波”相同,“FM合成理论”同样也有着发音体(载体)和调制体两个元素。
发音体或称载波体,是实际发出声音的频率振荡器;调制体或称调制器,负责调整变化载波所产生出来的声音。
广播电视频率划分分配表(Ltk)有线电视波段划分表说明:标准电视频道是分配给电视专用的频道,允许开路电视(和有线电视)使用,在频道编号前冠以汉语拼音字母“DS”(电视Dianshi),I、III、IV和V几个波段。
I、III、IV和V分别是计有DS-1至DS-68,划分为罗马数字1、3、4和5。
原本分配给通信、导航等其他用途的无线电频段内,在有线电视中(因为在电缆中传输,不会干扰空中的信号),也可以设置电视频道,就是“有线电视增补频道”,在频道号前冠以汉语拼音字母“Z”(增补Zengbu)。
“增补频道”单独编出顺序号Z-1至Z-42。
电视机选台时屏幕上会相继显示出的“V”波段和“U”波段。
“V”波段即是甚高频VHF,是英文Very-high-frequency的缩写,其中又分为两部分:“VL”,通常包括I和A-1波段,L为英文“Low低”的第一个字母;“VH”,通常包括III和A-2、B-1波段,H为英文“High高”的第一个字母。
“U”波段,即特高频UHF,是英文Ultra-high-frequency的缩写,通常包括IV和V波段。
中国电视频道频率划分表注:下表提供的是图像载频频率。
中国电视是PALD/K制式,图像信号带宽7.25MHz,伴音载频比图像载频高6.5MHz,带宽±0.25MHz,所以每个频道带宽为8MHz,从图像载频-1.25MHz至图像载频频率+6.5MHz。
例如,3频道的图像载频频率是65.75MHz,由此可推算出其伴音载频频率是72.25MHz,频率范围是64.5-72.5MHz。
场频25Hz,行频15625Hz。
频段划分及主要用途2.我国陆地移动无线电业务频率划分。
实验一、调频波的调制与解调一、实验内容1.调频波的调制2.调频波的解调二、实验目的和要求1.熟悉MATLAB系统的基本使用方法2.掌握调制原理和调频波的调制方法3.掌握解调原理和调频波的解调方法三、预习要求1.熟悉有关调频的调制和解调原理2.熟悉鉴频器解调的方法并了解锁相环解调四、实验设备〔软、硬件〕1.MATLAB软件通信工具箱,SIMULINK2.电脑五、实验注意事项通信仿真的过程可以分为仿真建模、实验和分析三个步骤.应该注意的是,通信系统仿真是循环往复的发展过程.也就是说,其中的三个步骤需要往复的执行几次之后,以仿真结果的成功与否判断仿真的结束.六、实验原理1调频波的调制方法1.1 调制信号的产生产生调频信号有两种方法,直接调频法和间接调频法.间接调频法就是可以通过调相间接实现调频的方法.但电路较复杂,频移小,且寄生调幅较大,通常需多次倍频使频移增加.对调频器的基本要求是调频频移大,调频特性好,寄生调幅小.所以本实验中所用的方法为直接调频法.通过一振荡器,使它的振荡频率随输f的正弦波;当输入基带入电压变化.当输入电压为零时,振荡器产生一频率为信号的电压变化时,该振荡频率也作相应的变化.1.2 调频波的调制原理与表达式此振荡器可通过VCO〔压控振荡器〕来实现.压控振荡器是一个电压——频率转化装置,振荡频率随输入控制电压线性变化.在实际应用中有限的线性控制范围体现了压控的控制特性.同时,压控振荡器的输出反馈在鉴相器上,而鉴相器反应的是相位不是频率,而这是压控相位和角频率积分关系固有的,所以需要压控的积分作用,压控输出信号的频率随输入信号幅度的变化而变化,确切的说输出信号频率域输入信号幅度成正比,若输入信号幅度大于零,输出信号频率高于中心频率;若小于零,则输出信号频率低于中心频率.从而产生所需的调频信号.利用压控振荡器作为调频器产生调频信号,模型框图如图1所示:图1 利用压控振荡器作为调制器在本章的调频仿真中,用到的调制信号为单音正弦波信号.因此,这里讨论调制信号为单频余弦波的情况.在连续波的调制中,调制载波的表达式为()cos()C C t A t ωφ=+ (1)如果幅度不变,起始相位为零时,而瞬时角频率时调制信号的线性函数,则这种调制方式为频率调制.此时瞬时角频率偏移为()FM K f t ω∆= (2)瞬时角频率为()C FM K f t ωω=+ (3)其中()f t 为调制信号,FM K 为频偏常数.由于瞬时角频率与瞬时相位之间互为微分或积分关系,即()()C FM d t K f t dtφωω==+...........................〔4〕 ()()C FM t dt t K f t dt φωω==+⎰⎰ (5)故调频信号可表达为()cos[()]FM C FM S t A t K f t dt ω=+⎰ (6)在本章的调频仿真中,用到的调制信号为单音正弦波信号.因此,这里讨论调制信号为单频余弦波的情况.调制信号为()cos m m f t A t ω= (7)如果进行频率调制,则由公式〔6〕可得调频信号表达式为〔8〕调制指数………………………………〔9〕 其中、取具体数值:采样频率fs=10000Hz振荡器的振荡频率〔即调频波的调制信号的频率〕实验要求800Hz ——17KHz初始相位信号灵敏度Kc=0.12 调频波的解调原理和解调方法解调主要方法:调频收音机的核心部件是调频解调器,其中调频解调器有三种:普通鉴频器、调频负反馈解调器和利用锁相环的调频解调器.2.1普通鉴频器的原理图2 普通鉴频器原理框图普通鉴频器是先将调频信号变换为调幅调频信号,使该调幅调频信号幅度与调频信号的瞬时频率成比例,然后再利用调幅解调器提取其包络,恢复出原基带信号.2.2调频负反馈解调器原理图3 调频负反馈解调框图在调频解调器中引入负反馈,使得加于鉴频器输入端的调频信号的调制指数很小,这样使得鉴频器前的带通滤波器的带宽是窄的,它对抑制鉴频前的加性噪声有益处.带通滤波器输出的调频信号,其调制指数远远小于接收输入调频信号的调制指数,因此带通滤波器输出的调频信号是窄带调频信号,所以调频负反馈接收机的带通滤波器与鉴频器的带宽均是窄带,低通滤波器的限制于基带信号的带宽,输出即是所需的原基带信号.调频负反馈解调器可降低门限信噪比大约3dB.2.3利用锁相环作调频解调器原理]sin cos[)(S ϕωω++=t A K t A t m m FM c FM c fmK 2K π=c f πω2c =0=ϕ图4 利用锁相环作调频解调器锁相环解调器一种低门限的解调电路,与调频负反馈不同之处在于该锁相环在锁定时,VCO 输出的调频信号与接收输入的调频信号是同频且几乎是同相的,两者的相位差甚小.环路滤波器频率相应的带宽与基带信号的带宽相同,因而对在环路滤波器输出端的噪声也进行了限带,而VCO 的输出是宽带调频信号,它的瞬时频率跟随接收频率信号的瞬时频率而变.2.4 利用锁相环解调器解调调频信号原理:在锁相环中,PFD 鉴相器检测参考信号与反馈信号之间的误差信号,是一个具有抽样性质的电路.当PFD 〔鉴相器〕检测到两个信号均有一次下降沿是,PFD 〔鉴相器〕输出一次相位误差,随后相位误差被送到低通滤波器,低通滤波器滤除其中的高频信号,计算出控制信号送入压控震荡器,压控根据控制信号输出合成信号,在反馈给PFD 〔鉴相器〕,与参考信号比较相位误差.相位误差输出一次,锁相环状态改变一次,同理不输出相位误差,则锁相环信号均不改变.其中调频负反馈以与锁相环解调器与普通鉴频器相比,它们的主要优点是可以扩展门限、降低门限信噪比,是低门限解调电路.所以首选调频负反馈以与锁相环解调器作为普通鉴频器的升级版.就本实验而言以锁相环解调器为核心器件.非相干解调器由限幅器、鉴频器和低通滤波器等组成,其方框图如图2-3所示.限幅器输入为已调频信号和噪声,限幅器是为了消除接收信号在幅度上可能出现的畸变;带通滤波器的作用是用来限制带外噪声,使调频信号顺利通过.鉴频器中的微分器把调频信号变成调幅调频波,然后由包络检波器检出包络,最后通过低通滤波器取出调制信号.设输入调频信号为: (10)〔一〕微分器的作用是把调频信号变成调幅调频波.微分器输出为 (11)))(cos()()(S ττωd m K t A t S t tf c FM t ⎰∞-+==dt t dS dt t dS t FM i d )()()(S ==))(sin()]([ττωωd m K t t K tf c fm c ⎰∞-++-=〔二〕包络检波的作用是从输出信号的幅度变化中检出调制信号.包络检波器输出为: (12)K d称为鉴频灵敏度〔V/Hz〕,是已调信号单位频偏对应的调制信号的幅度,经低通滤波器后加隔直流电容,隔除无用的直流,得: (13)连续傅里叶变换是一个特殊的把一组函数映射为另一组函数的线性算子.傅里叶变换就是把一个函数分解为组成该函数的连续频率谱.在数学分析中,信号f<t>的傅里叶变换被认为是处在频域中的信号.离散傅里叶变换的一种快速算法,简称FFT.为了节省电脑的计算时间,实现数字信号的实时处理,减少离散傅里叶变换〔DFT〕的计算量.七、实验步骤1 调频波调制Matlab仿真模拟第一步,设计原理框图:第二步,首先需要对调制信号进行积分,然后将积分过后的信号对载频信号进行调相,输出得到调频信号.第三步,具体操作:<1>通过sine wave模块〔正弦信号源〕输入幅度为5,角频率为200*pi rad/s,周期为200Hz,初始相位为90度以满足输出为单频余弦信号;<2>后跟着积分器integrator模块;作为调相的输入.<3>同时在两侧高频载波由正弦与余弦cos<2*pi*u>,sin<2*pi*u>产生,然后乘上高频载波,得到了两路载波,相乘后利用积化和差原理得到调频信号.第四步,SIMULINK模型的连接与参数配置)()]([)(S tKKKtKKt fmdcdfmcdo+=+=ωω)()(m0tKKt fmd=图6第四步,具体参数设置如下:图7 Sine wave 单频余弦信号源的参数图8 Sine wave1单频余弦信号源的参数配置图9 Sine wave2单频正弦信号源的参数配置2、解调设计的步骤与参数要求第一步,设计原理框图非相干解调器有限幅器、鉴频器和低通滤波器组成,(1)原信号的幅度为5,所以限幅器saturation 模块参数设置上下限为5,是为了消除接受信号在幅度上可能出现的畸变;(2)带通滤波器Analog Filter Design 模块截止频率为语音信号的两倍即800Hz-10000Hz,换算为角频率为2pi*f 是用来限制带外噪声.(3)鉴频器包括微分器Derivative 和包络检波器,其中的微分器把调频信号变成调幅调频波.(4)然后又通过包络检波器检出包络,包络检波器包括限幅器上下限为2和低通截止频率为300Hz,再换算成角频率填入参数(5)最后通过带通滤波器取50-150Hz,取出调制的源信号.解调的主要过程就是:非相干解调器由限幅器、鉴频器和低通滤波器组成.已调信号首先经过限幅器1,通过带通滤波器1,经包络检波器<即限幅器和低通滤波器组成>检出包络,经过带通滤波器得到解调出的信号.第二步,simulink模块的连接与参数设置图12 第一个限幅器的参数配置图13第一个带通滤波器的参数配置图14 包络检波器中的限幅器的参数配置图15 包络检波器中的低通滤波器参数配置图16 带通滤波器的参数配置调频波的仿真构建与结果分析两个仿真模块连接起来就成了调频波的调制与解调,见下图:图17 调频波的调制与解调simulink模块图18 各项仿真结果1.输入的余弦信号2.调频波3.解调后的信号图18〔2〕仿真结果1.输入的余弦信号2.调频波3.解调后的信号上面两幅图第一个调制波失真较为严重,恢复的较为理想,在积分器后插入示波器,未失真,那么是调相时的失真.第二幅图是更改了调相的两个正余弦高频载波的频率,可能是带通滤波器的参数设置超出了恢复信号的频率范围造成的,第二幅图符合解调的结果 .调频波的调制解调系统仿真分析:在此次仿真过程中,依照原有的通信Fm调频信号的调制解调原理,通过对相关模块参数的配置,经过间接调频,中心频率较为稳定,但是实现有点复杂,可能参数还是不够细腻,得到的调频波仍有一定的失真,但经过非相干解调还是能够很好地恢复,在其间不免有过很多次的更改参数,甚至有过想删除模块的冲动,但还是克服了很多的错误与不足,最后得到了比较理想的结果.八、实验报告要求1、结合实验要求,写明实验所需模块、实验原理、实验内容、画出仿真图以与步骤.2、分析实验结果.分析调频收音机输入输出信号的变化.3、通过调节不同的参数观察输出波形的变化.九、参考资料1、《通信原理教程》秦静主编中国人民公安大学 2014年9月出版2、《基于MATLAB/Simulink的系统仿真技术与应用》薛定宇,陈阳泉著清华大学 2011年出版十、思考题1、观测并分析调频波的频谱特点?2、调频波的时域波形与调幅波的时域波形有什么异同?。
iq调制器参数
IQ调制器是一种矢量调制器,它将数据分为两路,分别进行载波调制,且这两路载波相互正交。
这里的“I”和“Q”分别代表in-phase(同相)和quadrature(正交)。
IQ调制器的参数对整体性能有着重要影响。
主要参数包括:
中心频率:这是IQ调制器工作的基础频率,决定了其调制的载波频率。
调制带宽:这决定了IQ调制器可以处理的数据信号的频率范围。
输入功率:IQ调制器可以接受的最大输入功率,超过此值可能会导致调制器损坏。
输出功率:在给定输入和调制条件下,IQ调制器产生的输出信号的功率。
调制精度:这描述了IQ调制器在调制过程中的准确性和稳定性,对信号质量至关重要。
噪声系数:这是衡量IQ调制器引入噪声水平的参数,噪声系数越低,表明调制器性能越好。
线性度:IQ调制器在处理不同功率级别的信号时,保持其性能稳定的能力。
此外,IQ调制器还有一些其他的参数,如谐波失真、交调失真等,这些参数都反映了调制器的性能和质量。
需要注意的是,选择和使用IQ调制器时,需要根据具体的应用场景和需求,综合考虑以上参数,以确保调制器能够正常工作并满足性能要求。
同时,IQ调制器的参数也需要在设计和制造过程中进行严格的控制和优化,以确保其性能稳定和可靠。
总的来说,IQ调制器参数的选择和优化对于无线通信、雷达、电子对抗等领域的应用至关重要。
在实际应用中,需要根据具体需求和应用场景来选择合适的IQ调制器,并进行合理的参数配置和优化,以确保系统的性能和稳定性。
什么是调制器?中文名称:调制器英文名称:Modulator定义1:使光、电信号的某些参数(如振幅、强度、频率或相位)按照另一信号的变化规律而变化的部件。
定义2:一种制约振荡或波的某一特征量,使其随着信号或者另一振荡波的变化而变化的非线性器件。
所属学科:通信科技(一级学科);通信原理与基本技术(二级学科);调制器定义调制器是邻频调制器的简称,也常被称作射频调制器或电视调制器,现也有俗被称为共享器、是有线前端电视机房的主要设备之一;调制器是调制式直流放大电路中的一个重要环节。
由下图的方框可见:欲放大的直流信号ui经过调制器后,变为交流信号UA;再经过交流放大器放大后,最后由解调器转换成直流输出信号UO;振荡器产生开关信号UC;用于控制调制器的取样动作。
由于信号的放大任务主要由交流放大器完成,而交流放大器的零点漂移小到可以忽略不计,调制器与解调器的零漂也可以做得很小,所以,调制式直流放大器可用来放大微弱的直流信号,调制器通常有三种形式:机械调制器(机械斩波器)、晶体管调制器、场效应管调制器。
按电路形式可分为并联调制器和串、并联调制器两种,后者比前者性能优越,但结构复杂。
功能调制器最基本功能是信号调制功能。
即将视频/音频信号尽可能不失真地调制到载波上,以满足长距离传送和分配的要求。
所以,国标规定正常的调制度为87.5%。
伴音信号要于图像信号同时调制。
为避免对图像信号的干扰,将伴音信号先调制在调频副载波上,然后放在图像频率的6.5MHz频点上,组成一个完整的电视频道。
电视频道总带宽不能超过8MHz.,这就要求调制器有良好的滤波功能,滤波特性不仅要保证每个频道具有标准的残留边带特性,还要保证带外(包括邻频道内)没有任何杂散信号。
制式根据世界上彩色电视制式的不同,调制器也有PAL制调制器,NTSC制调制器,SECAM制调制器三种制式,我国采用的是PAL-D制式。
邻频调制器采用在48MHz-750MHz频段内PAL-D制式邻频调制方式固定频道输出,在电路设计上采用图像频率﹑伴音频率CPU双锁相环路(PLL)设计的思路,在器件上采用进口优质广播级调制芯片(TOSHIBA、MOTOROAL、INTECH、TEXAS INSTRUMENTS、FAIRCHILD等公司),采用高性能声表面波(SAW)滤波,残留边带抑制大于65dB,110 dBuv射频输出,电平幅度稳定,频率准确,独特滤波方式,带外输出抑止大于65dB,图象调制度、音频频偏、A/V比、射频输出电平均可调节,使用灵活,19英寸标准机箱设计,便于标准化安装。