扩散与9xxnm半导体激光器
- 格式:pdf
- 大小:1004.41 KB
- 文档页数:20
半导体激光器的应用与分类半导体光发射器是电流注入型半导体PN结光发射器件,具有体积小、重量轻、直接调制、宽带宽,转换效率高、高可靠和易于集成等特点,被广泛应用。
按照其发光特性,可分为激光二极管(又称半导体激光器或二极管激光器,Laser Diode,LD),通常光谱宽度不]于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emitting Diode,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent Dmde,SLD),光谱宽度不大于5nm(采取专门措施可不大于0.1nm);发光二极管(Light Emiltting,LED),光谱宽度一般不小于50nm;超辐射发光二极管(Superluminescent SLD),光谱宽度为30~50nm,本节重点介绍几种半导体激光器,钽电容简要介绍超辐射发光二极管。
半导体激光器的分类有多种方法。
按波长分:中远红外激光器、近红外激光器、可见光激光器、紫外激光器等;按结构分:双异质结激光器、大光腔激光器、分布反馈激光器、垂直腔面发射激光器;按应用领域分:光通信激光器、光存储激光器、大功率泵浦激光器、引信用脉冲激光器等;按管心组合方式分:单管、阵列(线阵、面阵);按注入电流工作方式分:脉冲、连续、准连续等。
LD主要技术摄技术指标有光功率、中心波长、光谱宽度、阈值电流、工作电流、工作电压、斜率效率和电光转换效率等。
半导体激光器的光功率是指在规定驱动电流条件下输出的光功率,该指标直接与工作电流对应,这体现了半导体激光器的电流驱动特性。
如果是连续驱动条件,T491T336M004AT则输出功率就是连续光功率,如果是脉冲驱动条件,输出的光功率可用峰值功率或平均功率来衡量。
hymsm%ddz半导体激光器的中心波长是指激光器所发光谱曲线的中心点所对应的波长,通常用该指标来标称激光器的发光波长。
光谱宽度是标志个导体激光器光谱纯度的一个指标,通常用光谱曲线半高度对应的光谱全宽来表示。
半导体激光工作原理
半导体激光器是利用电子从低能级跃迁到高能级时所产生的光,由于高能级的电子数比低能级的多得多,因此光在自由电子激光中辐射的能量是很大的。
半导体激光器主要由激光器、增益介质和泵浦光源组成。
半导体激光器的增益介质主要有三种:有源区、波导、吸收腔。
其中以有源区为主要部分,其形状和材料各不相同。
激光器有源区是由金属原子构成的半导体,它是激光系统中唯一能把光能转变成机械能和化学能的部分,也是影响激光特性的重要因素之一。
有源区还起着将泵浦光源发射出来的光(指激光器内部发射出来的光)与增益介质中传输过来的光(指增益介质发射出来的光)相互耦合、吸收和转换,再由有源区发射出来的光辐射出激光器内部。
由于有源区在整个半导体激光器中起着非常重要作用,因此在选择激光器有源区时必须考虑有源区和有源区内材料的成分、尺寸和形状,使它们相互匹配,这样才能达到最佳性能。
增益介质又叫受激辐射层或吸收层。
—— 1 —1 —。
《高功率980 nm半导体激光器外延结构设计及其性能研究》篇一一、引言随着科技的进步,高功率半导体激光器在科研、工业、医疗等领域的应用越来越广泛。
其中,980 nm波段的半导体激光器因其独特的光学特性和应用价值,受到了广泛的关注。
本文将重点研究高功率980 nm半导体激光器的外延结构设计及其性能,以期为相关领域的研究和应用提供理论支持。
二、外延结构设计1. 材料选择外延结构的设计首先需要选择合适的外延材料。
考虑到高功率、高效率及稳定性等要求,我们选择了一种高电子迁移率和高热导率的材料作为基底,以保证激光器的稳定运行。
此外,还通过选择适当的掺杂元素来提高内量子效率和减少电流散溢。
2. 结构分层设计针对高功率输出和良好光束质量的需求,我们将外延结构分为多层结构。
主要包括以下部分:基底层、反射镜层、多量子阱(MQW)结构层、欧姆接触层等。
其中,多量子阱结构层是关键部分,其设计直接影响到激光器的性能。
3. 特殊结构设计为了进一步提高激光器的性能,我们设计了一些特殊结构。
例如,采用渐变折射率层以减少光在传输过程中的损耗;在多量子阱结构中引入应力层以提高内量子效率;以及在欧姆接触层中优化电极设计以提高电流注入效率等。
三、性能研究1. 实验方法我们通过分子束外延技术(MBE)和金属有机气相沉积(MOCVD)等工艺进行外延生长,并利用光刻、干湿法刻蚀等工艺制备出激光器芯片。
然后通过测试其阈值电流、斜率效率、光束质量等参数来评估其性能。
2. 实验结果及分析实验结果显示,高功率980 nm半导体激光器具有良好的光束质量和低阈值电流等特点。
与传统的半导体激光器相比,其在光功率、效率和寿命等方面都有显著的优势。
同时,我们也观察到通过引入特殊结构的设计,激光器的性能得到了进一步的提升。
例如,渐变折射率层的设计显著降低了光在传输过程中的损耗;而优化电极设计则提高了电流注入效率,从而提高了激光器的输出功率。
四、结论本文研究了高功率980 nm半导体激光器的外延结构设计及其性能。
半导体激光器原理
半导体激光器是一种基于半导体材料的激光发射装置。
它通过电流注入半导体材料中的活性层,使其产生载流子(电子和空穴)重组的过程中释放出光子。
以下是半导体激光器的基本原理:
1. P-N结构:半导体激光器通常采用P-N结构,其中P区域富含正电荷,N区域富含负电荷。
2. 电流注入:当电流从P区域注入到N区域时,电子和空穴
会在活性层中重组,形成激子(激发态)。
3. 激子衰减:激子会因为与晶格的相互作用而损失能量,进而衰减为基态激子。
4. 辐射复合:基态激子最终与活性层中的空穴重新结合,释放出光子。
这个过程称为辐射复合。
5. 光放大:光子通过多次反射在激光腔中来回传播,与活性层中的激子相互作用,不断放大。
6. 反射镜:激光腔两端分别放置高反射镜和透明窗口,高反射镜可以增加内部光子的反射使其在腔内传播,透明窗口允许激光通过。
7. 激光输出:当达到一定放大程度时,激光在透明窗口处逃逸,形成激光输出。
通过控制电流注入和激光腔的结构设计,可以调节半导体激光器的发射波长、功率等参数,以满足不同应用领域的要求。
半导体激光器的工作原理什么是半导体激光器?半导体激光器是一种基于半导体材料制造的光电器件,主要用于产生具有高度单色性和高功率的光源。
与传统光源不同,激光器可以将光线紧密地聚焦在一个小点上,并且光线的功率可以调节,是广泛应用于激光打印、医疗、通讯、显示和材料加工等领域的关键元件。
半导体激光器的结构半导体激光器通常是由多个不同材料层构成的复杂结构。
最简单的激光器结构是单个p-n结,它由p型半导体和n型半导体构成,并夹带一个锗或硅的半导体。
由于半导体的局部结构对于电子和空穴的行为非常重要,因此需要精确的设计和制造技术。
实际上,当然有更多更复杂的激光器结构,例如含量量子阱(SQW)和多量子阱(MQW)。
半导体激光器的工作原理半导体激光器的工作原理是利用电流注入击穿p-n结来实现放电并产生激光。
当n型材料中的电子和p型材料中的空穴进一步注入p-n接口时,它们将受到电子空穴复合的影响,将能量释放出来并辐射出光。
如果这个过程能够得到持续的电流注入,将产生一种光放大现象,并最终形成一个相干的激光束。
在创建激光束之前,必须确保电流仅穿过p-n结。
这种方法可以通过对p-n结进行定向(并保留损失的最小值)来实现。
因此,在激光器中,材料需要以完全纯洁的形式生长,并且都要定向,以确保无法通过的电流在整个器件中流动。
激光器器件中的外部结构也非常重要,铝或其他金属金属层可以被添加到引出电流的区域中,以确保电荷可以从外部注入。
半导体激光器的运作模式半导体激光器的运作模式通常由三种不同的模式组成:连续波(cw)模式,脉冲(pulse)模式和调制(modulated)模式。
在连续波模式中,激光器连续的产生激光,在这种模式中,我们将需要确保激光器的温度保持恒定,并且激光器所需的电流也要保持不变。
脉冲模式意味着激光器会以一种断断续续的方式工作,以打出一个高峰值功率,这种模式常用于激光打印,或者需要进行快速激光加工的应用。
最后,调制模式允许更快的切换速率,常用于在光纤通信中实现高速数据传输。
半导体激光器工作原理半导体激光器是一种利用半导体材料产生和放大光的装置,具有广泛的应用领域,如通信、医疗、制造业等。
本文将介绍半导体激光器的工作原理,包括发光机制、能带结构和激光放大过程。
一、发光机制半导体激光器的发光机制基于半导体材料的特性。
当半导体材料中的电子从较高能级跃迁到较低能级时,会释放出光子能量,产生光辐射。
这种发光过程称为“辐射复合”。
半导体材料的能带结构是理解发光机制的关键。
半导体材料的能带可以分为价带和导带,价带中填满了电子,导带中没有电子。
当外界条件改变,如施加电场或注入电流,会使得部分电子从价带跃迁到导带,也就是所谓的“激发电子”。
这些激发电子在导带中流动,形成电流,同时也会引起电子和空穴的辐射复合,产生光辐射。
二、能带结构半导体激光器的能带结构对其工作原理起着至关重要的作用。
常见的半导体材料有硅、锗、砷化镓和磷化镓等。
以砷化镓为例,其能带结构如下:(以下为能带图)在砷化镓中,导带和价带之间存在一个能隙,当激发电子进入导带并与空穴发生复合时,就会产生辐射光。
而且,砷化镓的带隙宽度较窄,使得其辐射光的波长在可见光范围内,适合用于光通信等方面。
三、激光放大过程半导体激光器的工作原理还涉及到激光放大过程,即利用外界条件将产生的光信号进行放大,形成一束强光。
半导体激光器的放大过程包括以下几个关键步骤:1. 注入电流:通过向半导体材料中注入电流,激发电子跃迁到导带,产生光辐射。
2. 波导结构:半导体激光器通常采用波导结构,可以将光限制在非常小的空间范围内,增强光的强度。
3. 反射镜:在波导的一端加上一个半反射镜,在另一端加上一个高反射镜。
光在波导中传播时,会反射多次,形成光的干涉现象。
4. 光放大:由于光在波导中反射多次,其中某些光通过辐射复合产生的区域,会得到激光放大。
5. 激光输出:当光在波导中得到足够的放大并逃逸出来时,就形成了一束强光,输出到外界环境中。
通过以上步骤,半导体激光器能够实现对输入信号的放大,并输出为一束强光,具有很高的方向性和单色性。
半导体激光器分类半导体激光器是一种利用半导体材料发射激光的器件,广泛应用于通信、医疗、材料加工等领域。
根据工作原理和结构特点的不同,半导体激光器可以分为多种类型。
一种常见的分类方法是按照激光器的发射波长来划分。
根据波长的不同,可以将半导体激光器分为红外激光器、可见光激光器和紫外激光器。
红外激光器的波长范围通常在850纳米以上,可见光激光器的波长范围在400-700纳米之间,而紫外激光器则在400纳米以下。
不同波长的激光器在应用中具有各自的优势,红外激光器常用于光通信和激光雷达,可见光激光器常用于显示技术和医疗美容,紫外激光器则常用于半导体制造和科学研究领域。
另一种常见的分类方法是按照激光器的结构来划分。
半导体激光器的结构多样,常见的包括边发射激光器、面发射激光器和垂直腔面发射激光器。
边发射激光器是最早出现的半导体激光器,其激光沿着半导体材料的边缘传播。
面发射激光器则通过在半导体材料表面刻蚀出反射镜结构来实现激光输出。
垂直腔面发射激光器是一种结构复杂但性能优越的半导体激光器,其激光从器件的顶部垂直发射,具有较高的功率和较窄的光谱宽度。
半导体激光器还可以根据工作方式来分类。
常见的工作方式包括连续波激光器和脉冲激光器。
连续波激光器持续不断地输出激光,适用于需要稳定输出功率的应用,如医疗激光手术和材料加工。
脉冲激光器则以脉冲的形式输出激光,适用于需要高峰值功率的应用,如激光雷达和激光打印。
总的来说,半导体激光器是一种功能强大、应用广泛的光电器件,不同类型的半导体激光器在波长、结构和工作方式上各有特点,可以根据具体应用需求选择合适的类型。
随着科技的不断发展,半导体激光器将在更多领域展现出其独特的优势,为人类生活和工作带来更多便利和可能。
半导体激光器的近场分布是指LD发光面上的辐射强度分布,即反映P-N结上光强的分布;而远场分布则是指远离激光器无穷远处的辐射强度分布(光强与角度的分布)。
远场分布是近场分布的富氏(Fourie r)变换。
半导体激光器的模式分为空间模和纵模(轴模)。
前者描述围绕输出光束轴线某处光强分布,或者是空间几何位置上的光强(或者光功率)的分布,也称为远场分布;后者则表示是一种频谱,它反映所发射的激光其功率在不同频率(或者波长)分量上的分布。
两者都可能是单模或者出现多个模式(多模)。
边发射半导体激光器具有非圆对称的波导结构,而且在垂直于结平面方向(称横向)和平行于结平面方向(称侧向)有不同的波导结构和光场限制。
横向都是由双异质结构成的折射率波导结构来限制光场;而在侧向,则可由折射率导引结构或增益导引结构,大功率半导体激光器大多采用增益波导结构。
因此半导体激光器的空间模式又有横模和侧模之分。
如图5-1表示了这两种空间模式。
图1 半导体激光器的横模与侧模由于有源层厚度都很小(约为0.15µm),根据平板波导原理,在横向LD都能保证单横模输出;而在侧向,由于其宽度相对较大,因而可能出现多侧模。
如果在这两个方向都能以单模(或称基模)工作,则输出为理想的TE00模,此时光强峰值在光束中心且呈“单瓣”。
这种光束的发散角最小,亮度最高,能实现与单模光纤的高效率耦合,也能通过简单的光学系统聚焦到很小的斑点,这对激光器的应用是非常有利的。
相反,若LD工作在多侧模下,则其发光面上的光场(即近场)在侧向表现出多光丝,好似一些并行的发光丝,而其远场分布则相当复杂。
对于发光尺寸为1×50µm 的半导体激光器,沿1µm方向称为快轴方向,沿50µm方向称为慢轴方向。
在快轴方向光束横截面内光强基本上按正弦(余弦)函数形式分布。
半导体激光器的发散角是光束的基本参数,其定义为远场平面上光强为峰值一半处的两点相对于发光点的夹角。
半导体激光器工作原理及基本结构半导体材料的带隙能级结构:半导体材料有一种特殊的能带结构,即价带和导带之间的能带隙。
在室温下,绝大多数的电子都位于价带中,而导带中的电子很少。
当半导体材料被外加能量(如电子或光子)激发时,部分价带中的电子可以跃迁到导带中,形成电子空穴对(即一个自由电子和一个电子准正空穴)。
基本结构:1.活性层:活性层是半导体激光器中的关键组成部分,由两种不同的半导体材料组成,通常是p型半导体和n型半导体。
活性层的主要作用是在激发能量下产生电子空穴对。
2.限制层:限制层位于活性层的两侧,通过选择性的掺杂和选用合适的材料,限制层能够限定和增强光场在活性层中的传播。
3.p型区和n型区:p型区和n型区分别为半导体激光器提供正负载流子。
其中p型区富含准正空穴,n型区富含自由电子。
这种介质结构导致了在活性层中形成电子与准正空穴的往复跃迁。
工作原理:1.连续工作模式:(1)原始激发:在激光器的活性层中,通过电流或光激励,会使得电子和准正空穴对被激发到导带和价带之间,产生电子空穴对。
(2)产生反映:电子和准正空穴对在原地跃迁,产生辐射效应。
由于受到限制层的调控,只有在活性层的中央区域产生的光才能被放大。
(3)光放大:放大的光通过反射和吸收来回往复传播,不断增强。
当光子数目经过数次放大后超过临界值,就会发生光放大。
(4)光输出:当光子数目增加到一定程度时,会反射出一部分光线,形成输出激光。
2.脉冲工作模式:与连续工作模式相比,脉冲工作模式中,外加的激发电流或光脉冲的时间和强度较短,产生的激光输出也更为短暂和高强度。
脉冲工作模式在通信、医疗和材料加工等领域有广泛应用。
总结:半导体激光器利用半导体材料的带隙能级结构和电子之间的跃迁来产生激光。
其基本结构由活性层、限制层、p型区和n型区组成。
在连续工作模式中,通过激励产生电子空穴对,在活性层中逐渐放大并输出激光。
在脉冲工作模式中,产生的激发脉冲时间短暂,输出的激光也对应短暂和高强度的脉冲。