24.3正多边形和圆教学设计
- 格式:docx
- 大小:64.74 KB
- 文档页数:4
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。
本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。
本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。
但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。
2.难点:正多边形和圆的关系,圆的性质和应用。
五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。
4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。
六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。
2.教学素材:准备相关的实物、图片等教学素材。
3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。
七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。
课题24.3 正多边形和圆授课人 安远县濂江中学 刘志超教学目标知识技能 使学生理解正多边形概念,初步掌握正多边形与圆的关系. 数学思考使学生丰富对正多边形的认识,发展学生的形象思维.问题解决 教师引导学生将实际问题转化为数学问题,将多边形问题转化为三角形问题,发展学生的实践能力和创新精神.情感态度通过认识与探究正多边形到实际应用等实践活动,使学生在数学学习活动中获得成功的体验,建立自信心.教学重点理解掌握正多边形的半径、中心角、边心距、边相关概念及其中的关系.教学难点 探索正多边形和圆的关系.授课类型 新授课课 时第一课时教具多媒体教 学 活 动教学步骤师生活动设计意图 回顾与思考((积木展示) 问题: 1. 在这个摩天轮上你找到了哪几种形状的积木?. 2. 什么样的多边形是正多边形? 3.你对正多边形有多少了解?4.学生思考:菱形是正多边形吗?矩形是正多边形吗? 师生活动:教师引导学生进行解答,并适时作出补充和讲解.回顾以前学习过的且对本节课的学习有基础作用的知识,为学习新知打下基础.活动一: 创设情境 导入新课(1)请再观察摩天轮,你还能找出正多边形吗? (2)把正多边形的边数增多,它的形状有何特点?师生活动:教师实物展示及几何画板软件演示,引导学生观察、思考,学生讨论、交流,发表各自见解.教师关注:①学生能否从图案中找出正多边形;②学生能否从动画中发现正多边形和圆的关系.创设情境,激发学生主动将圆的知识与正多边形联系起来,激发学生积极探索,调动学生学习积极性. 活动二: 1.探究新知问题1:将一个圆分为五等份,依次连接各分点得到一个五边形,这五边形一定是正多边形吗?如果是,请你证明这个结论. 师生活动:教师演示作图并引导学生从正多边形的定义入手证明,引导学生观察、分析,教师指导学生完成证明过程. 教师在学生思考、交流的基础上板书证明过程.问题2:如果将圆n 等分,依次连接各顶点得到一个n 边形,这个n 边形一定是正n 边形吗?师生活动:学生思考,小组内交流、讨论,教师根据学生回1.将结论由特殊推广到一般,符合学生的认知规律,并交给学生一种研究问题的方法. 2.教学中,实践探究交流新知答进行总结.教师重点关注:学生能否按照证明圆内接正五边形的方法证明圆内接正n边形.问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接正多边形呢?如果是为什么?请说明,不是,举出反例.师生活动:学生讨论,思考回答,教师进行总结讲解.教师重点关注:学生能否利用正多边形的定义进行判断;学生能否由圆内接正多边形各边相等得到弦相等,及弦所对的弧相等;学生能否列举反例说明各角相等的圆内接多边形不一定是正多边形.2.应用新知活动一:教师演示课件,给出正多边形的中心、半径、中心角等概念.教师提出问题:(1)正五边形的5条半径把它分割成几个三角形?它们有什么关系?(2)正n边形的n条半径有什么关系?(3)正多边形的中心角怎么计算?(4)正多边形的中心角、内角、外角有什么关系?师生活动:学生在教师的引导下,结合图形,得到结论.活动二:举手抢答(1)圆内接正十边形的中心角是_____度.(2)如果一个圆内接正多边形的中心角是120°,那么这是个正____边形.师生活动:学生应用定义进行角度计算抢答,训练中心角的计算能力.活动三:边心距定义的生成教师提出问题:(1)正三边形半径R=2,请求出边BC.(引出边心距定义)(2)画出正三边形的所有边心距,这些边心距相等吗?有几个直角三角形?正n边形呢?(3)正多边形的边长a与边心距r、半径R有什么等量关系?师生活动:由学生计算作图引出边心距定义,学生在教师的引导下,结合图形,得到结论.活动四:正多边形相关线段、角度的综合(1)圆内接正四边形ABCD,∠BOC=________度;(2)若半径为R,①求边BC(用含R的式子表示);②求边心距OE(用含R的式子表示).(3)圆内接正六边形ABCDEF,∠BOC=________度,你发现正六边形ABCDEF的半径与边长具有什么数量关系?为什么?师生活动:学生思考,动手验证,教师引导,得出结论.使学生明确圆内正多边形必须满足各边相等,各角相等,培养学生严谨的态度和思维批判性.3.学生通过对半径的探究了解正多边形,进而对正多边形问题中各类角的关系知其所以然,为角度计算问题立好根基.4.通过对边心距的探究,让学生进一步得到正多边形内外心重合,以及解决正多边形问题转化为解直角三角形问题.活动三:开放训练体现应用【应用举例】(课件展示)例1:如图,有一个亭子,它的地基是半径为4m的正六边形,求地基的周长.活动一:正多边形的周长问题探究(1)教师引导学生画出图形,进行分析,完成例题的解答.(2)提出问题:边长为a的正n边形的周长又怎么求?师生活动:小组讨论探究,成果展示,得出一般性的结论.活动二:正边形的面积探究(1)要求地基的面积,你又有什么办法?(2)解决正多边形计算的关键你认为在于什么?师生活动:小组讨论,进行面积求法开放探究,教师参与学生交流后小组成果展示,师生共同归纳计算办法.【拓展提升】1.正六边形ABCDEF内接于⊙O,则∠BEC的度数是_______.题1图题2图题3图2.将正六边形ABCDEF补成如图所示的矩形MNPQ,已知矩形的边NP=8,求BC.3.如图,M,N分别是正六边形AB,BC上的点,且BM=CN.(1)求∠MON的度数;(2)试说明四边形OMBN的面积与正六边形面积之间的关系.师生活动:学生讨论,成果展示,教师引导体会其中的数形结合、方程、化归思想.1.将正多边形的中心、半径、中心角、边心距等一些量集中在一个三角形中研究,可以利用勾股定理进行计算,进而能够求得正多边形的所有量.2.教师引导学生将实际问题转化为数学问题,将多边形问题转化为三角形问题.3通过对面积开放性探究,将正六边形与正三边形结合,了解正多边形的对称性.活动四:课堂总结反思1.课堂总结:(1)谈一谈这节课中,你有哪些收获?解决问题的方法是什么?(2)解决问题的方法是什么?2.布置作业:教科书第108---109页1,6题.巩固、梳理所学知识,对学生进行鼓励、进行思想教育.【板书设计】24.3正多边形和圆各边相等一、圆等弧各角相等提纲挈领,重点突出正多边形内角 半径R, 边心距四、周长l= na 【教学反思】 )180.n ︒22()2a R+=。
24.3 正多边形和圆一、【教学目标】知识与能力:了解正多边形与圆的关系,以及正多边形的中心、半径、边心距、中心角等概念.经历探索正多边形与圆的关系过程,学会运用圆的有关知识解决问题,并能运用正多边形的知识解决圆的有关计算问题.过程与方法:学生在探讨正多边形和圆的关系的学习过程中,体会到要善于发现和解决问题,提升学生的观察、比较、分析、概括及归纳的思维能力和推理能力.情感态度与价值观:学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又应用于生活,体会到事物之间是相互联系,相互作用的.重点:了解正多边形与圆的关系,了解正多边形的有关概念.难点:探索正多边形与圆的关系.二、【教学过程】一、巩固基础,复习回顾问题1:什么是多边形?问题2:多边形的内角和、外角和分别是多少?问题3:什么样的多边形是正多边形?问题4:正多边形都有哪些性质?(数量关系和对称性)教师演示课件,提出问题,引导学生观察、思考.学生独立思考,发表各自见解.二、情景引入,探索新知1、提出问题你知道正多边形与圆的关系吗?正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.例题:以圆内接正五边形为例证明:如图,把⊙O分成相等的5段弧,依次连接各分点得到正五边形ABCDE.问题:如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗?定义:把圆分成n(n≥3)等份:依次连结各分点所得的多边形是这个圆的内接正多边形.教师演示课件,把圆分成相等的5段弧,依次连接各个分点得到五边形.教师引导学生从正多边形的定义入手,证明多边形各边都相等,各角都相等,引导学生观察、分析.教师关注引导细节:1、学生能否看出:将圆分成五等份,可以得到5段相等的弧,这些弧所对的弦也是相等的,这些弦就是五边形的各边,进而证明五边形的各边相等;2、学生能否观察发现圆内接五边形的各内角都是圆周角;3、学生能否发现每一个圆周角所对弧都是三等份的弧;4、学生能否利用这些圆周角所对的弧都相等,证明五边形的各内角相等,从而证明圆内接五边形是正五边形.教师带领学生完成证明过程. 2、概念学习①我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心(即点O ) ②外接圆的半径叫做正多边形的半径(即OA )③正多边形每一边所对的圆心角叫做正多边形的中心角(即∠AOB ) ④中心到正多边形的一边的距离叫做正多边形的边心距(即OM ) 应用深化1. O 是正△ABC 的中心,它是△ABC 的 外接 圆的圆心。
24.3正多边形和圆教案一、【教材分析】1.通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;2.通过正多边形有关概念的教学培养学生的阅读理解能力.二、【教学流程】边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.自主探究问题一、如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、D、E、F都在这个圆上.问题二、我们以圆内接正六边形为例证明.如图所示的圆,把⊙O分成相等的6段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.问题三总结和归纳问题1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.教师提出问题学生相互讨论思考1.如何画这个图形的外接圆?2.圆与正多边形顶点以及位置关系是怎么样的?3.如何利用圆画正多形:作相等的弧外接圆与内接圆的区别和联系?在教师和和学生的探讨中解决问题:在动手操作与实践中认识问题对问题的一种升华认识对问题的梳理认识尝试应用1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.2.利用正多边形的概念和性质来画正多边形,利用手中的工具画一个边长为3cm的正五边形(1)画法(2)步骤3. 巩固训练教材P106 练习1、2、3 P108 探究题、练习.教师提出问题学生独立思考解答并板书师生探讨分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径可选做,学生独立完成一种成果的展示探讨正多边形的画法补偿提高1.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.(1)求△ABC的边AB上的高h.(2)设DN=x,且h DN NFh AB-=,当x取何值时,水池DEFN的面积最大?(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.让学生课堂讨论分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,应用圆的对称性就能圆满解决此题对不同能力学生的升华认识_h_F_D_E_C_B_A_N_GFDECBAOM解:(1)由AB ·CG =AC ·BC 得h=8610AC BC AB ⨯=g =4.8(2)当x =2.4时,S DEFN 最大(3)当S DEFN 最大时,x =2.4,此时,F 为BC 中点,在Rt △FEB 中,EF =2.4,BF =3. ∴BE =22223 2.4DE EF -=-=1.8 ∵BM =1.85,∴BM >EB ,即大树必位于欲修建的水池边上,应重新设计方案. ∵当x =2.4时,DE =5∴AD =3.2,由圆的对称性知满足条件的另一设计方案,如图所示:小结:三、【板书设计】24.3 正多边形和圆1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.四、【教后反思】《正多边形与圆》这一节的教学目标是:让学生能将正多边形的有关计算问题转化为解直角三角形的问题来解决;会用量角器或尺规等分圆、画出正多边形.通过学习使学生能认识到事物之间是普遍联系的,事物之间是可以相互转化的,并培养和训练学生的综合运用知识能力和解决实际问题的能力,渗透数形结合的思想和方法.。
24.3 正多边形和圆正多边形和圆是在学习了三角形、四边形、多边形以及圆的相关知识后的内容,是前一阶段知识的运用和提高.正多边形是一种特殊的多边形,它有一些类似于圆的特性.研究正多边形和圆的关系,掌握有关正多边形的计算是进一步学习数学及其它学科的重要基础.本课时注意培养学生观察、猜想、推理和迁移的能力以及具体到抽象,亲身体验知识的发生与发展的过程.利用正多边形和圆的位置关系,把形的问题转化成了数的问题,体现了数形结合的思想.【情景导入】(1)我国古代数学家刘徽,在公元三世纪用“割圆术”求得π的近似值为15750≈3.14,祖冲之在公元五世纪又进一步求得π的值在3.141 592 6与3.141 592 7之间,现代利用电子计算机,已有人把π的值算到小数点后几十万位.它是从圆内接正六边形开始,逐步计算所得的结果.(2)你知道正多边形和圆有什么关系吗?给你一个圆,怎样作出一个正多边形?圆中依次出现几段相等的弧?【说明与建议】 说明:通过对“割圆术”的导入,激发学生的学习兴趣和探究新知的欲望,还能让学生对古代数学的伟大成就有所了解,增强爱国热情.建议:研究正多边形和圆的时候,可以让学生回顾在同圆或等圆中,等弧所对的弦相等,所对的圆周角相等这两个结论.【复习导入】(1)观察下图中的等边三角形、正方形、正五边形、正六边形,你能说出这些图形的各自特征吗?(2)回顾:等边三角形和正方形的边、角各有什么性质? (3)正多边形的定义是什么?正多边形和圆有什么关系?【说明与建议】 说明:通过对等边三角形、正方形的回顾,加强新旧知识之间的联系,类比旧知识的学习方法、数学思想来学习新知识.建议:为了明确正多边形的概念,可以请同学们举自己在日常生活中见过的正多边形的例子(正三角形、正方形、正六边形……).命题角度1 与正多边形有关的计算1.(河池中考)如图,在正六边形ABCDEF 中,AC =23,则它的边长是(D)A .1B. 2C. 3D .22.(广元中考)如图,⊙O 是正五边形ABCDE 的外接圆,点P 是AE ︵的一点,则∠CPD 的度数是(B)A .30°B .36°C .45°D .72°3.(德阳中考)已知圆内接正三角形的面积为3,则该圆的内接正六边形的边心距是(B) A .2B .1C. 3D.324.(广州中考)已知圆的半径是23,则该圆的内接正六边形的面积是(C) A .3 3B .9 3C .18 3D .36 3命题角度2 画正多边形5.(兰州中考)如图,已知⊙O ,用尺规作⊙O 的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:如图所示,四边形ABCD 即为所求作.关于圆周率π我们知道,圆的周长C =2πR.但是,你知道公式中的π值是怎样算出来的吗?实际上π=C2R ,式中圆的周长C 是可以用圆内接正多边形的周长p n 来近似代替的.如图,当圆内接正n 边形的边数不断地成倍增大时,它的周长p n 就不断地增大,并会越来越接近于圆的周长C ,于是p n 2R 的值越来越接近C2R的值.如果半径为R 的圆内接正n 边形的边长为a n ,可以求得它的内接正2n 边形的边长这个公式叫倍边公式,利用它就可以算出半径为R 的圆内接正2n 、4n 、8n 、…边形的边长,进而可计算p 2n 2R 、p 4n 2R 、p 8n 2R 、…,这些值就越来越接近于圆的周长与直径的比值C2R ,这个数就是圆周率π.π的精确值是一个无限不循环小数,就是说,π是一个无理数.π=3.141 592 653 589 793…,应用时根据实际需要,取π的近似值.我国古代数学家刘徽,在公元三世纪用“割圆术”求得π的近似值为15750=3.14,祖冲之在公元五世纪又进一步求得π的值在3.141 592 6与3.141 592 7之间,是当时世界上最先进的成就.现代利用电子计算机,已有人把π的值算到小数点后几十万位.下表是从圆内接正六边形开始,逐步计算所得的结果.由于C2R=π,所以C =2πR.另外,根据正n 边形的面积S n =12r n p n ,当边数n 无限增大时,r n 趋近于R ,p n 趋近于C ,所以圆的面积S =12RC =12R ·2πR =πR 2.我国许多数学家对圆周率的研究做出过很大贡献.在公元前一世纪的《周髀算经》里,已谈到“周三径一”,称之为古率.西汉末年,刘歆定圆周率为3.1547,后人称做歆率.三国时魏刘徽(公元263年),始创“割圆求周”的方法,他从圆内接正六边形算起,算到正192边形,他取3.14或15750作为圆周率,我们称3.14为徽率.到南朝祖冲之(公元429~500年)求得圆周率在3.141 592 6~3.141 592 7之间,把π=355113叫做密率,π=227叫做约率,后人称之为祖率,他所得的结果,精确到了七位小数,在当时世界上是最好的结果.【探究新知】问题1:针对【课堂引入】的问题进行探究.师生活动:教师演示作图,并引导学生从正多边形的定义入手来证明,让学生观察、分析,教师指导学生完成证明过程. 教师在学生思考、交流的基础上板书证明过程: 如图,∵AB ︵=BC ︵=CD ︵=DE ︵=EA ︵,∴AB =BC =CD =DE =EA ,BAD ︵=CAE ︵=3AB ︵. ∴∠C =∠D.同理可证:∠A =∠B =∠C =∠D =∠E , ∴五边形ABCDE 是正五边形. ∵点A ,B ,C ,D ,E 在⊙O 上, ∴五边形ABCDE 是圆内接正五边形.问题2:如果将圆n 等分,依次连接各等分点得到一个n 边形,这个n 边形一定是正n 边形吗?师生活动:学生思考,小组内交流、讨论,教师根据学生回答进行总结.教师重点关注:学生能否按照证明圆内接正五边形的方法证明圆内接正n 边形.问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?请说明理由.师生活动:学生讨论,思考回答,教师进行总结讲解.活动一:教师演示课件,给出正多边形的中心、半径、中心角、边心距等概念(如图).教师提出问题:(1)正多边形的中心角怎么计算?(2)边长a ,半径R ,边心距r 之间有什么关系? (3)正多边形的面积如何计算?师生活动:学生在教师的引导下,结合图形,得到结论: 正n 边形的中心角等于360°n ,边长a ,半径R 和边心距r 的关系为(a 2)2+r 2=R 2. 活动二:提出问题:如何把一个圆n 等分呢?师生活动:学生小组内讨论,如果把360°的圆心角n 等分,那么弧也被n 等分,即可得到正多边形. 教师引导分析:①正方形的中心角为90°,说明相邻两条半径互相垂直;②正六边形的中心角为60°,说明相邻半径和边构成的三角形是等边三角形.面积.例2 利用手中的工具求作一个边长为3 cm 的正六边形.师生活动:学生先独立解决问题,然后小组内讨论,教师鼓励学生勇于探索实践,上讲台演示,教师要重点关注学生的解题过程.图1 图2解:方法一:如图1,以3 cm 为半径作一个⊙O ,用量角器画一个等于360°÷6=60°的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,即可得到正六边形. 方法二:如图2,以 3 cm 为半径作一个⊙O ,由于正六边形的半径等于边长,所以在圆上依次截取长度等于3 cm 的弦,就可以将圆六等分,顺次连接各等分点即可. 【变式训练】在半径为2 cm 的圆上,用量角器作出它的圆内接正七边形. 解:(1)作⊙O ,使r =2 cm ; (2)计算360°7≈51.4°;(3)用量角器在圆上画一个∠AOB =51.4°; (4)在圆上依次截取BC ︵=CD ︵=DE ︵=EF ︵=FG ︵=GA ︵=AB ︵;(5)依次连接AB ,BC ,…,GA ,则七边形ABCDEFG 为所作正七边形.4.如图,正方形的边长为1 dm ,剪去四个角后成为一个正八边形.求这个正八边形的边长和面积.解:设正八边形的边长为x ,则被剪掉小直角三角形的直角边为22x , 由题意,得x +2·22x =1, 解得x =2-1.所以小直角三角形的直角边为22(2-1)=1-22. 所以正八边形的面积为12-4×12×(1-22)2=1-2×(32-2)=22-2.答:这个正八边形的边长为(2-1)dm ,面积为(22-2)dm 2.。
24.3 《正多边形和圆》教学设计教学时间2016 年12 月29 日讲课教师海沧中学蓝文英知识与技能:复习正多边形的有关概念(正多边形的中心、半径、中心角、边心距);能运用正多边形的知识解决圆的有关计算问题;掌握用等分圆周画圆的内接正多边形的方法.教学目标数学思考:把正多边形和圆的问题转化为解直角三角形问题.问题解决:通过正多边形和圆的复习教学,培养学生观察、猜想、推理、迁移、归纳能力.情感态度:通过等分圆周、构造正多边形等实践活动,使学生在数学学习活动中获得成功的体验,建立自信心.教学重点充分了解圆与正多边形的关系的基础上进行有关计算,并能通过等分圆周画圆的内接正多边形教学难点正多边形与圆相关计算的灵活应用教学方法任务驱动启发式教学,讲练结合教学过程教学活动设计意图1.定义:一个正多边形的外接圆的圆心叫做这个正多边形的,外接圆的半径叫做这个正多边形的,正多边形每一条边所对的圆心角叫做正多边形的,到正多边形一边的距离叫做正多边形的.趁热打铁:第一组:学前准备课前完成(1)如果正多边形的一个外角等于60°,那么它的边数为___ .(2)正多边形的一边所对的中心角与该正多边形的一个内角的关系是__ .B第二组:(1)在Rt△ABC中,∠C =90°. ca①已知b=6,∠A=30°,求a,c.ACb=61②已知c=4,∠A=45°,求a,b.Ac=4b③已知c=2 x,∠A=45°,求a,b.C Ba第三组:(1)画两个圆,再用圆规和直尺作出正方形和正六边形.追问:圆的内接正六边形的边长与半径有什么关系?1. 复习回顾“正多边形和圆的关系”1.引出课题①正多边形的定义(生举例,师展示图片)’②圆的内接正多边形,怎么得到?播放短视频(分钟1-2)2.观察短视频,③完成简单辨析:激情引趣。
师:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么;如果不是,举反例练:把一个圆n 等分,连接各分点所得到的多边形创设情境是,它的中心角等于__ 360n __.导入新课④进而得到圆内接正多边形的画法:等分圆周利用量角器等分圆心角的方法等分圆周尺规作正方形、正六边形等⑤正多边形的对称性(当边数为n)正n 边形都是轴对称图形,一个正n 边形共有条对称轴,每条对称轴都通过n 边形的中心。
人教版数学九年级上册24.3《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人教版数学九年级上册第24.3节的内容。
本节内容是在学生已经掌握了圆的概念和性质的基础上进行学习的,主要让学生了解正多边形的定义、性质及其与圆的关系。
通过本节内容的学习,学生能够理解正多边形的对称性,掌握正多边形的计算方法,并为后续学习圆的周长、面积等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对圆的概念和性质有一定的了解。
但是,对于正多边形的定义和性质,以及与圆的关系,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、思考、探究,逐步理解正多边形的性质,并能够运用到实际问题中。
三. 教学目标1.知识与技能:让学生掌握正多边形的定义、性质及其与圆的关系,能够运用正多边形的性质解决实际问题。
2.过程与方法:通过观察、思考、探究,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:正多边形的定义、性质及其与圆的关系。
2.难点:正多边形的计算方法及其在实际问题中的应用。
五. 教学方法1.引导发现法:通过引导学生观察、思考、探究,发现正多边形的性质及其与圆的关系。
2.案例分析法:通过分析实际问题,让学生学会运用正多边形的性质解决实际问题。
3.小组合作学习:让学生在小组内进行讨论、交流,培养团队合作精神。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。
2.教学素材:准备一些关于正多边形的实际问题,用于巩固和拓展。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中常见的正多边形,如正方形、正三角形等,引导学生关注正多边形,激发学生的学习兴趣。
2.呈现(10分钟)介绍正多边形的定义和性质,引导学生通过观察、思考,发现正多边形的特点。
3.操练(10分钟)让学生分组讨论,分析一些实际问题,运用正多边形的性质解决问题。
人教版数学九年级上册教学设计24.3《正多边形和圆》一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第三节的内容。
本节课主要介绍了正多边形的定义、性质以及与圆的关系。
通过本节课的学习,学生能够理解正多边形的概念,掌握正多边形的性质,并能运用这些性质解决一些实际问题。
教材中提供了丰富的实例和图示,有助于学生直观地理解和掌握知识。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。
但是,对于正多边形的定义和性质,以及与圆的关系,可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、思考、探究,逐步理解和掌握知识。
三. 教学目标1.了解正多边形的定义和性质。
2.掌握正多边形与圆的关系。
3.能够运用正多边形的性质解决一些实际问题。
4.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.正多边形的定义和性质。
2.正多边形与圆的关系。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探究,自主地学习和掌握知识。
2.利用多媒体辅助教学,展示正多边形的实例和图示,增强学生的直观感受。
3.采用小组合作学习的方式,鼓励学生互相交流、讨论,共同解决问题。
六. 教学准备1.多媒体教学设备。
2.正多边形的实例和图示。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些正多边形的实例,如正方形、正三角形等,引导学生观察并思考:这些图形有什么特点?它们之间有什么联系?2.呈现(10分钟)介绍正多边形的定义和性质,以及正多边形与圆的关系。
通过图示和实例,让学生直观地理解和掌握知识。
3.操练(10分钟)让学生分组讨论,每组选择一个正多边形,分析其性质,并尝试用语言和图形表达出来。
然后,各组汇报自己的成果,其他组进行评价和补充。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括判断题、填空题和解答题,内容涉及正多边形的性质和与圆的关系。
5.拓展(10分钟)让学生思考:如何判断一个多边形是否为正多边形?引导学生运用已学的知识,探索和解决问题。
人教版数学九年级上册24.3.2《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第三节的内容。
本节内容是在学生掌握了圆的概念、圆的性质、弧、弦、圆心角的基础上进行的。
本节主要介绍正多边形的定义、性质及正多边形与圆的关系。
教材通过生活中的实例引入正多边形和圆的概念,引导学生探究正多边形的性质,从而发现正多边形与圆的内在联系。
二. 学情分析初三学生已经具备了一定的几何基础知识,对圆的概念、性质有所了解。
但是,对于正多边形的定义、性质以及与圆的关系可能还比较模糊。
因此,在教学过程中,需要引导学生通过观察、操作、思考、探究等活动,自主发现正多边形的性质,理解正多边形与圆的关系。
三. 教学目标1.了解正多边形的定义、性质及正多边形与圆的关系。
2.能运用正多边形的性质解决实际问题。
3.培养学生的观察能力、操作能力、思考能力和探究能力。
四. 教学重难点1.正多边形的定义、性质。
2.正多边形与圆的关系。
五. 教学方法采用问题驱动法、探究法、合作学习法等,引导学生通过观察、操作、思考、探究等活动,自主发现正多边形的性质,理解正多边形与圆的关系。
六. 教学准备1.准备一些正多边形的图片,如正三角形、正方形、正五边形等。
2.准备一些圆的图片,如圆桌、轮子等。
3.准备黑板、粉笔。
七. 教学过程1.导入(5分钟)利用多媒体展示一些正多边形的图片,如正三角形、正方形、正五边形等,引导学生观察这些图形的特点。
同时,展示一些圆的图片,如圆桌、轮子等,引导学生思考圆的特点。
2.呈现(10分钟)教师在黑板上画出一个正三角形,提问:“这个图形是什么?”学生回答:“正三角形。
”教师继续提问:“正三角形有哪些性质?”学生回答:“正三角形的三个角都相等,三条边都相等。
”教师引导学生观察正三角形的特点,然后引入正多边形的定义:“像正三角形这样的图形,所有的边都相等,所有的角都相等,我们称之为正多边形。
”3.操练(10分钟)教师发放一些正多边形的卡片,让学生分组讨论,找出正多边形的性质。