化学专业英语之化学文献检索
- 格式:docx
- 大小:19.55 KB
- 文档页数:8
化学工程与工艺专业英语教案第一章:绪论1.1 课程介绍本课程旨在通过学习化学工程与工艺专业英语,使学生能够熟练阅读和理解专业文献,提高专业英语阅读能力。
1.2 教学目标通过本章的学习,学生应掌握专业英语的基本阅读技巧,了解化学工程与工艺专业英语的主要内容。
1.3 教学内容1.3.1 化学工程与工艺专业英语的重要性和应用范围1.3.2 专业英语的基本阅读技巧1.3.3 专业英语文章的结构和常用表达方式第二章:化工原理2.1 流体力学2.1.1 流体的性质2.1.2 流体流动的连续性方程2.1.3 流体的阻力与压力降2.2 热力学2.2.1 热力学基本概念2.2.2 热力学第一定律2.2.3 热力学第二定律2.3 传质学2.3.1 分子扩散2.3.2 对流传质2.3.3 传质单元2.4 反应工程2.4.1 反应速率与动力学2.4.2 理想反应器2.4.3 非理想反应器第三章:化工工艺设计3.1 工艺流程设计3.1.1 工艺流程的基本概念3.1.2 工艺流程的设计原则3.1.3 工艺流程图的绘制3.2 设备设计3.2.1 常用化工设备的设计原理3.2.2 设备设计的基本步骤3.2.3 设备材料的选择3.3 工艺参数的确定3.3.1 工艺参数的概念与作用3.3.2 工艺参数的计算方法3.3.3 工艺参数的优化3.4 工艺流程的控制与优化3.4.1 工艺流程的控制原理3.4.2 常用控制参数与控制策略3.4.3 工艺流程的优化方法第四章:化学工程与工艺实验4.1 实验设计与实验方法4.1.1 实验设计的基本原则4.1.2 实验方法的选择与实施4.1.3 实验数据的处理与分析4.2 实验设备与仪器4.2.1 常用实验设备的功能与操作4.2.2 实验仪器的选择与使用4.2.3 实验安全与防护4.3 实验项目与案例分析4.3.1 典型实验项目介绍4.3.2 实验案例的分析与讨论第五章:化学工程与工艺进展5.1 新兴化工技术5.1.1 绿色化学与工艺5.1.2 生物化工技术5.1.3 纳米化工技术5.2 过程集成与优化5.2.1 过程集成原理与方法5.2.2 过程优化技术5.2.3 系统工程在化学工程中的应用5.3 化工安全与环境5.3.1 化工安全的基本概念与措施5.3.2 环境友好型化学工艺5.3.3 化工过程的污染控制与减排第六章:化工热力学6.1 热力学基础6.1.1 热力学基本定律6.1.2 状态参数与物性参数6.1.3 热力学图示与热力学曲线6.2 流体的热力学性质6.2.1 理想流体的热力学性质6.2.2 实际流体的热力学性质6.2.3 流体热力学性质的测定与计算6.3 化工过程中的热力学分析6.3.1 热力学平衡与非平衡过程6.3.2 热力学循环与热效率6.3.3 热力学在化工工艺设计中的应用第七章:化工传递过程7.1 流体力学传递7.1.1 流体流动的数学模型7.1.2 流体流动的数值模拟7.1.3 流体流动与传质的耦合过程7.2 质量传递过程7.2.1 分子扩散的基本理论7.2.2 对流传质与强化传质7.2.3 质量传递过程的计算与控制7.3 热量传递过程7.3.1 热量传递的基本方式7.3.2 热量传递的数学模型7.3.3 热量传递过程的优化与控制第八章:化工反应工程8.1 反应动力学8.1.1 化学反应速率定律8.1.2 反应机理与反应级数8.1.3 反应动力学在工艺设计中的应用8.2 反应器设计8.2.1 反应器类型与特点8.2.2 反应器设计的基本原理8.2.3 反应器设计中的数学模型与计算方法8.3 反应过程的优化与控制8.3.1 反应过程的优化策略8.3.2 反应过程的控制方法8.3.3 反应过程的监测与分析技术第九章:化工工艺计算与模拟9.1 工艺计算的基本方法9.1.1 工艺计算的数学模型9.1.2 工艺计算的数值方法9.1.3 工艺计算的计算机辅助技术9.2 化工过程模拟9.2.1 过程模拟的基本原理9.2.2 过程模拟的软件工具9.2.3 过程模拟在工艺优化中的应用9.3 工艺计算与模拟案例分析9.3.1 典型工艺计算与模拟案例9.3.2 案例分析与讨论第十章:化工领域的新技术与发展趋势10.1 先进材料化工10.1.1 纳米材料化工10.1.2 生物基材料化工10.1.3 智能材料化工10.2 可持续化工过程10.2.1 绿色化学与工艺10.2.2 循环经济化工10.2.3 环境友好型化工过程10.3 化工过程智能化10.3.1 智能控制系统10.3.2 化工过程监控与诊断技术10.3.3 化工过程机器学习与应用第十一章:化工设备与材料11.1 常用化工设备11.1.1 反应器类型及特点11.1.2 换热器类型及特点11.1.3 分离设备类型及特点11.2 化工材料11.2.1 常用化工材料分类11.2.2 材料的选择与评价11.2.3 材料的性能测试与分析11.3 设备设计规范与标准11.3.1 设备设计规范概述11.3.2 设备设计标准与规范11.3.3 设备安全与环保要求第十二章:化工过程控制与自动化12.1 过程控制基本概念12.1.1 过程控制的目的与意义12.1.2 过程控制的基本原理12.1.3 过程控制系统的类型12.2 常用过程控制仪表与装置12.2.1 压力测量仪表12.2.2 温度测量仪表12.2.3 流量测量仪表12.3 过程控制应用案例12.3.1 案例分析与讨论12.3.2 过程控制方案设计12.3.3 过程控制系统的优化与改进第十三章:化工安全生产与环境保护13.1 安全生产基本概念13.1.1 安全生产的重要性13.1.2 安全生产法律法规13.1.3 安全生产管理措施13.2 环境保护与可持续发展13.2.1 环境保护的重要性13.2.2 污染物类型与控制技术13.2.3 清洁生产与循环经济13.3 安全生产与环境保护案例分析13.3.1 安全生产事故案例分析13.3.2 环境保护案例分析13.3.3 安全生产与环境保护的改进措施第十四章:化工企业管理与经济分析14.1 企业管理基本概念14.1.1 企业管理的目标与任务14.1.2 企业管理的基本原则14.1.3 企业管理的方法与手段14.2 企业经济分析与决策14.2.1 成本分析与控制14.2.2 市场分析与营销策略14.2.3 投资评价与风险分析14.3 化工企业案例分析14.3.1 企业经营案例分析14.3.2 企业战略案例分析14.3.3 企业改进与发展建议第十五章:化工专业英语文献阅读与写作15.1 专业英语文献阅读技巧15.1.1 文献检索与筛选15.1.2 阅读策略与方法15.1.3 提高阅读理解能力15.2 专业英语文献写作技巧15.2.1 论文结构与格式15.2.2 写作策略与规范15.2.3 提高写作表达能力15.3 化工专业英语案例分析与讨论15.3.1 文献案例分析15.3.2 写作案例分析15.3.3 专业英语交流与实践建议重点和难点解析重点:1. 化学工程与工艺的基本概念、原理和技术。
1 研究生学习要会熟练运用三个工具最近让几个研究生查阅一些文献资料,结果几天下来查不到所需要的资料。
由此想到,现在可能还有一些研究有类似情况,今天在这里啰嗦几句,给还没有掌握基本获取文献信息的在研究生们几个建议。
这就是:(1)对国际文献资料的查阅,要熟练并灵活运用WEB OF SCIENCE(/)。
这个数据库是世界公认的从事科学研究必备的数据库之一。
关于它的介绍,这里引用一个从学校网站上下载的ppt供大家参考。
web of science(2)对于中文文献,建议熟练使用“中国知网”(/index.htm)。
目前这个网络数据库已经逐步在向WEB OF SCIENCE靠近,增加了很多功能。
具体可到网上查看。
遗憾的是目前还没有见到类似上述ppt的介绍。
但其网站上有“帮助”(含使用手册和视频)可供大家学习参考。
(3)对于中英文兼顾的资料搜索,建议使用“Google 学术搜索”(/)。
Google 学术搜索提供可广泛搜索学术文献的简便方法。
您可以从一个位置搜索众多学科和资料来源:来自学术著作出版商、专业性社团、预印本、各大学及其他学术组织的经同行评论的文章、论文、图书、摘要和文章。
Google 学术搜索可帮助您在整个学术领域中确定相关性最强的研究。
Google 学术搜索的功能有:从一个位置方便地搜索各种资源、查找报告、摘要及引用内容、通过您的图书馆或在Web 上查找完整的论文、了解任何科研领域的重要论文等。
有了以上这三个数据库工具,能熟练操作和使用,并针对具体的问题能做到得心应手,对学习和研究来讲都会起到事半功倍的效果。
来源: /blog/vcitym.htm2 推荐一个可以下载文献的好网站/该网站能搜索到的资源还是比较丰富的,各杂志能够下载的年限不太一致,具体情况可能使用过之后才有更多的了解。
3广东省科技图书馆免费虚拟参考咨询与原文传递系统使用说明感谢rjgene的宣传,把广东省科技图书馆虚拟参考咨询和原文传递系统推介给广大虫友,不过有一点需要更正的是:这个地址不是一个免费下载原文的地址,而是一个基于用户互助和积分激励机制的免费原文传递和虚拟参考咨询平台,在合理使用网络资源的前提下为用户提供少量用于个人学习和科研活动的原文,请大家在使用本平台时,注意遵守知识产权的相关规定;平台有一批热情的原文传递专家为大家服务;用户们通过该平台可以获得别人的帮助,也可以通过帮助其他人获得积分奖励;提交原文请求的方式有两个,一个是通过平台的统一检索功能在指定的数据库中检索到所需文献题录后直接提交原文申请,也可以点击“原文请求”手动提交申请。
专业英语相关文献检索方法要检索专业英语相关文献,以下是一些推荐的方法:1. 使用学术搜索引擎:学术搜索引擎如Google学术、百度学术等可以搜索到大量与专业英语相关的学术文章、论文、报告等。
2. 利用学术数据库:学术数据库如Web of Science、IEEE Xplore、ACM Digital Library等收录了大量学术期刊、会议论文和科技报告,可以提供全面深入的专业英语相关文献资源。
3. 在线图书馆:在线图书馆如Project Gutenberg、Internet Archive等提供大量免费或收费的专业英语文献资源,包括经典文学作品、历史资料、科学文献等。
4. 专业协会网站:许多专业协会或组织会在其网站上提供专业英语文献资源,如美国文学翻译协会(American Literary Translators Association)、国际翻译与口译联合会(International Association of Translation and Interpreting)等。
5. 学科平台:学科平台如ResearchGate、Mendeley等提供学术交流和文献共享服务,用户可以在这些平台上搜索和获取专业英语相关文献。
6. 图书馆目录:大多数大学图书馆和公共图书馆都提供目录查询服务,可以帮助您找到专业英语相关的书籍和期刊文章。
7. 引文追踪:使用引文追踪工具,如Google Scholar、PubMed等,可以找到引用了特定文献的最新论文或研究,这有助于发现新的专业英语文献资源。
8. 学科博客和论坛:许多学科领域的博客和论坛会分享专业英语文献或相关讨论,可以作为发现新文献的渠道。
9. 图书馆员咨询:向所在图书馆的馆员咨询,他们可以提供有关专业英语文献检索的帮助和建议。
10. 专家推荐:向相关领域的专家咨询,他们可以提供有关专业英语文献检索的建议和推荐。
总之,要结合多种方法进行专业英语相关文献检索,以获得全面而准确的文献资源。
分析化学专业英语词结
1. 化学元素和化合物的命名:如 oxygen(氧气)、hydrogen(氢)、carbon dioxide(二氧化碳)等。
2. 化学反应和化学方程式的描述:如 reaction(反应)、
equation(方程式)、catalyst(催化剂)等。
3. 分析化学方法和技术的术语:如 chromatography(色谱)、spectroscopy(光谱学)、mass spectrometry(质谱法)等。
4. 实验室常用仪器设备的名称:如 microscope(显微镜)、spectrum analyzer(光谱分析仪)、centrifuge(离心机)等。
5. 化学领域的理论和概念术语:如 stoichiometry(化学计量学)、thermodynamics(热力学)、kinetics(动力学)等。
6. 化学计量学中的计量单位:如 gram(克)、mole(摩尔)、molar mass(摩尔质量)等。
7. 化学实验中常用的操作方法:如 titration(滴定)、
extraction(萃取)、filtration(过滤)等。
这些是分析化学专业常用的英语词结,掌握这些词结对于学习和交流化学知识至关重要。
本文由aiwootng贡献 pdf文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
《化学化工文献检索》教学大纲 学时: 36 学时 理论学时:36 适用专业:应用化学 大纲执笔人:丁志伟 一、说明 1、课程的性质、地位和任务 化学化工文献检索是系统介绍查阅各类化学化工类文献(期刊、手册、大全、文摘、 索引、目录等)方法的一门课程,信息资源是一宝贵资源,快速获取信息并充分有效地利 用信息可以使科研工作起点高、富有成效并避免低层次的重复。
化学工业发展至今已积累 了浩如烟海的文献资源,如何从这个浩瀚的信息海洋中既快又全地找到所需的文献资料是 化学工作者在科研中所要面对的首要课题,同时,知识的更新、终生教育、跟踪学科前沿 也要求我们必须娴熟查阅专业文献资料,所以,在应用化学专业三年级开设这门课程旨在 使学生学会查阅化学化工文献的基本方法,在后续的专业课学习中应用这一技能自主阅读 各类文献,从而既深化了专业课程的学习,又在实际的文献查阅过程中巩固了这一技能, 为大四顺利完成毕业论文和胜任毕业后的实际工作打下坚实的专业基础。
2、课程教学的基本要求 本课程宜安排在学生已修完化学理论课和专业外语等课程后的第五学期,学习本课程 要应用到上述课程的基础知识,尤其是化工专业英语的掌握程度对本课程的学习有直接的 影响。
通过本课程的学习,要求学生培养主动获取信息并加以充分利用的信息意识,了解 各类文献的著录格式、编排方式、索引类型与使用方法,掌握查阅 CA、国外专利、重要手 册丛书的基本方法,培养独立获取知识、独立进行研究的能力与素质。
化学化工文献检索是实践性很强的科学方法课,授课教师应充分利用学校图书馆和学 院资料室的已有文献资料,在讲授某一类文献的查阅方法之前,首先让学生实际接触阅读 该类文献或复印的样页, “百闻不如一见” ,有了具体的感性认识,学生会比较容易领会和 掌握查阅该类文献的知识与方法。
化学文献查询方法一、检索方法:学化学的人,如果刚进实验室的话,往往是两眼黑,不知道如何下手,要下手往往是漫天刷浆,抓不住重点!那么如何能抓住重点,进行有目的的去读一些论文呢?首先用google来看看你的研究方向,比如你研究某系列的天然物合成,那么你就用这个名字去search,然后先看看有没有中文的介绍,如果有的话,那么先看看它是不是review,最好的是找到中文的review,然后大体看以下,了解你要做的东西当前的进展,有什么人在做,结果如何啊。
然后按图索骥,找到英文的文献,那么可能有很多英文的文献,如何去选呢?选择发表在影响因子高的期刊上的文章来读!!!这个很重要!,因为大牛的教授都是把自己的好结果发在高水平的论文上的。
只要你找一篇比如是JOC上的文章,那么就要看好,里面是否引用了某些review,如果有的话,那么你就去找那个review,一般来说国外的高水平的review都是约稿的,请的是当前的牛教授来写的,有读的价值!依次你可以进行全面的了解相关的研究进展了。
如何对待中文的杂志呢?我的意见可能偏激,我认为完全没有任何读的价值!为什么呢?第一,20%的杂志覆盖了80%的内容,第二,IF太低,低于1的就是垃圾了,没有引起任何人的重视,那么这个结果是没有价值的。
第三,很多中文文献的重复性很差,数据被人为的修改。
那么对待英文呢?同样,低水平的也是很多,对于IF低于1的不要去看,就是看了也不要太当真,原因同中文文献一样,对于化学来说也就是不超过20个有意义的杂志吧,美国化学社的全部,德国的wiley上有几个很好的,sciencedirect上的几个影响因子在2以上的,英国化学社的全部,也就是这些了外加thieme的一个。
完整的检索分为两部分:①寻找相关的文献出处;②找到收录文献的数据库,或者使用相关软件,进行全文下载阅读。
第①步是重要的,第②步是次要的。
可以利用的三大检索工具:Beilstein的CrossFire;ISI的Web of Science;CA on CD。
作者: 周德红
作者机构: 江西农业大学,理学院,江西,南昌,330045
出版物刊名: 江西农业大学学报:社会科学版
页码: 92-93页
摘要: 我校2002年招收第一届应用化学专业的学生.在课程设置上需不断地探索与实践.其中,专业英语课是国内外许多高等院校应用化学及相关专业的一门必修课.通过本课程的学习,使学生成为精通化学化工专业知识,具有熟练的英语听说读写能力,能参与国际一体化竞争的创新文理复合型高素质人才.避免目前存在的英语专门人才化学化工知识缺乏而带来的不足.化学文献检索课对于应用化学专业的学生而言也是非常重要的,通过该课程的学习,可以了解有关化学方面的科学研究、生产等的记录和总结,了解某个课题的历史情况,目前国内外的水平和发展动态、发展方向等.这两门课在内容上有较多重复,合并开设是有可能的.……。
专业英语与文献检索(化学工程与工艺专业)(Literature Retrieval and Advanced English in Chemical Engineering)目的和要求随着科学技术的飞速发展,信息剧增,作为化工专业的学生很有必要掌握从大量的信息中快速、准确地查找、获取有关化工的教学科研、开发、商贸等方面信息和各类技术资料的方法,并能正确阅读和理解英语类外文化工科技文献与技术资料。
要求学生能较熟练地查阅中文、外文的化学化工资料,尤其是CA系统,了解相关专业的技术资料的获取方法。
并掌握现代的其它获取化工信息的方法(如网络、数据库等),要求学生还能正确理解所查阅的英文资料,并具有一定的翻译能力,熟悉基本的化学化工专业英语词汇并了解科技英语的特点。
为今后的学习和工作打下获取新知识到能力和技能基础。
基本内容及学时分配本课程总学时为36学时。
第一部分文献检索1.绪论:必要性、重要性及课程内容(2学时)2.科技文献的分类、级别、类型,二次文献的分类等(2学时)3.科技文献的检索方法(2学时)检索途径、方法、步骤4.国内化学化工文献检索工具(4学时)中国化学化工文摘中文科技资料目录——化学工业其它文摘、手册、工具书5.Chemical Abstract (CA) (6学时)历史变化、规律、组成、索引文摘的著录格式查找方法其它相关的外文文摘6.图书分类法及化学化工学院资料室介绍(2+2学时)图书分类法、内部馆藏7.科技文献的获取与供给(4学时)当今各种信息提供方式:光盘、数据库、网络等我校图书馆有关情况介绍8.专利文献及其检索(2学时)文献结构特征及查找方法第二部分专业英语1.科技英语及化学化工专业英语的特点(2学时)基本文法、语法特征,用词、翻译注意点等2.专业词汇、词根、前后缀(8学时)数学、物理、无机化学、有机化学、化学工程与工业主要参考书[1]孙济庆等.《新编化学化工信息检索》.华东理工大学,1995[2]厦门大学化工系工业催化教研室.《化学化工文献》.自编,1993[3]卞白桂.《化工专业英语》.南京化工学院,1989。
化学专业英语之化学文献检索THE LITERATURE MATRIX OF CHEMISTRYThe literature of chemistry and chemical technology is a rich and vast knowledge resource through which we can interact with those who have shaped our past and who are shaping our present.On accepting the invitation to write this book, I hoped to achieve the following objectives:To give the reader an appreciation of the value of the literature matrix and the vital role it has played in the progress of chemistry and technology.To delineate the scope and content of the literature matrix so that the reader can interact with and gain access to it effectively.To orient the book to students majoring in chemistry and chemical engineering and to scientists and engineers employed by the chemical industry in research arid development and in plant operations. Whereas a minority of chemists and chemical engineers affect the literature as authors, all are affected by the literature as readers and users. Reading and using the literature are not only a tradition; they are a necessity if we are to maintain scientific growth(self-education) .relate facts (idea seeking), and establish background information for new research programs (insurance against repeating what has already been done).Too many graduates leave the educational environment with the belief that learning goes on in academic buildings and nowhere else. To limit thinking within the bounds of formal education and training makes us artisans and our science an art. and courts technical obsolescence within a decade1.The chemical literature offers professional chemists and chemical engineers an opportunity for continuous .lifelong self-education. Ideally .every course in science and engineering curriculums should train students to utilize the literature for self-education. The student should be taught not only segmented disciplines, but also how to learn science and technology that is changing rapidly in directions that cannot be anticipated easily.The amount of information to be taught has increased so much that most professor? find little time to teach the literature.Furthermore ,chemistry and chemical technology are increasingly segmented into new disciplines and subdisciplmes .such as polymer chemistry, material science, and environmental science. The need to teach electronics and computer science in addition to the new disciplines have forced the elimination of courses in literature, history, and philosophy of chemistry from the majority of curriculums. Of the approximately 2000 colleges and universities that grant degrees in chemistry, only a few offer courses in the literature of chemistry and still fewer m the history and philosophy of chemistry. Paradoxically when the chemical literature was relatively small, the literature and history of chemistry were considered to be important components of the curriculum, and a high percentage of colleges and universities had courses in those subjects. Many textbooks written for students of the late nineteenth and the first three decades of the twentieth century emphasized the literature. and history of chemistry. Unfortunately, this is no longer the case.f he twentieth century has been a period of rapid growth in the chemical industry and in governmental laboratories, in research and development funding by both the chemical industry and the federal government, and in the numbers of chemists and chemical engineers. The result has been a correspondingly rapid growth of the literature in a multitude offragmented disciplines and subdisciplines. The size, growth, and complexity of the literature became such in the twentieth century, and particularly since 1940, that a multitude of information services were created and a number of guide books were written to aid the user of the literature. One of the best known of these was A Guide t& the Literature of Chemistry by E.J. Crane and A.M. Patterson, published in 1927 by John Wiley &. Sons. This book enjoyed wide use as a text for courses in the literature of chemistry, as did the second edition (1957) by Crane, Patterson, and E.B. Marr, Two other highly regarded and much used texts were Chemical Publications--Their Nature and Use by M. G. Mellon (1928, 1940, and 1948; McGraw-Hill) and Library Guide for the Chemist by B. A. Soule (1938, McGraw-Hill).Another response to the size, growth and complexity, of the literature was the appearance of a new specialist, the chemical information scientist, and a new subdiscipline of chemistry, chemical information science—now a well-established career for thousands of chemists. Although the activities engaged in by these chemists are taught in colleges and universities, the courses are not a part of the chemistry curriculum, nor do they constitute a curriculum for chemical information science2. Chemical information scientists edit and write technical material, translate, index, abstract, search the literature, design information systems rand relate the 'literature to the needs of an environment. As computers became increasingly important in processing information, chemical information scientists played an important role in employing this new tool for computerized information systems and services.In the nineteenth century the literature of chemistry consisted t)f personal contacts,: lectures, correspondence, books, and a few journals. As late as World War I it was-not very difficult for a chemist to read practically everything of importance published in chemistry. Thereafterit became increasingly difficult, and by the, 1930s it was impossible to read everything of importance.Today, the chemical literature consists of books .encyclopedias, treatises, data compilations, handbooks, patents, journals, abstract journals, trade literature, government publications, market research reports, and a variety of computer-based information services. Although a part of this literature matrix is discussed in books by Crane, Patterson, and Marr; Mellon; Soule; and others, the character of the literature has changed radically since these books were written. The present book includes the earlier literature, which is still of importance for retrospective searching, and the significant traditional literature and information services, which are essential for maintaining current awareness and for retrospective searching.Books, encyclopedias, treatises, data compilations, etc., are the vade mecum of students in all subject areas, especially in science and engineering. These are the subjects covered in Chapters 1, 2, and 3. Books are the major resource utilized in the educational process, and one who has not learned how to use school and public libraries can hardly claim to be educated. The books one acquires during the academic years are but a drop in the ocean of literature, and this drop evaporates rather quickly into obsolescence. Throughout one's professional career it is important to gain familiarity with a large number of books, encyclopedias, treatises, etc. , and with sources that give information about new books. The survey of books in Chapter 1 is neither definitive nor all-inclusive; it is, however, highly selective, based on my own use of many of the books listed or on the evaluations of others. Year of publication is not given for every book because many undergo periodic revision; the reader should seek the latest edition.Familiarity with treatises and encyclopedias, such as those listed and discussed in Chapter 2, is a sine qua non for all practicing chemists and engineers. Organic chemists cut their teeth on Beilstein and Houben-Weyl, and inorganic chemists on Gmelin. The most important general reference book today is the Kirk—Othmer Encyclopedia of Chemical Technology. Considerable searching and learning time is saved by knowing and consult-ing these encyclopedias and treatises. Like most other tools of chemistry .expertise comes with frequent use.Every chemist and chemical engineer should have a personal copy of a single-volume handbook, such as Lange's, Perry's, or CRC's, and should be aware of and frequently consult comprehensive works, such as Landolt-Bornstein, International Critical Tables, and the special data compilers of critical data discussed in Chapter 3.Patents constitute an integral resource of the chemical literature. They have a unique literary form, written to satisfy legal requirements, and very unlike that used for reports or journal literature. Most important, they are an essential and useful source of chemical technology, and they play a critical role in the conduct of research and development in the chemical industry. The number of abstracts of basic patents published in Chemical Abstracts, which very recently has been in excess of 60000 per year, gives an indication of the size of this literature. Chapter 4 discusses patents as a resource and how to use them. Journal literature has been the fastest growing segment of the chemical literature. Whereas books, encyclopedias, and treatises discuss the past events of chemistry, journals record the current happenings. Journals came into existence in the seventeenth century as a better and faster communication medium than letter, pamphlet, or book, and slowly evolved into the dominant medium for reporting and communicating activities inthe laboratory. As chemistry was increasingly subdivided into specialties and the products of chemical industries increasingly used by other industries, the journal literature grew to cover these areas of interest. In addition to reporting current research, journals were introduced to review the literature and to serve the needs of trade groups. As the number of journals in chemistry, chemical technology, and allied fields increased to the present 20000-40000, the journal literature also became the dominant resource for retrospective searching. Chapter 5 puts this vast resource into perspective, identifying the important journals by period of publication, country of publication, and—for journals currently pub-liaised —subject area covered. Because there are so many journals being published today, only the major journals in various subdisciplines are listed.In the nineteenth century, the size and complexity of the journal literature already prompted the introduction of Pharmaceutisches Centralblatt (1830) [name changed to Chemisettes Zentralblatt (1856)]. The first journal in chemistry consisting wholly of abstracts. It was followed by Science Abstracts in 1989 and Chemical Abstracts in 1907. There are now over 1500 indexing/abstracting publications, covering the journal, report, patent, and book literature. Chapter 6 discusses these services as they evolved over the centuries. Chapter 7 is a fairly detailed discussion of Chemical Abstracts and Chapter 8 of otherindexing/abstracting services.The introduction of computer-based information services, the subject of Chapter 9, added a new dimension to the chemical literature matrix. Since the mid-1960s, online data bases have become a major tool for searching the chemical literature. They are a tool, however, that requires knowledge of the contents and limitations of data bases and how to access the data bases through the systems imposed by data base brokers. Despitethe increasing number of data bases available online from various data base brokers, most chemists use the new tool mostly through intermediaries. Terminals, a maze of operating systems, programming languages, and intermediaries are still barriers between the scientist and the computer. But there is hope that through proper management computers and telecommunications can bring the literature of chemistry to us according to our specific needs and in our terms.Of the various components of the literature matrix, computer-based information services are undergoing the most rapid changes. For about two months in 1981, I was given an opportunity to update the present book before it went to the publisher. I added new information to every chapter, but the greatest number of changes and additions were in the chapter on computer-based information services. Data base producers especially are undergoing changes toward improving their products. A salient example of the changing nature of computer-searchable information systems is Chemical Abstracts Service, whose products CASIA. CA Condensates, and Patent Concordance, no longer produced, have been replaced by far superior products, CA BIBLIOFILE and CA SEARCH.Most scientists and engineers prefer the dreams of the future above the history of the past. But our constantly evolving present is a consequence of our expanding past, and the best of today’s chemistry will be a part of the past. The study of history is more than a luxury. The past has played a tremendous role m shaping our literature and continues to be a part of our total knowledge. The chemical literature, although young and vigorous, is steeped in history. Those who have made this history and literature are discussed in Chapter 10. Chapter 11 traces the development of American chemistry and its literature from colonial times to the twentieth century. Only deceased chemists are considered in this chapter; otherwise chapter 11 would have been the longest in the book.Communications has been the most pervasive force in the creation and maintenance of chemistry and chemical technology. The printing press -was the magic wand that made this possible. But like the "sorcerer's apprentice," we do not know how to control the outpouring; we seem to have more documents than we want or need; or else, the ones we want and need are diluted with too many which are not relevant. Information storage and retrieval are still based on the printing press and paper, the filing cabinet, and library shelves. For the reader, microfiche and microfilm, introduced to save space and costs, are interior to paper. Despite the progress that has been and is being made in computerized information systems and in telecommunications, most of us will continue to read and file printed documents for some time to come. But the paperless society is on the horizon and will be cast of our future.。