第二章 有限差分法初步-1
- 格式:ppt
- 大小:1.35 MB
- 文档页数:61
一、有限差分法的原理与计算步骤
1.原理
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
2. 计算步骤
在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。
有限差分法求解偏微分方程的步骤如下:
(1)区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;
(2)近似替代,即采用有限差分公式替代每一个格点的导数;
(3)逼近求解。
换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程
二、有限差分法的程序流程图。
第2章 有限差分法2.1 引言所有的守恒方程都具有相似的结构,而且都可以看作是输运方程的特殊形式。
本章以一般输运方程在Cartesian 坐标系下的表达式为例来讲述有限差分法。
()φφφρq xx x u j jjj +⎪⎪⎭⎫⎝⎛∂∂Γ∂∂=∂∂ (2.1)在上述方程中,除外都认为是已知函数。
2.2 基本概念FD 方法的第一步是离散几何的求解域,也就是说定义数值网格。
在FD 中,网格是局部结构化的,每个网格节点都可以看作是局部坐标系的原点,网格线则是局部坐标系的坐标线。
同族的网格线两两互不相交。
每一个网格节点都可用一组指标唯一的标定。
差分形式的标量守恒方程(2.1)是FD 法的原始方程。
并被近似为以网格节点上的守恒量为未知数的代数方程系统。
代数方程组的解近似为原微分方程的解。
每一个带有未知数的节点都必须有一个代数方程,在节点以及相邻节点上的未知数之间建立联系。
这个代数方程用在接点处用有限差分近似代替偏导数的形式获得。
对于Dirichlet 边界条件,边界上不需要代数方程,,对于其他边界条件,则必须将边界条件离散以得到所需的代数方程。
有限差分的概念是从导数的定义中得到的:x x x x x i i x x i∆-∆+=⎪⎭⎫⎝⎛∂∂→∆)()(lim 0φφφ (2.2)几种常用的差分格式:向前差分(forward difference )ii ii x x x --≈∂∂++11φφφ (2.3)向后差分(backward difference )11----≈∂∂i i i i x x x φφφ (2.4)中心差分(central difference )1111-+-+--≈∂∂i i i i x x x φφφ (2.5)2.3 一阶导数的近似(2.1) 式中的对流项()xu ∂∂φρ需要对一阶导数进行离散。
2.3.1 Taylor 级数展开法任意的连续函数(x)可在x i 的领域内展开成Taylor 级数()()()()()H x n x x x x x x x x x x x x x in nni ii i i ii i +⎪⎪⎭⎫ ⎝⎛∂∂-++⎪⎪⎭⎫ ⎝⎛∂∂-+⎪⎪⎭⎫⎝⎛∂∂-+⎪⎭⎫ ⎝⎛∂∂-+=φφφφφφ!...!32)(333222(2.6)H 为高阶项,用x i -1,x i +1代替x 这些点处的函数值在x i 附近的展开式。