初中数学《解直角三角形》单元教学设计以及思维导图
- 格式:doc
- 大小:119.50 KB
- 文档页数:9
九上数学第二十三章 数据分析23.1 平均数与加权平均数一般地,我们把n个数的和与n的比,叫做这n个数的算术平均数=x ˉx +…+x n1(1n )已知n个数,,...,,若,,...,为一种正数,则把,叫做n个数,,...,的加权平均数x 1x 2x n w 1w 2w n w +w +...+w 12nx w +x w +...+x w 1122n nx 1x 2x n 23.2 中位数与众数一般地、将n个数据按大小顺序排列,如果n为奇数,那么位于中间位置的数据叫做这组数据的中位数;如果n为偶数,那么把处于中间位置的两个数据的平均数叫做这组数据的中位数。
一般地、把一组数据中出现最多的那个数据叫做众数,一组数据的众数可能不止一个,也可能没有众数23.3 方差设n个数据,,...,的平均数为,各个数据与平均数偏差的平方分别是,,...,,偏差平方的平均数叫做这组数据的方差,用表示,即x 1x 2x n x ˉx −(1x ˉ)2x −(2x ˉ)2x −(n x ˉ)2s 2s =2x −+x −+...+x −n1[(1x ˉ)2(2x ˉ)2(n x ˉ)2]当数据分布比较分散时,方差较大;当数据分布比较集中时,方差较小。
因此,方差的大小反映了数据波动的大小23.4 用样品估计总体由于抽样的任意性,即使是相同的样本容量,不同样本的平均数一般也不相同;当样本容量较小时,差异可能还较大。
但是当样本容量增大时,样本的平均数的波动变小,逐渐趋于稳定,且与总体的平均数比较接近,因此,在实际中经常用样本的平均数估计总体的平均数。
同样的道理,我们也用样本的方差估计总体的方差第二十四章 一元二次方程24.1 一元二次方程关于未知数x的整式方程,且x的最高次数都为2,像这样,只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程一元二次方程的一般形式为(a不等于0)ax +2bx +c =0是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项ax 224.2 解一元二次方程配方法通过配方,把一元二次方程变形为一边含有未知数的一次式的平方,另一边为常数,当常数为非负数时,利用开平方,将一元二次方程转化为两个一元一次方程,从而求出原方程的根,这种解一元二次方程的方法叫做配方法公式法x =2a−b ±b −4ac2当时,方程有两个不相等的解b −24ac >0当时,方程有两个相等的解b −24ac =0当时,方程没有实数根b −24ac <0用求根公式求一元二次方程的方法,叫做公式法因式分解把一元二次方程的一边化为0,另一边分解成两个一次因式的乘积进而转化为两个一元一次方程,从而求出原方程的根,这种解一元二次方程的方法叫做因式分解十字相乘十字左边两个数相乘是二次项系数十字相乘右边的数相乘是常数项交叉相乘再相加是一次项系数得到结果后上面两个数依次是第一组数的未知数系数和常数项,下面两个数依次是第二组数据的未知数系数和常数项概要24.3 一元二次方程与系数的关系一元二次方程的两根分别是,ax +2bx +c =0x 1x 2x ⋅x =12ac x +1x =2−ab24.4 一元二次方程的应用要根据题目给的现实情况来排除答案第二十五章 图形的相似25.1 比例函数在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,我们就把这四条线段叫做成比例线段,简称比例线段。
沪科版九年级数学上册第23章《解直角三角形》教学设计一. 教材分析《解直角三角形》是沪科版九年级数学上册第23章的内容,主要介绍了解直角三角形的知识和方法。
本章内容在初中数学中占有重要地位,是为后续学习平面几何和高中的三角学做铺垫。
通过本章的学习,学生能够掌握直角三角形的性质,学会使用勾股定理和三角函数解决实际问题。
二. 学情分析九年级的学生已经学习了平面几何的基础知识,对图形的性质和运算有一定的了解。
但是,对于解直角三角形的理解和应用,部分学生可能会感到困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和辅导。
三. 教学目标1.理解直角三角形的性质,掌握勾股定理和三角函数的定义。
2.学会使用勾股定理和三角函数解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.勾股定理的理解和应用。
2.三角函数的定义和应用。
3.解决实际问题时的计算和推理。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和解决问题。
2.使用多媒体辅助教学,直观展示直角三角形的性质和应用。
3.注重实践操作,让学生通过动手操作和实际计算,加深对知识的理解。
4.采用分组合作和讨论的方式,培养学生的团队合作能力。
六. 教学准备1.多媒体教学设备。
2.直角三角形的模型或图片。
3.练习题和实际问题案例。
七. 教学过程1.导入(5分钟)利用多媒体展示直角三角形的图片,引导学生回顾已学的平面几何知识,为新课的学习做好铺垫。
2.呈现(15分钟)介绍直角三角形的性质,引导学生学习勾股定理和三角函数的定义。
通过示例和讲解,让学生理解并掌握这些知识。
3.操练(15分钟)让学生分组合作,利用直角三角形的模型或图片,进行实际操作,验证勾股定理和三角函数的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成。
题目包括简单的基本计算、应用题等。
教师选取部分题目进行讲解和分析,帮助学生巩固所学知识。
《解直角三角形》教学设计(续表)图28-2-5 教师呈现问题并引导学生结合图形,观察已知和的正弦来求∠A的(续表)(续表)【学习目标】 1.知识技能(1)掌握直角三角形的边角关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.(2) 理解解一个直角三角形的前提条件. 2.解决问题通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3.数学思考 让学生思考:为什么一个直角三角形可以解的前提条件是必须有两个元素(其中一个必须为边).从而让学生理解画一个直角三角形的条件.4.情感态度(1) 通过给定具体的两个条件(其中一个为边),让学生们画直角三角形,培养学生合作交流的意识和探索精神.(2)通过本节的学习,向学生渗透数形结合的数学思想,培养他们良好的学习习惯. 【学习重难点】重点:直角三角形的解法.难点: (1)三角函数在解直角三角形中的灵活运用.(2)学生可能不理解在已知的两个元素中,为什么至少有一个是边.课前延伸【知识梳理】(1) 在Rt △ABC 中,∠C =90°,a =3,c =4,则b =. (2) 在Rt △ABC 中,∠C =90°,∠A =28°,那么∠B =__62°__.(3) 在Rt △ABC 中,∠C =90°,a =4,b =5,则sin A =41,cos A =41,tan A =__45__(4) 在Rt △ABC 中,∠C =90°, ∠A =30°,a =6,则c =__12__,b =. (5) 在Rt △ABC 中,∠C =90°,已知c =6, ∠A =50°,则a =__6_sin50°__. (6) 意大利披萨斜塔在建成的时候就已倾斜,其塔顶中心点偏离垂直中心线2.1米,1972年披萨地区发生地震,这座高54.5米的斜塔在大幅摇摆后依然屹立,但塔顶中心点偏离垂直中心线增至5.2米,请你算出这时塔身中心线与垂直中心线的夹角.课内探究一、 课堂探究1(问题探究,自主学习)(1)在Rt △ABC 中,∠C =90°,c =28, ∠B =60°,解这个直角三角形. (2)在Rt △ACB 中,c =90°,a =30, ∠B =80°, 解这个直角三角形. (3)在Rt △ABC 中,c =90°,a =3,b =3, 解这个直角三角形.二、课堂探究2(分组讨论,合作探究)(1) 画一个直角三角形,使两条直角边分别为3和4.(2) 画一个直角三角形,使一条直角边为3,一个锐角为35°.(3) 画一个直角三角形,使斜边长为8,一个锐角为40°.(4) 画一个直角三角形,使两个锐角分别为30°和60°.各小组比较由(1)(2)(3)(4)画出的直角三角形.讨论1:你觉得给出什么样的条件可以画出一个确定的三角形.讨论2:你觉得确定一个直角三角形需要的元素有什么条件?三、反馈训练1.必做题在Rt△ABC中,∠C=90°,已知b=20, ∠B=35°,解这个直角三角形(结果保留小数);(2)在Rt△ABC中,∠C=90°,已知a=10 3,b=20, 解这个直角三角形.2.选做题在Rt△ABC中,∠C=90°,AC=15, ∠A的平分线AD=10 3,解这个直角三角形.课后提升1. 在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.2. 已知在△ABC中,∠B=60°,∠C=45°,AB=6,求BC长.3. 如图,在两面墙之间有一个底端在点A的梯子,当它靠在一侧墙上时,梯子的顶端在点B处;当它靠在另一侧墙上时,梯子的顶端在点D处.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 2 m.求点B到地面的垂直距离BC.图28-2-9。
初中数学《解直角三角形》单元教学设计以及思维导图11 解直角三角形主题单元设计适用年初四级所需时课内8课时,课外2课时间主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要学习方式和预期的学习成果,字数300-500。
) 本章内容是解决解直角三角形的基础,其中前两小节,又是本章的基础。
专题一,主要介绍了三类锐角三角函数的概念,明确了角度与数值之间的函数关系,为今后的正确学习本章知识打下基础;专题二,主要讲了三种特殊角的三角函数值,让学生熟记三类函数值,为今后的有关三角函数的计算题目做好准备;专题三,主要介绍了解直角三角形的几种类型,让学生熟练掌握;专题四,主要介绍了应用解直角三角形的知识要解决的几类实际生活中的问题。
通过对这部分知识的了解、应用,让学生能学以致用。
用所学知识解决简单的生产和生活中的实际问题,提高他们的学习兴趣,进一步激发他们的求知欲。
专题五,介绍了测量旗杆的高度的几种方法。
重点:经历把实际问题转化为数学问题的过程,进一步体会三角函数在解决问题过程中的应用。
难点:体验数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力。
主题单元规划思维导图主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:1、能够用tanA、sinA、cosA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切、正弦、余弦进行简单的计算.2、理解正切、正弦、余弦、倾斜程度、坡度的数学的意义和与现实生活的联系. 理解锐角三角函数的意义3.能根据直角三角形中的边角关系,进行简单的计算.4.能够进行30?、45?、60?角的三角函数值的计算.能够根据30?、45?、60?的三角函数值说明相应的锐角的大小.5、会解直角三角形(要求熟练准确),能将一般三角形转化为直角三角形(适当加高)6、学会将坝高问题、触礁问题转化为解直角三角形的问题,能通过解直角三角形解决实际生活问题。
湘教版数学九年级上册4.3《解直角三角形》教学设计2一. 教材分析湘教版数学九年级上册4.3《解直角三角形》是直角三角形相关知识的学习,这部分内容是初中数学的重要内容,也是解决实际问题的基础。
本节课主要让学生掌握直角三角形的性质,学会用勾股定理和锐角三角函数解直角三角形,为后续学习三角函数和解决实际问题打下基础。
二. 学情分析九年级的学生已具备一定的几何知识,对三角形有了一定的了解,但解直角三角形的知识和方法还需要进一步学习和掌握。
在学习过程中,学生需要通过实例感受解直角三角形在实际生活中的应用,提高学习的兴趣和动力。
三. 教学目标1.知识与技能:让学生掌握直角三角形的性质,学会用勾股定理和锐角三角函数解直角三角形。
2.过程与方法:通过观察、操作、探究等活动,培养学生的空间想象能力和动手操作能力。
3.情感态度与价值观:激发学生学习数学的兴趣,体会数学在生活中的应用,提高学生解决实际问题的能力。
四. 教学重难点1.重点:直角三角形的性质,勾股定理和锐角三角函数在解直角三角形中的应用。
2.难点:如何引导学生发现并总结解直角三角形的方法,以及如何在实际问题中灵活运用。
五. 教学方法1.采用问题驱动法,引导学生发现问题、解决问题。
2.运用实例分析法,让学生感受解直角三角形在实际生活中的应用。
3.采用合作交流法,鼓励学生相互讨论、分享心得。
4.利用多媒体辅助教学,提高学生的学习兴趣。
六. 教学准备1.准备相关实例,用于引导学生发现解直角三角形的方法。
2.准备多媒体课件,展示直角三角形的性质和应用。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如测量身高、计算物体距离等,引导学生思考如何解决这些问题。
通过讨论,让学生认识到解直角三角形在实际生活中的重要性。
2.呈现(10分钟)介绍直角三角形的性质,引导学生发现并总结解直角三角形的方法。
通过示例,讲解勾股定理和锐角三角函数在解直角三角形中的应用。
湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)教学设计一. 教材分析湘教版数学九年级上册4.4《解直角三角形的应用》(第2课时)的教学内容主要包括解直角三角形的应用、锐角三角函数的概念和应用。
本节课是在学生已经掌握了直角三角形的相关知识的基础上进行教学的,目的是让学生能够运用所学的知识解决实际问题,提高学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于直角三角形的相关知识也有了一定的了解。
但是,学生在解决实际问题时,往往会因为对概念理解不深、思路不清晰而导致解题困难。
因此,在教学过程中,教师需要引导学生深入理解概念,培养学生的解题思路。
三. 教学目标1.知识与技能:使学生掌握解直角三角形的应用,理解锐角三角函数的概念和应用。
2.过程与方法:培养学生运用所学的知识解决实际问题的能力,提高学生的数学应用能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.教学重点:解直角三角形的应用,锐角三角函数的概念和应用。
2.教学难点:如何引导学生运用所学的知识解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,培养学生的解题思路;通过分析实际案例,使学生理解所学知识的应用价值;通过小组合作学习,提高学生的团队合作意识和交流能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计好教学问题和案例。
2.学生准备:掌握直角三角形的相关知识,预习本节课的内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直角三角形的相关知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师展示案例,让学生观察和分析案例中的直角三角形,引导学生发现实际问题中的数学规律。
3.操练(20分钟)教师设置问题,引导学生运用所学的知识解决实际问题。
学生在解决问题的过程中,教师给予指导和点拨,帮助学生理清解题思路。
解直角三角形
适用年级九年级
所需时间4课时
主题单元学习概述
本主题的教学活动是以测楼高为专题,在专题目标的驱动下,引导学生学习相关的知识:如何解直角三角形,同时让学生探究在直角三角形中,满足什么条件的直角三角形可以求解的分析过程,从而解决要测量楼高需要测量哪些数据?需要什么工具?最后带领学生实地进行测量,共同探讨怎样测量的问题,最后达到解决即会测、怎么测、怎么计算等问题。
学生可以经历从实际问题抽象出数学问题,建立数学模型,应用已有知识解决问题的过程,从而加深对相关知识的理解,提高思维能力。
主题单元规划思维导图
主题单元学习目标
知识技能:
1、理解直角三角形中各元素之间的关系;
2、会运用勾股定理直角三角形两锐角互余及锐角三角函数解直接三。
六.教学设计课题解直角三角形课时 1教学目标:1.了解解直角三角形的概念并能由已知条件解直角三角形及实际问题。
2.通过对全章知识的回顾引出一些解直角三角形的问题再由学生自己发现解直角三角形一般具备的三种已知条件得情况并由此掌握解直角三角形的含义和方法教学重点与.难点直角三角形的解法.教学方法一、本章知识结构图直角三角形中的边角关系____ 锐角三角函数________解直角三角形________实际问题二、回顾与思考1.(1)锐角三角形函数是如何定义的?(2)直角三角形的边角关系包括哪些内容?2. 总结直角三角形的边角关系,完成下面的表格教学内容师生行为设计意图一、复习引入教师提出问题,引起学生思考,然后有学生来回答回顾复习直角三角形中边与边、角与角、边与角之间的关系以及锐角三角函数的有关知识二、回顾汇总教师根据学生的回答归纳教师提出问题,引导提示学生思考总结回顾复习汇总,为解直角三角形打下基础三、典型例题例1在平地上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测得山顶A的仰角为45°,求山高AB ?教师:1、就学生分析简要讲评。
2、有学生板书出过程,强调做题规范性然后出示解题过程,让学生自己批改,可以发现自己的不足五.学情分析通过以前的数学学习,大多数学生已能用数学思想来思考问题,能与教师或同学一起来分析问题。
但由于各种因素的影响,学生发展参差不齐。
部分学生对学过的知识点掌握不牢固,做题没有把握,讲不出原因。
八.效果分析1. 学生在数学课堂上不积极参与,缺少主动发言的热情或根本不愿意发言;另外,相当一部分学生在听课时跟不上老师的节奏。
2. 学生对数学课堂知识的理解不全面,课外花的冤枉时间多。
大部分学生对书本知识不够重视,找不到数学学科复习的有效载体,不能有效的利用课本,适时地回归课本。
3.学生缺少教师明确的指导,在复习时缺乏系统安排和科学计划,或者学习和复习没有个性化特点, 导致学习效果不明显。